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ABSTRACT
◥

Purpose: Pancreatic neuroendocrine tumors (pNETs) are

uncommon malignancies noted for their propensity to metastasize

and comparatively favorable prognosis. Although both the treat-

ment options and clinical outcomes have improved in the past

decades, most patients will die of metastatic disease. New systemic

therapies are needed.

Experimental Design: Tissues were obtained from 43 patients

with well-differentiated pNETs undergoing surgery. Gene

expression was compared between primary tumors versus liver

and lymph node metastases using RNA-Seq. Genes that were

selectively elevated at only one metastatic site were filtered out to

reduce tissue-specific effects. Ingenuity pathway analysis (IPA)

and the Connectivity Map (CMap) identified drugs likely to

antagonize metastasis-specific targets. The biological activity of

top identified agents was tested in vitro using two pNET cell lines

(BON-1 and QGP-1).

Results: A total of 902 genes were differentially expressed in

pNET metastases compared with primary tumors, 626 of which

remained in the commonmetastatic profile after filtering. Analysis

with IPA and CMap revealed altered activity of factors involved in

survival and proliferation, and identified drugs targeting those

pathways, including inhibitors of mTOR, PI3K, MEK, TOP2A,

protein kinase C, NF-kB, cyclin-dependent kinase, and histone

deacetylase. Inhibitors of MEK and TOP2A were consistently the

most active compounds.

Conclusions: We employed a complementary bioinformatics

approach to identify novel therapeutics for pNETs by analyzing

gene expression inmetastatic tumors. The potential utility of these

drugs was confirmed by in vitro cytotoxicity assays, suggesting

drugs targeting MEK and TOP2A may be highly efficacious

against metastatic pNETs. This is a promising strategy for dis-

covering more effective treatments for patients with pNETs.

Introduction
Pancreatic neuroendocrine tumors (pNETs) are uncommon neo-

plasms that account for less than 3% of all pancreatic tumors (1).

However, the annual incidence of all neuroendocrine tumors (NET)has

increased steadily over thepast several decades, andpNETsnowhave an

approximate annual incidence of 0.8 per 100,000 persons (2). They are

characteristically slow-growing malignancies associated with a compa-

rably favorable prognosis, especially when contrasted against the

significantly more common pancreatic adenocarcinoma. The indolent

nature of the disease often delays diagnosis such that metastases,

predominantly to the liver, are present in approximately 60%of patients

at diagnosis (3, 4). Despite advances in knowledge and management of

NETs, the majority of patients with metastatic pNETs will die of their

disease, and current therapies have not been shown to definitively

improve overall survival. Greater understanding of the biology of these

tumors, particularly the changes associatedwithmetastasis, is needed to

identify new therapeutic targets and more effective treatments.

Clinical management of metastatic pNETs is multimodal and

rapidly evolving. Historically, surgical excision of the primary tumor,

debulking of metastatic lesions, and somatostatin analogues (SSA)

were the main therapeutic options. While surgery remains the stan-

dard of care for localized tumors and an important component of the

treatment of metastatic disease, several systemic agents have emerged

for treating pNETs. Streptozocin (STZ)was one of thefirst drugs found

to be active against pNETs, although low response rates and significant

toxicity limit its use today (5). SSAs have long been used to reduce the

symptoms of excess hormone secretion associated with many NETs,

and have more recently been shown to have antiproliferative effects as

well (6, 7). Currently, SSAs are considered the first-line therapy for

metastaticNETs expressing somatostatin receptors. In the past decade,

the options for treatment have expanded further with evidence of

improved progression-free survival (PFS) using the tyrosine kinase

inhibitor, sunitinib, and the mTOR inhibitor, everolimus (8, 9). Other

tyrosine kinase inhibitors, including cabozantinib and sulfatinib, have

shown promise in phase II trials, and phase III trials are underway (10).

The combination of the antimetabolite capecitabine and alkylating

agent temozolomide (CAPTEM) can be given orally and has less
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toxicity as compared with STZ-based treatment (11–13). A phase II

study has shown significant PFS benefits of this combination over

temozolomide alone (14). Peptide receptor radionuclide therapy

(PRRT), which uses a radiolabeled SSA to target NETs, was recently

approved for the treatment of gastroenteropancreatic NETs after

impressive improvements in PFS of treated patients with grade 1 and

2 small bowel NETs relative to those receiving a high-dose SSA (15).

Therapies that extend overall patient survival, however, are still needed.

Pancreatic neuroendocrine tumors have been recognized as a

distinct clinical entity for nearly a century, yet our understanding of

their genetic basis is incomplete. Several hereditary cancer syndromes

are associated with pNET development, including multiple endocrine

neoplasia type 1 (MEN1), von Hippel-Lindau disease (VHL), neuro-

fibromatosis type 1 (NF-1), and tuberous sclerosis complex (TSC1 and

2), but the majority of pNETs occur sporadically (>90%; ref. 16).

Among sporadic pNETs, the most commonly altered gene is MEN1,

withmutations found in 41%–44% of cases. Other commonlymutated

genes include DAXX or ATRX, genes in the mTOR pathway, genes

involved in DNA damage repair such asMUTHY, and genes involved

in chromatin modification (17, 18). Although mutations in the mTOR

pathway are seen in only 12%–15% of pNETs, expression and activity

level analyses have revealed alterations of PI3K/Akt/mTOR signaling

involving both upstream and downstream regulators in themajority of

these tumors (16, 19, 20).

