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 2 

Abstract 33 

Background: Multiple organ dysfunction syndrome (MODS) occurs in the setting of a 34 

variety of pathologies including infection and trauma. Some of these patients will further 35 

decompensate and require extra corporeal membrane oxygenation (ECMO) as a 36 

palliating maneuver to allow time for recovery of cardiopulmonary function. The 37 

molecular mechanisms driving progression from MODS to cardiopulmonary collapse 38 

remain incompletely understood, and no biomarkers have been defined to identify those 39 

MODS patients at highest risk for progression to requiring ECMO support. We 40 

hypothesize that molecular features derived from whole blood transcriptomic profiling 41 

either alone or in combination with traditional clinical and laboratory markers can 42 

prospectively identify these high risk MODS patients in the pediatric intensive care unit 43 

(PICU). 44 

 45 

Design/Methods: Whole blood RNA-seq profiling was performed for 23 MODS patients 46 

at three time points during their ICU stay (at diagnosis of MODS, 72 hours after, and 8 47 

days later), as well as four healthy controls undergoing routine sedation. Of the 23 48 

MODS patients, six required ECMO support (ECMO patients). The predictive power of 49 

conventional demographic and clinical features was quantified for differentiating the 50 

MODS and ECMO patients. We then compared the performance of markers derived 51 

from transcriptomic profiling including (1) transcriptomically imputed leukocyte subtype 52 

distribution, (2) relevant published gene signatures and (3) a novel differential gene 53 

expression signature computed from our data set. The predictive power of our novel 54 

gene expression signature was then validated using independently published datasets.  55 
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Results: None of the five demographic characteristics and 14 clinical features, including 56 

The Pediatric Logistic Organ Dysfunction (PELOD) score, could predict deterioration of 57 

MODS to ECMO at baseline. From previously published sepsis signatures, only the 58 

signatures positively associated with patients mortality could differentiate ECMO 59 

patients from MODS patients, when applied to our transcriptomic dataset (P-value 60 

ranges from 0.01 to 0.04). Deconvolution of bulk RNA-Seq samples suggested that 61 

lower neutrophil counts were associated with increased risk of progression from MODS 62 

to ECMO (P-value = 0.03, OR=2.82 [95% CI 0.63– 12.45]). A total of 28 genes were 63 

differentially expressed between ECMO and MODS patients at baseline (log2 fold 64 

change ≥ 1 or ≤ -1 with false discovery rate ≤ 0.2). These genes are involved in protein 65 

maintenance and epigenetic-related processes. Further univariate analysis of these 28 66 

genes suggested a signature of six DE genes associated with ECMO (OR > 3.0, P-67 

value ≤ 0.05). Notably, this contains a set of histone marker genes, including H1F0, 68 

HIST2H3C, HIST1H2AI, HIST1H4, and HIST1H1B, that were highly expressed in 69 

ECMO. A risk score derived from expression of these genes differentiated ECMO and 70 

MODS patients in our dataset (AUC = 0.91, 95% CI 0.79-0.1.00, P-value = 7e-04) as 71 

well as validation dataset (AUC= 0.73,95% CI 0.53-0.93, P-value = 2e-02). 72 

 73 

Conclusions: This study identified lower neutrophils and upregulation of specific 74 

histone related genes as a putative signature for deterioration of MODS to ECMO. This 75 

study demonstrates that transcriptomic features may be superior to traditional clinical 76 

methods of ascertaining severity in patients with MODS.   77 

 78 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.15.20022772doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.15.20022772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Author summary 79 

Why was this study done? 80 

● Multiple organ dysfunction syndrome (MODS) is a major cause of mortality and 81 

morbidity in critically ill pediatric patients who survive the initial physical insult. 82 

● A variety of triggers including trauma and infections can lead to MODS in 83 

pediatric patients.  84 

● The clinical condition of some MODS patients improve while others deteriorate, 85 

needing resource-intensive life support such as extracorporeal membrane 86 

oxygenation (ECMO). 87 

● Mortality is uncommon in PICUs and the need for advanced life support devices, 88 

such as ECMO can serve as proxy for mortality. 89 

● The decision to initiate ECMO in pediatric patients is often subjective made by a 90 

committee of physicians that include surgeons, intensivists and a variety of other 91 

subspecialists often in the absence of objective data. 92 

● Despite decades of research, no diagnostic criteria or biomarker has been 93 

identified that comprehensively assesses severity in MODS patients who may 94 

need subsequent ECMO support in the hyperacute phase of injury.  95 

● We systematically assessed clinical and transcriptional features as biomarkers 96 

for the prediction of the ECMO patients. 97 

 98 

What did the researcher do and find? 99 

● We investigated various clinical and transcriptional features in 27 patients with 100 

