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Gene-expression programming to predict scour at

a bridge abutment

H. Md. Azamathulla
ABSTRACT
The process involved in the local scour at an abutment is so complex that it makes it difficult

to establish a general empirical model to provide accurate estimation for scour. This study

presents the use of gene-expression programming (GEP), which is an extension of genetic

programming (GP), as an alternative approach to estimate the scour depth. The datasets of

laboratory measurements were collected from the published literature and used to train the

network or evolve the program. The developed network and evolved programs were validated by

using the observations that were not involved in training. The proposed GEP approach gives

satisfactory results compared with existing predictors and artificial neural network (ANN) modeling

in predicting the scour depth at an abutment.
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NOTATION INTRODUCTION
L
 length of abutment normal to the

approaching flow
F
 Froude number
U
 mean velocity of approach flow
Uc
 mean velocity of approach flow

at the incipient motion of sediment
b
 streamwise length of abutment (m)
h
 depth of the approaching flow
d50
 particle mean diameter
ds
 equilibrium scour depth
g
 gravitational acceleration
R2
 coefficient of determination
RMSE
 root mean squared error
MAE
 mean average error
ρ
 fluid density
ρS0
 buoyant sediment density
α
 spread
δ
 average absolute deviation.
Scour is a major cause of the failure of bridge abutments.
Failure of bridges due to scour at their foundations consist-

ing of abutments and piers is a common occurrence. Local

scour at the foundations has long been a concern for engin-

eers (Muzzammil ). In the safety evaluation of bridges,

the local scour of bridge foundation material near a pier/

abutment is therefore a significant issue (Azamathulla

et al. ).

Interactions between the abutment and its erodible bed

under strong current and/or wave conditions may cause

scour at the bridge abutment. This process involves the com-

plexities of both the three-dimensional flow pattern and

sediment movement. Scour underneath the bridge abutment

may expose a section of the bridge, causing it to become

unsupported, leading to settlement and potentially structural

failure. Generally the scour depth at abutments is predicted

by three strategies such as the regime approach, the empiri-

cal approach, and the analytical or semi-empirical
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approach. Even though many experimental and theoretical

works were reported on scour prediction, there is a wide

scope for further study in many applications. From the avail-

able literature, it is also revealed that the exact scour

mechanism and effects of different parameters on scour

depth are yet to be fully understood or explored (Dey &

Barbhuya a, b). The estimation of the scour character-

istics at a bridge abutment continues to be a concern for

hydraulic engineers.

A number of empirical formulae have been developed in

the past to estimate the equilibrium scour depth at a bridge

abutment, including Bateman et al. () who developed a

morphodynamic model to predict temporal evolution of

local scour at bridge piers. There is therefore no single ana-

lytically derived equation which is valid for a wide range of

flow conditions, bed material properties and abutment

shape configurations, because of the difficulties of precise

modeling of the phenomenon in a laboratory medium.

Lack of understanding of complex flow conditions and sim-

plified modeling of the phenomenon would lead to the

pronounced modeling uncertainty. On the other hand,

reliable field data are scarce, leading to calibration pro-

blems. Most commonly, regression relations are used to

predict scour at a bridge abutment; however, regression

analysis can have large uncertainties, which have major

drawbacks pertaining to idealization of the complex scour

process, and approximation and averaging widely varying

prototype conditions. Thus, the computed scour depths

can be far from the actual ones. Another important issue,

apart from the complexity of the scour phenomenon

involved, is due to the limitation of the regression analysis.

Predictive approaches such as artificial neural networks

(ANN) (Azmathullah et al. ) and adaptive neuro-fuzzy

inference systems (ANFIS) (Azamathulla et al. ;

Muzzammil ) have been recently shown to yield effec-

tive estimates of scour around hydraulic structures. ANNs

have been reported to provide reasonably good solutions

for hydraulic-engineering problems, particularly for cases

of the highly nonlinear and complex relationship among

the input–output pairs in corresponding data (Azamathulla

et al. ).

The objective of this study is to develop a predictive

model for scour depth using GEP. The performance of the

proposed GEP model is compared with a standard Radial
://iwaponline.com/jh/article-pdf/14/2/324/386665/324.pdf
Basis Function (RBF) neural network and conventional

regression-based equations. The explicit formulation of the

GEP model is also presented.
ANALYSIS OF LOCAL SCOUR AT BRIDGE
ABUTMENT

The variables influencing the equilibrium scour depth (ds) at

a bridge abutment perpendicular to the shoreline placed in

uniform bed sediments are generally expressed in the follow-

ing functional form, assuming a constant relative density

of sediment and the absence of viscous effects (Dey &

Barbhuya a):