In this study, we investigated gene expression patterns in nodal and

liver metastases versus primary pNETs (most of which were patient-

matched) to identify drug-targetable regulators of metastasis. We

uncovered prominent alterations in MAPK, cyclin-dependent kinase

(CDK), topoisomerase (TOP2A), and NF-kB signaling along with

expected changes in PI3K and mTOR pathways. Analyses of the

metastatic tumor transcriptional changes using two complementary

bioinformatic tools identified drugs that displayed significant in vitro

efficacy against pNET cell proliferation and survival. The approach,

identification of NET metastatic pathways, and discovery of new anti-

NET drugs described herein offers unique insights and promising

therapies for treating advanced pNETs.

Materials and Methods
RNA extraction

Tumor samples were obtained from 43 patients undergoing resec-

tion of well-differentiated, grade 1 and 2 pNETs betweenDecember 11,

2006 and August 19, 2016 (Supplementary Table S1). Tissue samples

from the primary tumor, liver, and lymph node metastases were

collected from all patients where available. Informed written consent

was provided by all patients in accordance with a protocol approved by

the University of Iowa Institutional Review Board (IRB Number

199911057), and studies were conducted in accordance with the

Belmont Report. Following surgery, tissue samples were stored at

�20�C in RNALater (Thermo Fisher Scientific,Waltham). Total RNA

was extracted using the RNeasy Plus Universal Mini Kit (Qiagen) per

the protocol recommended by the manufacturer. Tumor cellularity

was estimated by a pathologist with NET expertise (A.M. Bellizi) from

paraffin-embedded tissue stained with hematoxylin and eosin, and

samples with less than 70% neuroendocrine cellularity were excluded.

The Agilent 2100 Bioanalyzer (Agilent Technologies) was used to

assess RNA quality and assign RNA integrity numbers (RINs).

Transcript profiling

Transcription profiling using RNA-Seq was performed by the

University of Iowa Genomics Division using manufacturer-

recommended protocols. Initially, 500 ng of DNase I-treated tRNA

was used to enrich for polyA-containing transcripts using oligo(dT)

primers bound to beads. The enriched RNApool was then fragmented,

converted to cDNA, and ligated to sequencing adaptors containing

indexes using the Illumina TruSeq stranded mRNA sample prepara-

tion kit (catalog No. RS-122-2101, Illumina, Inc.). The molar con-

centrations of the indexed libraries were measured using the 2100

Agilent Bioanalyzer (Agilent Technologies) and combined equally into

pools for sequencing. The concentrations of the pools were measured

using the Illumina Library Quantification Kit (KAPA Biosystems) and

sequenced on the Illumina HiSeq 4000 genome sequencer using

150-bp paired-end sequencing by synthesis (SBS) chemistry.

FASTQ files were used to quantify transcript abundance using

Salmon version 0.11.3 (21). Tximport 1.8.0 was used to perform

gene-based quantification of abundance, using Ensembl Genes version

96/Biomart to map gene symbols to Ensembl transcript identi-

fiers (22, 23), and voom (24) for library normalization and to generate

normalized transcripts per million (TPM) values. StringTie version

1.3.0 (25) was used to assign reads to transcripts using the GFF3 file

from Ensembl (http://ftp.ensembl.org/pub/grch37/release-87/gtf/

homo_sapiens/Homo_sapiens.GRCh37.87.gtf.gz).

RNA-Seq processing

RNA-seq count data was normalized using TPM. To identify

differentially expressed genes, the nonparametric Wilcoxon rank-

sum test was used. Log2-fold changes (LFC) between tumors at

different sites were estimated using the voom package (24).

LFC > 0 indicates that a gene was upregulated in the metastases,

whereas LFC < 0 indicates downregulation. To filter out results that

may result from the confounding influence of comparing different

tissue types between primary and metastatic tumors, we carried out

two rank-sum tests: one comparing primary and metastatic tumors

(combining liver and lymph node metastases), and the other com-

paring liver and lymph node metastases. From the results of these two

tests, genes of interest are those that are significantly differentially

expressed between primary and metastatic sites (P < 0.05), but not

differentially expressed between liver and lymph node tumors.

Genes were defined as tissue-specific and filtered out if expression

was twofold higher at either metastatic site compared with the other

(LFC > 1). This tissue-specific filtering was designed to remove genes

whose overexpression was dependent on the site of metastasis, and

thus was applied only to the genes that were upregulated in the

Translational Relevance

Pancreatic neuroendocrine tumors (pNETs) are slow-growing

malignancies that have metastasized at the time of diagnosis in

roughly 60% of patients. Currently, there are a variety of systemic

treatment options for metastatic PNETs, but improvements in

survival are typically modest, andmore effective agents are needed.

We analyzed differential gene expression associated with metas-

tasis to identify drugs with predicted activity against pNETs. A

large number of potential compounds were identified using this

technique, many of which have not previously been used for the

treatment of NETs. The antiproliferative properties of 15 of these

drugs were demonstrated in vitro using two pNET cell lines.

Both the method of drug selection and the novel pharmacologic

classes suggested by the analysis have the potential to significantly

improve the treatment of patients with metastatic pNETs.

Scott et al.
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metastases. All analyses were performed in R 3.5.0 (www.R-project.

org). Unsupervised analysis of the PNET samples was performed

using both t-distributed stochastic neighbor embedding (t-SNE)

and principal component analysis (PCA).