MODS at multiple time points (4 CT, 17 MODS, 6 ECMO) at baseline (0h). 101 
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● We observed that immune response pathways (monocytes, cytokines, NF-kB, 102 

and inflammation) were activated in the initiation of MODS, whereas neutrophil 103 

level was decreased during deterioration of MODS to ECMO. 104 

● A total of 51 DE genes were identified in MODS compared to CT and 28 DE in 105 

ECMO compared to MODS at baseline (0h).  106 

● We identified the enrichment of immune-related and glycogenolysis processes in 107 

MODS compared to CT and enrichment of protein maintenance, DNA repair and 108 

epigenetic-related processes in ECMO compared to MODS at baseline (0h). 109 

● Logistic regression was used to identify a signature of 6 genes strongly 110 

associated with ECMO decision and this signature could help to diagnose MODS 111 

patients requiring ECMO. 112 

● The transcriptomic signature-based risk scores were further evaluated in an 113 

independent cohort.  114 

 115 

What do these findings mean? 116 

● The compromised level of neutrophils and activation of gene markers including a 117 

few histone genes could be used as putative signature for diagnosing the 118 

deterioration of MODS to ECMO.  119 

● A risk score derived from signature genes could be used to predict the need for 120 

ECMO.  121 

● This score is superior to traditional clinical criteria and severity scores used in the 122 

Pediatric ICU. 123 
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 6 

● The transcriptional signature derived in this study could potentially be used to 124 

identify patients in the hyperacute phase of injury that may need higher levels of 125 

support like ECMO enabling the selection of an appropriate treatment plan. 126 

 127 

Abbreviation:  Multiple organ dysfunction syndrome, MODS; Extracorporeal Membrane 128 

Oxygenation, ECMO; patients did not develop MODS, no-MODS; pediatric intensive 129 

care unit, PICU; Differentially expressed, DE;  False discovery rate, FDR; Area under 130 

curve, AUC; principal component analysis, PCA;  Odds ratio, OR. 131 

 132 

Introduction 133 

Multiple organ dysfunction syndrome (MODS) is common in the pediatric intensive care 134 

unit (PICU), being diagnosed in the majority of patients with sepsis as well as many 135 

trauma patients [1].  MODS complicates a wide range of pathologies including severe 136 

hypoxemia, cardiorespiratory arrest, shock, trauma, acute pancreatitis, gut 137 

malperfusion, acute leukemia, solid organ or hematopoietic stem cell transplantation, 138 

hemophagocytic lymphohistiocytosis,  and thrombotic microangiopathy [2]. 139 

Contemporary management of MODS is entirely supportive, and focused on addressing 140 

the underlying disease process.  141 

Some pediatric patients who develop MODS deteriorate and require intensive life 142 

support in the form of Extracorporeal Membrane Oxygenation (ECMO). It has been 143 

observed that pediatrics patients requiring ECMO have a 50-60% mortality rate [3].  The 144 

decision to initiate ECMO remains subjective based on the empirical experience of the 145 

multidisciplinary care team. Establishment of objective markers of what patients will 146 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.15.20022772doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.15.20022772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

require ECMO support would simplify the decision making process and potentially 147 

enable earlier intervention for these patients. However, no clinical scoring tool or 148 

molecular biomarker has been developed to identify the patients who may require 149 

subsequent advanced support; therefore, developing biomarkers for identifying MODS 150 

patients at high risk of requiring ECMO support is a critical unmet need. 151 

Whole blood transcriptomic profiling has been evaluated to perform risk-152 

stratification of sepsis patients, predict mortality in sepsis and better understand the 153 

pathogenesis of MODS [4]. A number of published gene expression signatures shed 154 

light on the molecular mechanism of MODS [5,6]. However, none of the signatures were 155 

developed with a view towards identifying patients that require ECMO support.  156 

In this work, we present a cohort of MODS patients, a subset of whom 157 

progressed to requiring ECMO support (MODS vs ECMO) and healthy controls (CT). 158 