ds ¼ f ðU;L;h;Uc;d50;KsÞ ð1Þ

where L is the length of the abutment perpendicular to the

flow direction, h is the depth of the approach flow, U is

the mean flow velocity, Uc is the critical velocity of bed sedi-

ment, d50 is the median size of the sediment and ds is the

equilibrium scour depth. Ks represents the abutment shape

factor, being 1 for vertical-wall abutments, 0.82 for 45 W

wing-wall abutments and 0.75 for semicircular abutments

(Melville ). As the scour depth at an abutment occurs

when the excess approaching flow velocity (Ue) is greater

than zero, where Ue¼U� 0.5Uc, Equation (1) may there-

fore be expressed as (Muzzammil )

ds ¼ f ðUe;L;h;d50;KsÞ: ð2Þ

Equation (2) may also be reduced in terms of a set of

non-dimensional parameters of the form:

ds

L
¼ Ψ Fe;

h
L
;
d50

L
;Ks

� �
ð3Þ

where Fe¼Ue/(ΨgL)0.5; Ψ¼ S� 1 and S is the relative den-

sity of sediment particles.

The non-dimensional parametric representation in the

present model has been justified by Dey & Barbhuya

(a) for the different conditions of flows (Figure 1). The

experimental data were collected from Dey & Barbhuya

(a) and Ballio et al. (). The whole dataset consisting



Figure 1 | Different types of abutments (Muzzammil 2010).
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of 317 dataset. Figure 2 shows the definition figure of scour

at a typical abutment. The time for running the experiment is

generally considered to be an important variable of interest

to avoid erroneous equilibrium scour depth. Lim & Chiew

() reported that the required time to reach the equili-

brium scour at abutments in clear water scour is 3 to 8 d,

depending on the flow and sediment conditions. Melville

() defined the time to reach the equilibrium scour con-

dition such that the rate of increase of scour depth does

not exceed 5% of the pier diameter in the succeeding 24 h

period. Dey & Barbhuya (a) reported that, when a

negligible (1 mm or less) difference of scour depth of a par-

ticular run was observed in an interval of 2 h after 48 h, it
Figure 2 | Definition sketch of scour at a typical abutment (Muzzammil 2010).
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was assumed that an equilibrium state has been achieved

(Muzzammil ).

During the last two decades, researchers have noticed

that the use of soft computing techniques as an alternative

to conventional statistical methods based on controlled lab-

oratory or field data yielded significantly better results. ANN

and GP/GEP are the most widely used branches of soft com-

puting in hydraulic engineering (Giustolisi ; Kizhisseri

et al. ). Within the larger field of hydraulics, several

researchers have dealt with the scour around and down-

stream of hydraulic structures using ANN (Azmathulla

et al. , , ; Guven & Gunal ; Muzzammil

). Gene-expression programming (GEP), which is an

extension of GP, has recently attracted the attention of

researchers in the prediction of hydraulic characteristics.

This study presents ANN and GEP as an alternative tool

in the prediction of scour depth at a bridge abutment.
OVERVIEW OF GEP

GEP, which is an extension of GP (Koza ), is a search

technique that involves computer programs (e.g. mathemat-

ical expressions, decision trees, polynomial constructs and

logical expressions). GEP computer programs are all

encoded in linear chromosomes, which are then expressed

or translated into expression trees (ETs). ETs are sophisti-

cated computer programs that have usually evolved to

solve a particular problem and are selected according to

their fitness at solving that problem.

GEP is a full-fledged genotype/phenotype system, with

the genotype totally separated from the phenotype, whereas

in GP, genotype and phenotype are mixed together in a

simple replicator system. As a result, the fully fledged geno-

type/phenotype system of GEP surpasses the old GP system

by a factor of 100–60,000 (Ferreira a, b).

Initially, the chromosomes of each individual in the

population are generated randomly. Then, the chromosomes

are expressed, and each individual is evaluated based on a

fitness function and selected to reproduce with modifi-

cation, leaving progeny with new traits. The individuals in

the new generation are, in their turn, subjected to some

developmental processes, such as expression of the gen-

omes, confrontation of the selection environment and
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reproduction with modification. These processes are

repeated for a predefined number of generations or until a

solution is achieved (Ferreira a, b). The functionality

of each genetic operator included in the GEP system has

been explained by Guven & Aytek ().
DEVELOPMENT OF NEURAL NETWORK MODEL

ANNs provide a random mapping between an input and

an output vector, typically consisting of three layers of

neurons, namely input, hidden and output, with each

neuron acting as an independent computational element.

Neural networks derive their strengths from the high

degree of freedom associated with their architecture.

Prior to application, the network is trained to observed

datasets from the published data and Professor Dr Fran-

cesco Ballio of Politecnico di Milano, Milano, Italy also

kindly provided additional scour data resulting from his

previous work. This feeds the network with input and

output pairs and determines the values of connection

weights, bias or centers (see Figure 3 for an example).