Drug prediction

The filtered list of differentially expressedmetastatic genes was used

to query the Connectivity Map touchstone database (CMap; Broad

Institute, ref. 26). This database includes gene expression signatures

derived from nine cancer cell lines treated with 2,429 well-annotated

compounds. These expression profiles were compared with our met-

astatic PNET signature, and compounds were assigned a connectivity

score (ranging from �100 to 100) based on the similarity of the

expression changes they induced when compared with our metastatic

signature. A positive connectivity score indicates similar gene expres-

sion changes, while a negative score indicates an opposing pattern.

Each compound and cell line are assigned a separate score, and a

summary score is provided for each compound across all cell lines. In

parallel, the IPA analysis match function was also used to predict

potentially therapeutic drugs. The IPA output of our metastatic profile

was compared with analyses from other cell lines treated with various

compounds, and these drugs were assigned a score that ranged from

�14.3 to�244.3. A more negative score indicated expression changes

resulting in predictions that were in the opposite direction of those

based on our metastatic profile. The molecule activity predictor and

upstream analysis tools in IPA (Qiagen; ref. 27) were used to predict

the activation state of drug targets from our metastatic PNET expres-

sion signature. IPA calculates a z-score to predict the activation state of

upstream regulators, with a positive score indicating activation, a

negative score indicating inhibition, and an absolute value greater

than 2 suggesting significance. Drugs were selected for testing in pNET

cell lines based on a combination of factors: a highly negative con-

nectivity score from CMap and the IPA analysis match, drug avail-

ability, and amechanism of action that was highly represented on both

the CMap and IPA lists.

Gene validation

A subset of 14 significantly differentially expressed genes were

selected for qPCR validation in a separate cohort of PNET primary

and metastatic samples not tested by RNA-Seq. RNA was extracted as

described above from primary tumors, lymph node metastases, and

liver metastases from 12 other available patients with well-differen-

tiated, grade 1 or 2 pNETs. Total RNAwas then reverse-transcribed to

cDNA using the qScript cDNA Supermix (QuantaBio). qPCR was

performed using gene-specific primers from Integrated DNA Tech-

nologies and PerfeCTa SYBR Green Supermix Dye (QuantaBio) using

the 7900HT Fast Real-Time PCR System (Applied Biosystems).

Primer sequences were obtained from PrimerBank (https://pga.

mgh.harvard.edu/primerbank/). Genes were selected using IPA from

a list of genes whose differential expression was used to predict the

activation states of our drug targets using the molecule activity

predictor. Expression was normalized against the internal control

gene RPLP1, which was used to calculate the delta cycle threshold

(dCT) for each gene of interest. The average expression of each gene in

the metastatic (liver and lymph node) tumors was compared with

expression in the primary tumors, and statistically significant differ-

ential expression was determined using the Wilcoxon rank-sum test.

Drug sensitivity assay

Drugs were purchased from Medchem Express LLC and Thermo

Fisher Scientific, dissolved in DMSO, and stock solutions stored at

�20�C. BON-1 and QGP-1 pNET cells were seeded at a density of

2,000 cells per well in 96-well flat-bottomed culture dishes. After

overnight incubation, each drug was added at the indicated concen-

trations and incubated for 5 days; assays were performed in triplicate.

Samples were evaluated for relative cell number using AlamarBlue

(Thermo Fisher Scientific). Results were quantified using a fluores-

cence microplate reader by measuring fluorescence of AlamarBlue at

an excitation wavelength of 560 nm with fluorescence emission at

590 nm. For simvastatin-treated cells, media containing simvastatin

was removed and replaced with newmedia prior to the addition of the

AlamarBlue reagent because high concentrations of simvastatin inter-

feres with measurement of AlamarBlue. Results were analyzed using

CompuSyn Software (ComboSyn, Inc.) to determine the IC50 for each

drug.

Two human PNET cell lines were used for these studies. BON-1

cells, established from a lymph node metastasis of a pNET (28), were

maintained in DMEM/F12 containing 10% FBS, 4 mmol/L glutamine,

100 U/mL penicillin, and 100 mg/mL streptomycin. QGP-1 cells,

established from primary somatostatin producing pNET (29), were

purchased from the Japanese Collection of Research Bioresources

(JCRB0183), and were maintained in RPMI1640 medium containing

10% FBS, 4 mmol/L glutamine, 100 U/mL penicillin, and 100 mg/mL

streptomycin. Both cell lines were recently authenticated by Hofving

and colleagues and found to express neuroendocrine markers and

harbor mutations associated with NETs (30). Both cell lines were

tested for Mycoplasma contamination by selective enzymatic assay

(MycoAlert Plus, Lonza Inc.) and found to be negative (most recently

on January 6, 2020). Cryopreserved stocks of each cell line were made

at low passage numbers (less than 5–8 passages after receipt) and cells

were used in experiments for a maximum of 10–12 passages (roughly

5–6 weeks) after being thawed.

Results
RNA-Seq was performed on 39 primary tumors, 21 lymph node

metastases, and 17 liver metastases from 43 patients with pNETs

(Supplementary Table S1). All patients had grade 1 or 2, well-

differentiated tumors. A flowchart summarizing our methods from

sequencing to drug testing is presented in Fig. 1. A total of 18,103 genes

were measurably expressed in the tumor samples. The results of our

RNA-Seq are available on the database of Genotypes and Phenotypes

(dbGaP) under phs study number phs001772.v1.p1 (https://www.

ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_

code¼DrKURjFTCAuySlUS). Of these, 902 genes were significantly

differentially expressed in the metastatic tumors compared with the

primaries: 718 were overexpressed and 184 underexpressed (Fig. 2A).

Of the overexpressed genes, 13 showed greater than twofold higher

expression in the nodal versus liver metastases, while 263 were expressed

at greater than twofold higher levels in the liver versus nodal metastases.

These 276 genes were filtered out to reduce tissue-specific effects on the

metastatic gene signature, leaving 626 differentially expressed genes,

which constituted our final metastatic pNET gene signature (Supple-

mentary Table S2; Fig. 2B).

Analysis of the liver genes that were removed by the filter using IPA

revealed that they were largely involved in processes associated with

normal liver function, including production of coagulation factors and

lipid metabolism. Moreover, IPA analysis of the unfiltered metastatic

gene set (902 genes) demonstrated the dramatic effect that inclusion of

these liver genes had on subsequent analysis; in the unfiltered set, the

pathways and cellular processes with the strongest predicted activation

were generally associated with normal hepatic function.

Novel Therapies for Pancreatic Neuroendocrine Tumors

AACRJournals.org Clin Cancer Res; 26(8) April 15, 2020 2013

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/8

/2
0
1
1
/2

0
6
7
0
6
9
/2

0
1
1
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u

s
t 2

0
2
2

http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://pga.mgh.harvard.edu/primerbank/
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS
https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/preview1.cgi?GAP_phs_code=DrKURjFTCAuySlUS


Dimensionality reduction using PCA and t-SNE revealed that the

primary determinant of clusteringwas the tissue of origin (Fig. 3). This

was particularly true for the liver metastases that tended to cluster

separately from the primary tumors and lymph node metastases,

which were much closer together. Despite this tendency, there were

several outliers for which the clustering was primarily determined by

the individual patient. This second trend is most clearly visualized by

t-SNE, which also shows that six of the liver metastases cluster tightly

with their corresponding primary and lymph node samples, rather

than with the other liver metastases.

Selection of potentially therapeutic compounds

We queried the CMap touchstone database with expression signa-

tures from the filtered metastatic PNET gene expression profile. The

top 100 compounds producing expression changes that were the

reverse of those seen in our metastatic profile are shown in Supple-

mentary Table S3. Among the drugs with the lowest connectivity

scores, inhibitors of mTOR and PI3K were the most highly repre-

sented. In parallel, the analysis match functionality of IPA was used to

identify compounds that featured related pathways with an opposing

activation state for prioritization. The most highly rated compounds

predicted by IPAanalysismatch are shown in Supplementary Table S4,

with numerous inhibitors of mTOR, PI3K, BRAF/MEK, and CDK

ranked highly. Fifteen compounds were selected from these two lists

using the criteria described previously (Table 1). These compounds

included inhibitors of CDK, histone deacetylase (HDAC), NF-kB

signaling, DNA topoisomerase, RNA-polymerase, DNA protein

kinase, MEK, hydroxymethylglutaryl-coenzyme A reductase

(HMGCR), and the PI3K/AKT/mTOR pathway.

The upstream analysis tool in IPAwas used to analyze themetastatic

gene expression signature and a number of regulators were predicted

to be activated using a z-score cutoff of 2:OSCAR,MEK, IL27, NFE2L2,

CD40LG, CAMP, TREM1, PRKCD, collagen type II, and NANOG

(Supplementary Table S5). Three upstream regulators were also pre-

dicted to be inhibited with z-scores less than�2: CST5, miR-146, and

PDCD1. With the exceptions of MEK and protein kinase C delta

(PRKCD), none of the other drug targets suggested by CMap were

independently predicted to be activated by the IPA upstream analysis

tool. In comparison, the molecule activity predictor tool in IPA was

used to make predictions as to the activation state of several targets of

the drugs predicted by CMap, using a more expansive set of connec-

tions that includes data derived from nonhuman studies. Using this

analytic approach, CDK, NF-kB, mTOR, MEK, HDAC1, PI3K, and

protein kinase C (PKC) were all predicted to be activated in the

metastases. These predictions are shown in graphical form in Fig. 4.

Gene expression validation

Fifteen genes found to be differentially expressed in our RNA-Seq

data were selected for validation using qRT-PCR. Genes were selected

on the basis of relationships with our drug targets, as shown in Fig. 4A,

and included SST, CXCL8, NAMPT, TNF, NFKBIZ, BIRC3, TNFSF14,

APOE, NKX3-1, HBA1, GPR182, SPDEF, STAB2, andDMBT1. Each of

these genes either leads to increased activation of one or more of our

drug targets or is transcriptionally regulated by one or more drug

targets. Unexpectedly, the differential expression seen in our RNA-Seq

was confirmed by qPCR validation in just three of the 14 selected genes

(Fig. 4B). For two additional genes, there was significant differential

expression between the primary tumor and liver metastasis, but not in

the primary tumor and pooled metastasis comparison, while

four genes displayed a trend toward higher expression in the liver

metastases (0.05 < P < 0.1). Overall, nine of 14 genes trended toward or

were significantly altered in pNET metastases versus primary tumors.