Here we use the term MODS to denote those MODS patients that did not require ECMO 159 

and ECMO for MODS patients deteriorated to needing ECMO support. These patients 160 

were assessed using a combination of conventional demographic and clinical markers, 161 

as well as whole blood transcriptomic profiling in an effort to identify diagnostic markers 162 

that can distinguish between the MODS and ECMO patient population.  163 

 164 

Methods 165 

Patients and blood sampling 166 

The IRB of this study (2016-062-SH/HDVCH) was approved by Spectrum Health on 167 

May 17, 2016. All the patients were minors and their parents were consented prior to 168 

recruitment into our study. Every parent gave consent. After IRB approval, a short-term 169 
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longitudinal design was adopted to assess the transcriptomic profiles of patients from 170 

the PICU at Helen DeVos Children’s Hospital, Michigan. Critically ill patients, meeting 171 

criteria for MODS as determined by clinical observations, were screened for eligibility 172 

and consented. Blood samples were collected at three time points: at recognition of 173 

MODS (0h), 72 hours after, and 8 days later (N=27). Samples were collected in 174 

PaxGene® tubes and stored at -80oC. Healthy controls (N=4) were patients that 175 

presented for same day sedation. Samples from each control patient were obtained only 176 

once and were reported as 0h. Of the 23 MODS patients, 6 required ECMO support. 177 

From admission to day 8, 47% of the MODS patients were discharged to home or out of 178 

the ICU to a medical floor. Patients who left the ICU did not have further blood draws. 179 

One patient from the ECMO group died during the study and two other MODS patients 180 

died six months later.  181 

 182 

Sequencing 183 

RNA samples were prepared using KAPA RNA HyperPrep Kit, and sequenced on 184 

an Illumina NextSeq500. Using ribosomal reduction RNAseq methodology, we were able 185 

to capture both cellular and acellular RNA signatures of all PICU patients.  186 

 187 

Validation Data Sets 188 

For validation, we were unable to identify any analogous publicly available gene 189 

expression datasets that included pediatric MODS patients at multiple time points. We 190 

therefore chose a dataset describing an adult cohort (23-63 years) developed MODS in 191 

the hyperacute phase of trauma [7]. This dataset was used as an independent cohort to 192 
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validate our signature genes. The MODS patients in this validation dataset were 193 

categorized into MODS and noMODS (patients did not develop MODS) as described in 194 

patient demographics [7]. In addition, a single cell RNA-Seq dataset was also available 195 

for adult ECMO patients [8]. We used the immune cell markers from this dataset to 196 

validate our immune response analysis.   197 

 198 

Bioinformatics  analysis 199 

RNA-Seq data analysis. All the sequencing reads were mapped on Hg38 200 

transcriptome using the ENSEMBL GRCh38.p3 annotation with the STAR aligner [9]. 201 

The edgeR package [10] was used for quantification of differentially expressed (DE) 202 

genes with criteria: log2 fold change ≥ 1 or ≤ -1 with adjusted P-value (False Discover 203 

Rate) < 0.20. DE genes were identified between the two groups in all the three-time 204 

points separately. The DE genes were used for co-expression network analysis using 205 

CEMiTools package [11]. The gene ontology (GO) enrichment of DE genes was 206 

performed using the clusterProfiler R package [12]. Biological processes with adjusted 207 

P-value ≤ 0.01 were considered as significantly enriched. Dotplot function provided in 208 

clusterProfiler was used to visualize enriched pathways. In addition, gene interaction 209 

network was visualized using STRING: functional protein association network 210 

(https://string-db.org/). 211 

 212 

Immune Cell Deconvolution. CIBERSORT was used to estimate the relative 213 

composition of immune cells in bulk RNA-Seq samples [13] using a machine learning 214 

model named as nu–support vector regression (ν-SVR) [14]. For each patient, a 215 
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complete blood count (CBC) was obtained upon presentation as part of their standard of 216 

care clinical evaluation. We were therefore able to calculate estimated absolute counts 217 

for each leukocyte subpopulation. This was done by multiplying the proportion for each 218 

subpopulation as determined by CIBERSORT to the total white blood cell count from 219 

the CBC. This analysis was validated by comparing the absolute neutrophil counts 220 

(ANC) as estimated by CIBERSORT with the ANC reported by the clinical laboratory. 221 

 222 

Statistical Analysis 223 

All plots and statistical analyses were carried out using R programming language 224 

(v3.5.1) (https://www.r-project.org/). By default, two-sided student’s t-test was performed 225 

to compute the significance between two groups. The generalized linear model function 226 