The training may require many epochs (presentation of

complete datasets once to the network), being carried

out until the training sum of square errors reaches a speci-

fied error goal. Concepts involved behind these training

schemes are outlined in the ASCE Task Committee

(). A neural network toolbox contained within the

MATLAB package was used in this study. The usual

feed-forward type of network was trained using radial

basis function (RBF). Out of the total of 317 input–

output pairs, about 75% (238 sets), selected randomly,

and were used for training, whereas the remaining 25%

(79 sets) were employed for testing. As dictated by the

use of a Gaussian function, all patterns were normalized

within the range of (0.0, 1.0) before their use. The RBF
Figure 3 | RBF neural network architecture.

://iwaponline.com/jh/article-pdf/14/2/324/386665/324.pdf
network (four inputs, 36 hidden neurons and one

output) (as in Equation (3)) was trained by using various

values of spread (α) between 0 and 1. A spread constant

α for the radial basis layer returns a network with weights

and biases such that the outputs are exactly for given tar-

gets. The value of 0.01 was selected as it yielded the best

performance for the training data.
DEVELOPMENT OF GEP MODEL

In this section, the scour depth at an abutment is modeled

using theGEP approach. Initially, the ‘training set’ is selected

from the entire dataset and the rest is used as the ‘testing set’.

Once the training set is selected, one could say that the learn-

ing environment of the system is defined. The modeling also

includes five major steps to prepare to use GEP. The first is to

choose the fitness function. For this problem, the fitness, fi, of

an individual program, i, is measured by

fi ¼
XCt

j¼1

(M � jCði;jÞ � Tjj) ð4Þ

where M is the range of selection, C(i,j) is the value returned

by the individual chromosome i for fitness case j (out of Ct

fitness cases) and Tj is the target value for fitness case j. If

|C(i,j)� Tj| (the precision)� 0.01, then the precision is 0 and

fi¼ fmax¼CtM. In this case, M¼ 100 is used; therefore,

fmax¼ 1,000. The advantage of this kind of fitness function

is that the system can find the optimal solution by itself.

Second, the set of terminals T and the set of functions F

are chosen to create the chromosomes. In this problem, the

terminal set consists of single independent variable, i.e., T¼
{h}. The choice of the appropriate function set is not so

clear; however, a good guess is helpful if it includes all the

necessary functions. In this study, four basic arithmetic

operators (þ, �, *, /) and some basic mathematical func-

tions (ν) are utilized.

The third major step is to choose the chromosomal archi-

tecture, i.e., the length of the head and the number of genes.

Initially we used a single gene and two head lengths and

increased the number of genes and heads one at a time

during each run while we monitored the training and testing
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performances of each model. It was observed that more than

two genes and a head length greater than 8 did not signifi-

cantly improve the training and testing performance of GEP

models. Thus, the head length, lh¼ 8, and three genes per

chromosome are employed for eachGEPmodel in this study.

The fourth major step is to choose the linking function.

In this study, addition and multiplication operators are used

as linking functions, and it is observed that linking the sub-

ETs by addition gives better fitness (Equation (4)) values.

The fifth and final step is to choose the set of genetic oper-

ators that cause variation and their rates. A combination

of all genetic operators (mutation, transposition and cross-

over) is used for this purpose (Table 2).

The GEP model was developed using the same input

variables as with an ANN-RBF model as parameters in
Figure 4 | Expression tree (ET) for GEP formulation (d0¼ d50/L, d1¼ F; d2¼ h/L and d3¼ Ks).

om http://iwaponline.com/jh/article-pdf/14/2/324/386665/324.pdf
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Equation (3), namely Froude number, the relative flow

depth, relative sediment particle size, Ks is the shape factor

and normalized equilibrium scour depth (ds/L) as the input

and output patterns, respectively. Both of these combinations

of inputs have been used for the GEP and ANN models.

The simplified analytic form of the proposed GEP model

may be expressed as

ds

L
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:34Ks

p
þ �0:99�

D h
L
�Fe

� �
þ0:99

E
þð�0:99Þ Fe

1:97

� �

þ h
L
þð�3:78=5:45Þ

Ksþðd50=LÞ
� �

1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiðh=LÞp Þ=ðh=LÞ ð5Þ

and the corresponding expression trees are shown in

Figure 4.
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RESULTS AND DISCUSSION

In this study, different combinations of input data (non-

dimensional dataset) were explored to assess their influence

on the scour depth modelling (Table 3). The GEP model was

developed and tested for predicting abutment scour depth.
Table 1 | Range for data of scour parameters used for estimation of equilibrium scour

depth

Item Parameters Range

1 Abutment length L (m) 0.04–0.4

2 Flow depth h (m) 0.058–0.25

3 Mean velocity U (m/s) 0.219–0.72

4 Sediment size d50 (mm) 0.26–5

5 Scour depth ds (m)
0.053–0.29

0.053–0.47

6 Shape factor (Melville
)

1 for rectangular, 082 for 45 W

wing wall and 0.75 for
semicircular abutment.