Drug sensitivity assay

Compounds predicted by IPA and CMap to have suppressive

activity against pNETs were tested using a quantitative, cell viability

assay in two pNET cell lines, BON-1 and QGP-1. Fifteen drugs were

selected for testing: triptolide, alvocidib (flavopiridol), mocetinostat,

entinostat, bisindolylmaleimide-IX (RO 31–8220), PIK-75, PI-103,

sirolimus (rapamycin), simvastatin, doxorubicin, daunorubicin,

PD-184352 (CI-1040), PD-325901, selumetinib (AZD-6244), and

apitolisib (GDC-0980). For each drug tested, the PNET cell lines

displayed similar sensitivities in proliferation/viability assays although

in most cases BON-1 cells were slightly more sensitive, as indicated by

the lower IC50s (Table 1; Fig. 5). All drugs significantly inhibited the

proliferation and survival of PNET cells at increased concentrations

although differential responsiveness to the various compounds was

observed. Drugs with the highest activities had IC50 values ranging

between 1 and 80 nmol/L and included three different MEK inhibitors

(PD-325901, selumetinib, and PD-184352), two TOP2A inhibitors

(daunorubicin and doxorubicin), as well as triptolide, PIK-75, and

alvocidib. In comparison, drugs with the lowest antiproliferative

activity in PNETs had IC50 values ranging between 130 nmol/L and

8–9 mmol/L, which included HDAC inhibitors (mocetinostat and

entinostat), PI3K and mTOR inhibitors (apitolisib and PI-103), and

the least potent drug tested, simvastatin, anHMG-CoA inhibitor. Nine

other drugs with low CMap scores were tested, of which five showed

very low activity against these cell lines, and four showed moderate

activity (Supplementary Table S6).

PNET tumor samples

(39 primary, 21 LN

met, 17 liver met)

RNA-Seq

626 gene metasta�c

expression profile

IPA CMap

Iden�fica�on of novel

PNET drug targets

and therapeu�cs

In vitro drug tes�ng

Figure 1.

Schematic drawing of our bioinformatic analysis. RNA-Seq was performed on

well-differentiated PNET samples from 43 patients. Gene expression in the

primary tumors was compared with the metastases to derive a metastatic

expression profile, which was analyzed using IPA and CMap to produce a list of

therapeutic agents. A subset of these drugs were then tested against BON-1 and

QGP-1.

Scott et al.

Clin Cancer Res; 26(8) April 15, 2020 CLINICAL CANCER RESEARCH2014

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/c
lin

c
a
n
c
e
rre

s
/a

rtic
le

-p
d
f/2

6
/8

/2
0
1
1
/2

0
6
7
0
6
9
/2

0
1
1
.p

d
f b

y
 g

u
e
s
t o

n
 2

7
 A

u
g
u

s
t 2

0
2
2



Discussion
The incidence ofmetastatic pNETs is increasing, and although there

are a wide variety of treatment options for patients with these tumors,

response rates and survival benefits have been modest (6, 8, 9). An

improved understanding of the transcriptomic changes underlying the

metastatic process may help to identify novel therapies to improve

treatment outcomes. We present a complementary bioinformatics

approach to identify novel therapies for pNETs. A previous study

demonstrated the utility of a similar approach using pooled gastro-

enteropancreatic NET data and identified the HDAC inhibitor enti-

nostat as a potential treatment for metastatic NETs (31). In our study,

15 compounds identified through our analysis pipeline demonstrated

significant antiproliferative activity against pNET cell lines in vitro.

A critical step in identifying the metastatic expression profile

involved filtering out normal liver and lymph node genes. We fre-

quently observed that metastases to the liver and lymph nodes over-

express genes associated with the site of metastasis. For example,

several of the most highly expressed genes in the liver metastases are

Figure 2.

Top, Heatmap showing the 902 differentially expressed

genes in the unfilteredmetastatic profile. Red color indicates

higher expression, blue indicates lower. Expression values

are normalized on a per-gene basis, with a value of 1 indi-

cating themaximumexpression in any tissue, and avalue of 0

indicating the minimum. Liver, liver metastasis, Lymph,

lymph node metastasis, Pan, pancreatic primary tumor.

Bottom, Representation of the filter used to account for

tissue-specific gene overexpression. The y-axis shows the

negative log of the P value, with more extreme values

indicating lower P value, positive values indicating higher

expression in the metastases, and negative values indicating

higher expression in the primaries. The x-axis shows the

log-fold change between the liver and lymph node, with

positive values indicating higher expression in the lymph

nodes, and negative vales indicating higher expression in the

liver. Genes included in the filtered metastatic expression

profile are shaded in red.

Figure 3.

Unsupervised analysis of gene expression in the

tumor samples using PCA (left) and t-SNE

(right). For most samples, the primary determi-

nant of clusteringwas tumor location, with a few

notable exceptions, for example, the triplet of

samples in the top left of the t-SNE plot, all of

which were from patient 210.
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related to normal hepatic metabolism or coagulation. Several explana-

tions for this observation exist: (i) hormonal influence from the tumor

microenvironment induces expression of these genes; (ii) activation of

certain hepatic pathways is important for metastatic cells to colonize

and survive in the liver; or (iii) these genes may result from contam-

ination of normal hepatocytes in our tumor specimens. The tissue-

specific expression was significantly more pronounced in the liver

metastases than in the lymph nodes. This may reflect a stronger

transcriptional “reprogramming” effect in the liver or likelihood that

while tumors from all sites have some degree of lymphocytic infiltrate,

Table 1. Drugs selected for in vivo testing in BON-1 and QGP-1.

IC50 (mmol/L)

Drug Class

Summary

CMAP score

Analysis

match score BON-1 QGP-1

PD-0325901 MEK inhibitor �88.72 �124.92 0.001 0.006

Triptolide NFkB inhibitor, MDM2, HSF1 �97.64 NA 0.003 0.001

Selumetinib MEK inhibitor �96.79 �88.16 0.006 0.01

Daunorubicin Topoisomerase inhibitor �96.05 NA 0.016 0.009

Doxorubicin Topoisomerase inhibitor �96.48 NA 0.028 0.006

Sirolimus mTOR inhibitor �92.86 �34.51 0.01 0.03

PIK-75 PI3K inhibitor, DNA PK inhibitor �96.83 NA 0.02 0.04

PD-184352 MEK inhibitor �98.38 �150.24 0.03 0.04

Alvocidib CDK inhibitor �95.86 �108.09 0.05 0.08

Mocetinostat HDAC inhibitor �95.00 NA 0.07 0.14

Entinostat HDAC inhibitor �85.54 NA 0.19 0.17

Apitolisib mTOR inhibitor, PI3K inhibitor NA �132.59 0.19 0.17

PI-103 mTOR inhibitor, PI3K inhibitor, DNA PK inhibitor �96.97 �96.57 0.19 0.31

Bisindolylmaleimide-IX PKC inhibitor, topoisomerase inhibitor �97.44 NA 0.13 0.4

Simvastatin HMGCR inhibitor �98.93 NA 8 9

Note: For drugs listed multiple times in IPA or CMap, only the lowest score is displayed.

Figure 4.

Left, Graphical representation of IPA predictions for the activation states of several drug targets. Genes from the metastatic expression profile that interact with

any of these 7 drug targets are arrayed around the outside of the circle. Red shading indicates increased expression in the metastases, while green shading

indicates decreased expression. Relationships to drug targets are shown by solid (direct) or dotted (indirect) lines. Activating relationships are shaded orange, while

inhibiting relationships are in blue. Yellow arrows indicate a relationship that argues against the overall prediction. The orange shading of the upstream regulators

indicates predicted activation. Right, Validation of differential gene expression predicted by RNA-Seq in PNET primaries and metastases using qPCR (��� , P < 0.001;
�� , P < 0.01; � , P < 0.05; and #, P < 0.1).
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hepatocytes would only be predicted to be found in liver metastases.

Histologic review of the tumors in this study revealed that neuroen-

docrine cells were themost prevalent cell type, with tumor cellsmaking

up 70%–95%of the samples, and samples with less than 70% cellularity

were excluded from the analysis. Nonetheless, lymphocytic infiltrate

was seen in almost all samples, and projections of hepatocytes were

occasionally observed to extend within the gross tumor margin.

Regardless of the etiology of this tissue-specific expression, we were

interested in defining gene expression changes common to metastases

regardless of the site, which required filtering out tissue-specific genes.

The preponderance of genes removed by the filter were normal hepatic

genes, and their removal significantly influenced subsequent analysis

in IPA and CMap.

The filtered, common metastatic expression profile included 626

differentially expressed genes when the significance threshold was

set at P < 0.05 using nonparametric analysis. A number of software

tools are available to analyze RNA-Seq data including DESeq2,

voom and others (6, 23), each of which employs different statistical

methods and makes different assumptions about the data to deter-

mine differential gene expression. For our analysis, differential

gene expression was determined using the Wilcoxon rank-sum

test, which makes fewer assumptions about the distribution of data

and is relatively insensitive to outliers as compared with DESeq or

voom.

Because of the large number of statistical tests performed in any

RNA-Seq experiment, correction for multiple testing is typically

performed to reduce the incidence of false positive results, resulting

in an adjusted P value, also known as the corrected P value, FDR, or

q-value. When such a correction was performed for our data, the

calculated FDR for nearly all genes in our metastatic PNET expression

profile exceeded 0.9. These values may reflect both the broad similarity

in gene expression between primary tumors and metastases as well as

Figure 5.

Differential in vitro responsiveness of PNET cell lines to anticancer drugs suggested by the metastatic gene signature in patient PNETs. BON-1 (closed circles) and

QGP1 (open circles) cells were exposed to increasing concentrations of the indicated drugs for 5 days. The proportion of viable cells is shown on the y-axis, with the

dosage on the x-axis. The IC50 values (mmol/L) are denoted for each drug.
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within group heterogeneity in gene expression. Analysis using PCA

and t-SNE showed that for most samples, the primary driver of

differential expression was the tissue of origin. However, for a minor-

ity, clustering was primarily determined by characteristics specific to

individual patients. As illustrated in Fig. 3B, there were six liver

metastases that clustered with their corresponding primary and lymph

node samples, rather than with the larger group of liver metastases.

This observation, coupled with the relatively indistinct borders

between the clusters, highlights the heterogeneous nature of the

disease. Nonetheless, the overall expression pattern proved remarkably

capable of predicting drugs with activity against pNET cell lines.

Moreover, there was significant overlap in the drug classes and specific

agents predicted to be efficacious using two separate prediction tools,

the IPA analysis match and CMap.