Table 2 | Parameters of the optimized GEP model

Parameter Description of parameter
Setting of
parameter

P1 Function set þ, �, *, /, ν

P2 Mutation rate (%) 44

P3 Inversion rate (%) 10

P4 One-point and two-point
recombination rate,
respectively (%)

30,30

P5 Gene recombination rate 0.1

P6 Gene transportation rate 0.1

Table 3 | Sensitivity analysis for independent parameters for the testing set

Model RMSE MAE R2

ds

L
¼ Ψ Fe;

h
L
;
d50

L
;Ks

� �
0.845 0.656 0.89

ds

L
¼ Ψ Fe;

h
L
;
d50

L

� �
0.935 0.845 0.85

ds

L
¼ Ψ Fe;

h
L
;Ks

� �
0.986 0.943 0.83

ds

L
¼ Ψ Fe;

d50

L
;Ks

� �
0.918 0.726 0.741
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Training and testing results of GEP modeling

The performance of GEP in training and testing sets is vali-

dated in terms of the common statistical measures R2

(coefficient of determination), RMSE (root mean square

error), MAE (mean average error) and δ (average absolute

deviation).

Table 1 shows the range of variation of collected data for

this study and its parameters. The functional set and oper-

ational parameters used in GEP modeling during this

study are listed in Table 2.

The performance of all models was compared using four

error measures:

R2 ¼ 1�
PN

i¼1ðoi � tiÞ2PN
i¼1ðoi � �oiÞ2

ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðoi � tiÞ2
N

s
ð7Þ

MAE ¼ 1
N

XN

i¼1
joi � tij ð8Þ

δ ¼
Pðoi � tiÞP

oi
�100 ð9Þ

where ti denotes the target values of equilibrium scour depth

(cm), while oi and �oi denotes the observed and averaged

observed values of equilibrium scour depth (cm), respect-

ively, and N is the number of data points.

Table 3 compares the GEP model with one of the inde-

pendent parameters removed in each case and any

independent parameter from the input set that yielded

larger RMSE, MAE and lower R2 values also removed.

These four independent parameters affect ds/L; thus, the

functional relationship given in Equation (3) is used for

the GEP model in this study. The GEP approach resulted

in a highly nonlinear relationship between ds/L and the

input parameters and the GEP model had the highest accu-

racy and the lowest error (Table 3). The testing performance

of the proposed GEP model revealed a high generalization

capacity with R2¼ 0.89, RMSE¼ 0.845, MAE¼ 0.656

and δ¼ 7.8.



Figure 5 | Observed versus predicted relative scour depth (training).
Figure 6 | Observed versus predicted scour depth: validation (testing).

Table 4 | Comparison of models for non-dimensional set performance of the GEP and ANN-RBF

R2 RMSE MAE δ

Models Training Testing Training Testing Training Testing Training Testing

GEP 0.96 0.89 0.29 0.845 0.279 0.656 3.7 7.8

ANN-RBF 0.87 0.73 0.48 1.073 0.083 0.071 11.45 15.67
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A non-dimensional parameter in the Equation (3) sensi-

tivity analysis shows that the dimensionless shape factor

parameter (Ks) and d50/L have respectively the most and

the least effect on normalized scour depth.

To assess the performance of the GEP model, observed

equilibrium scour depth values were plotted against the pre-

dicted ones. Figures 5 and 6 illustrate the results with the

performance indices between predicted and observed data

for the training and validating (testing) datasets for dimen-

sional parameters. The result of the grouped variables

combination data shows a high coefficient of determination

(R2¼ 0.96); also RMSE (¼ 0.546) in the case of ANN-RBF

has R2¼ 0.87 and RMSE¼ 0.48 in both training and vali-

dation periods but this variation is low compare with R2

variation (Table 4). The results of an ANFIS-based approach

for prediction of scour depth by Muzzammil () are also

interesting but not produced any expression like Equation

(5) for general use in designs.
om http://iwaponline.com/jh/article-pdf/14/2/324/386665/324.pdf
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CONCLUSION

The application of the relatively new soft computing

approach of genetic programming to predict the local

scour depth at an abutment of a bridge is described. A

GEP and an ANN-RBF model were developed to predict

the values of relative scour depth from the laboratory

measurements. A new approach was presented to estimate

equilibrium depth of scour at a bridge abutment from opti-

mum datasets with the GEP and ANN modeling

techniques. The application of the GEP in this study is

another important contribution to scour-depth estimation

methodologies for bridges. The present study indicates that

employing the original dataset yielded a network that can

predict measured scour depth at bridge abutments more

accurately than standard regression analysis. The overall

performance of the GEP model is superior to the ANN

model.
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