To evaluate the reproducibility of the metastatic gene expression

profile, we evaluated several genes by qRT-PCR in a different group

of pNET samples. These genes were selected due to their relation-

ships to several important cancer pathways and drug targets,

including NF-kB, PI3K, mTOR, CDK, MEK, PKC, and HDAC1,

as indicated by IPA. Confirmation of these specific genes, which

were used to predict the activation states of drug targets, would help

to bolster the predictions made based on their differential expres-

sion. Although most genes selected could be validated using qPCR,

it should be noted that the fold changes in the RNA-Seq data were

near twofold, which corresponds to approximately a single PCR

cycle. Ideally, we would have tested more tumors, but had our

validation set was limited by the number of tumors with primaries,

nodal, and/or liver metastasis samples available that were not tested

by RNA-Seq. Thus, due to the high calculated FDR and the failure of

many genes to validate using qPCR, one should be cautious to not

give undue weight to any one gene in the common metastatic

profile. Instead, the overall patterns seen in the data provide more

relevant, biologically useful information.

Compounds that inhibit a variety of distinct signaling pathways

were identified by IPA and CMap as potential therapeutic options

for patients with metastatic pNETs. Some of the drug targets

identified were the usual suspects implicated in pNET tumorigen-

esis, including PI3K and mTOR (9, 17–19). Inhibitors of both

kinases were the most highly represented drug classes with con-

nectivity scores less than�90 in CMap and highly negative scores in

the IPA analysis match, and the combined PI3K and DNA protein

kinase (DNA PK) inhibitor PIK-75 was among the more efficacious

drugs tested. This drug has shown anticancer activity in preclinical

studies (32, 33). It is poorly soluble and has not progressed to

clinical trials, but improvements in drug delivery may allow for

human trials in the future (34). Other inhibitors of mTOR and/or

PI3K that were tested in this study included apitolisib, PI-103, and

rapamycin (sirolimus). Rapamycin had overlapping IC50s with

PIK-75 in the PNET cells but never achieved maximal efficacy,

while apitolisib and PI-103 were about eight- to 10-fold less potent

than PIK-75. Even so, apitolisib and rapamycin have both been used

clinically. In a phase I trial, apitolisib demonstrated modest anti-

tumor activity in patients with advanced solid tumors (35). How-

ever, in a phase II trial it was less effective than everolimus for the

treatment of renal cell carcinoma, with a significantly higher rate of

treatment-limiting adverse effects (36). Interestingly, while there

were 12 mTOR inhibitors with connectivity scores below �90, the

widely used everolimus was not among the drugs suggested by

either platform, with a connectivity score of �15.18 on the CMap.

Other targets, such as HDACs and CDKs, have recently generated

significant interest as potential targets for NET therapy: (31, 37) the

HDAC inhibitor, entinostat, and the CDK inhibitor, ribociclib, are

both currently being investigated in phase II trials in NETs (trial

numbers NCT03211988 and NCT02420691, respectively). One CDK

inhibitor, alvocidib, was tested in our study and was among the drugs

that showed the highest antiproliferative activity. Although systemic

toxicity is a concern, it has been shown to have activity against a wide

variety of hematologic and solid malignancies in phase I and II

trials (38). We tested two HDAC inhibitors, entinostat and mocetino-

stat, and found they had moderate antiproliferative activity in the

pNET cell lines. Entinostat is currently being investigated in clinical

trials for NETs; however, mocetinostat has not yet been studied in

NETs. To date, phase II trials using mocetinostat for other malignan-

cies, either as monotherapy or as part of a combined regimen, have

demonstratedmodest antitumor activity accompanied by high rates of

adverse events (39–42).

Inhibitors of the MAPK pathway, which includes MAPK kinase

(MEK) and the proto-oncogene BRAF, were also well represented

among the compounds suggested by CMap and IPA. Three MEK

inhibitors, PD-0325901, PD-184352, and selumetinib were selected

for testing. All effectively inhibited proliferation of both pNET cell

lines, with PD-0325901 having the lowest IC50 of any drug tested.

MEK inhibitors have not been previously used for the treatment of

NETs; however aberrant activation of the MAPK pathway has been

implicated in NET tumorigenesis (16). MEK inhibitors have shown

excellent activity against BRAF- or NRAS-mutated melanoma as

well as Ras-driven plexiform neurofibromas (43), and studies

investigating their use in combination with targeted or immune-

modulating therapy in melanoma and other solid tumors are

ongoing (44). PD-184352, also known as CI-1040, was the first

MEK inhibitor to enter clinical trials; however, its activity in

humans was limited by poor solubility and rapid clearance (45).

The antitumor activity of PD-0325901 and selumetinib has been

supported in phase I and II trials including patients with melanoma

and other solid tumors (46–48).

Four HMG-CoA reductase inhibitors, also known as statins, were

suggested by CMap, although none were highly ranked by IPA, and

simvastatin was selected for testing. The antiproliferative and anti-

metastatic effects of simvastatin have previously been demonstrated in

QGP-1 and BON-1 (49), and our testing confirmed its activity against

both cell lines. However, high concentrations in themmol/L rangewere

needed to achieve an antiproliferative effect.

Among the better acting anti-NET drugs identified in our study,

triptolide is a naturally occurring compound that exerts its anti-

tumor effects through a variety of mechanisms, including inhibi-

tion of NF-kB signaling and induction of apoptosis (50, 51).

Although preclinical studies with the drug have been promising,

triptolide is poorly soluble in water, limiting its clinical application.

The development of a water-soluble analogue, minnelide (52), has

allowed for clinical testing, and a phase II trial in pancreatic

adenocarcinoma (NCT03117920) is currently in progress. Several

inhibitors of DNA topoisomerase were suggested by CMap, and

daunorubicin and doxorubicin were selected for testing. Although

cytotoxic chemotherapy is less commonly used for well-

differentiated NETs, doxorubicin in combination with streptozo-

cin is among the standard treatment options for well-differentiated

PNETs (53). Daunorubicin is another prototypical topoisomerase

inhibitors that is commonly used as a first-line treatment for acute

myeloid leukemia (54).

The final drug selected for testing was bisindolylmaleimide-IX. This

drug is part of the bisindolylmaleimide class of PKC inhibitors and is

described as belonging to this class within CMap. Unlike other drug

Scott et al.
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classes, which are highly represented in our analysis (e.g., mTOR

inhibitors), only two PKC inhibitors received scores below�90, one of

which is bisindolylmaleimide-IX, and the other (CGP-60474) is also a

CDK inhibitor. In addition, there were three PKC inhibitors with

scores greater than 90, indicating that treatment with these com-

pounds was associated with expression changesmirroring (rather than

opposing) those seen in metastatic PNETs. This fact combined with

the observation that many PKC isozymes may act as tumor suppres-

sors rather than tumor promoters (55), suggests that bisindolylma-

leimide-IX's antitumor activity may occur through a different medi-

ator. Although it has not been noted in CMap, bisindolylmaleimide-IX

has also been shown to inhibit DNA-topoisomerase (56). Given the

number of topoisomerase inhibitors suggested by CMap, it is possible

that bisindolylmaleimide-IX's predicted activity against NETs reflects

its inhibition of topoisomerase, rather than PKC.

Fourteen of 15 drugs selected for testing in BON-1 and QGP-1

showed significant activity against both cell lines (IC50 ≤ 1 mmol/L).

For those compounds that have been studied in humans (entinostat,

mocetinostat, alvocidib, apitolisib, PD-0325901, selumetinib, dauno-

rubicin, doxorubicin), significant inhibition of proliferation was seen

at concentrations that are readily attained in phase I or II trials. In

comparison, the mTOR inhibitor, sirolimus (rapamycin), which has

been used in numerous human trials plateaued at 60%–80% efficacy

even at the highest doses tested; simvastatin only showed sensitivity

when doses of 10 mmol/L were reached. Nine additional compounds

were tested that had low CMap scores (Supplementary Table S6), five

of which showed little to no activity and four showed at least moderate

activity, including vinblastine (Vinca alkaloid), thapsigargin (Calcium

ATPase),MLN-2238 (proteasome inhibitor), and rigosertib (PI3K and

PLK1 inhibitor).

Hofving and colleagues tested 1,224 compounds (at 1 mmol/L

concentration) from a commercially available inhibitory library

against BON1 and QGP1 (30). They found a general sensitivity to

MEK inhibitors, drugs targeting HSP90 and Aurora kinases, but not

to HDAC inhibitors. Comparing these results to our RNA-Seq

strategy is of interest. We achieved greater than 50% inhibition

for both cell lines at ≤ 1 mmol/L concentration with 14 of the 15

(93%) drugs selected. Of these, Hofving and colleagues confirmed

sensitivity of both BON1 and QGP1 cell lines (IC50 at 1 mmol/L) to 3

of the 14 (PD032591, PI-103, and PIK-75), to one but not the other

cell line in 4 (selumetinib, doxorubicin, PD-184352, PI-103), where-

as five showed limited or no activity in both cell lines (daunorubicin,

sirolimus, mocetinostat, entinostat, bisindolylmaleimide-IX); 2 of

the drugs we found were not in their screen (triptolide, apitolisib).

For the 12 drugs tested in common, their screen found sensitivity

for 25% of those we selected, partial sensitivity (one cell line only)

for 33%, and missed 42% of these potentially useful drugs. These

results indicate that although these screens can be complementary,

screening of these 1,224 compounds would have resulted in many of

the drugs we found to effectively kill both cell lines being missed,

and would have also markedly increased the number of potential

false positives that would need further evaluation. Although these

results are promising, further studies will be required to confirm the

clinical utility of these drugs. As described above, the expression

changes between primary and metastatic PNETs are frequently

small in magnitude, and this combined with tumor heterogeneity

leads to significant difficulty in finding statistically significant

differential gene expression. Sequencing of additional samples and

the use of techniques that account for differences in tumor cellu-

larity, such as tissue deconvolution or single-cell RNA-Seq, may

help to overcome this issue.

While the drugs tested showed activity against BON-1 and QGP-1

pNET cells, both lines have extremely high proliferative indices

compared with more typical well-differentiated pNETs (57). A

strength of this study is that we identified new NET drugs using gene

expression data from patients with well-differentiated tumors rather

than cell line–based profiling, but confirmation of drug activity against

less proliferative pNET models will ultimately be required. We and

others in the NET field are beginning to generate well-differentiated,

patient-derived NET spheroid cultures (58), providing an ideal system

for future drug testing. Once optimal acting drugs are confirmed in

well-differentiated NET cell populations, further preclinical testing in

a murine model of metastatic NETs would enable measurement of

drug tolerability, antiproliferative effects, and antimetastatic activity

in vivo.

In conclusion,we present a pNETmetastatic gene signature thatwas

determined from a comparison of patient-matched metastases and

primary tumors. Bioinformatic analyses of the gene expression

changes using IPA and CMap identified drugs with predicted activity

against metastatic pNETs, which was verified by in vitro cytotoxicity

assays in two pNET cell lines. Our methodology uses patient-derived

expression data to inform and focus subsequent drug testing, provid-

ing mechanistic rationale for compound selection and effectively

prioritizing drugs for preclinical screening prior to progression to

clinical trials.
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