(glm) was used to calculate odds ratio (OR). Principal component analysis (PCA) of 227 

gene expression profiles was performed using the prcomp function. The risk score was 228 

estimated using the signature gene expression for each patient based on the geometric 229 

mean. The geometric mean for x1, x2, ..., xn was calculated as follows: 230 

                                                      (∏ 𝑥$
%
$&' ) '

%
= *𝑥'𝑥+. . . . . . . . . . 𝑥%

-  231 

A risk score was further used to re-classify patients into two groups and receiver 232 

operating characteristic (ROC) and area under curve (AUC) were adopted to assess the 233 

performance using the pROC package [15].   234 

 235 

Results 236 

The workflow of the study is summarized in Fig. 1. Patient demographics and baseline 237 

clinical parameters are provided in Table 1, with 72h and 8 day values presented in 238 
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supplemental Table S1. In total, five demographic characteristics (i.e., age, gender, 239 

BMI, weight, height) and 14 different clinical features were examined for all patients. 240 

There was high variation between MODS and ECMO for many clinical parameters (e.g. 241 

platelet count), diluting the predictive power of these measures. Some outcomes 242 

differed significantly between MODS and ECMO, specifically the renal failure rate (89% 243 

in MODS and 100% in ECMO) and liver failure rate (30% in MODS and 50% in ECMO. 244 

However, no baseline demographic or clinical parameter, including PELOD score was 245 

predictive of progression from MODS to ECMO.  This observation highlighted the need 246 

to explore molecular features for identifying risk markers.  247 

 248 

 249 
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 250 

Fig. 1 An overview of the analysis. DGE: Differential gene expression. 251 

 252 

 253 

Table 1: Patients demographics at baseline (Pre-ECMO,0h) time point. 254 

 255 

 RNA-Seq cohort 

 Demographics Control MODS ECMO P-value 

 Time 0h 0h 0h - 

 Number 4 17 6 - 

 Age (months) 84.75(28-122) 90(0.14-202) 63.25(0.5-202) 0.54 

 Male 2 10 5 0.36 

 Female 2 7 1 0.36 

 BMI 17(14-21) 20.3(13-38.5) 19(14-32.4) 0.74 

 Weight 26.5(12-35) 42.85(3.5-178) 25.87(3.9-81) 0.35 

 Height 122(80-142) 103(51-157) 90(53-160) 0.59 

 Mortality - 2  1   

 Clinical Features 

 Liver Failure (%) - 30 50 - 

 Bilirubin  - 0.92(0.1-5.6) 0.51(0.1-1.1) 0.28 

 AST - 258.88(13-3296) 215.67(7-726) 0.85 

 Albumin - 2.35(1.6-3.5) 2.35(1.9-2.8) 0.96 

 CRP - 83.75(0.3-234) 75.75(2.8-211) 0.87 

 Renal Failure (%) - 89 100 - 

 Creatinine - 0.65(0.13-0.29) 0.77(0.22-0.29) 0.71 

 Lactate - 2.2(0.9-4.6) 6.05(0.6-14.5) 0.19 

 WBC - 14.9(3.95-62.6) 12.67(4.6-20) 0.56 

 platelet - 232(37-718) 208(92-378) 0.68 

 PELOD Score - 14.37(1-32) 12.5(10-20) 0.21 

 Bacterial infection (%) - 35 33   

 Viral infection (%) - 52 50   

 Inotrope usage   88 100   

 Respiratory failure (%) - 100 100   

 Neurological (%) - 23 33   

Where relevant, mean(range). T-test and fisher's exact test was used to compute P-value between MODS and ECMO. 

 256 

 257 

Immune cells deconvolution and transcriptome analysis 258 
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Immune responses were examined for individual patients and compared to elucidate 259 

their role. The relative proportions of immune cell subtypes were estimated using 260 

CIBERSORT based on bulk RNA-Seq data. WBC counts obtained upon arrival in the 261 

emergency department were used to quantify the absolute abundance of immune cell 262 

subtypes. The ANC as determined by the clinical laboratory and the ANC derived from 263 

CIBERSORT were high correlated (correlation value 0.97) (Figure S1), suggesting the 264 

high fidelity of the inferred leukocyte subtype composition. Comparison of neutrophils 265 

between ECMO and MODS showed decreased level in ECMO (P-value = 0.03, 266 

OR=2.82 [95% CI 0.63 – 12.45]) as compared to MODS (Fig. 2a). Interestingly, the two 267 

lowest neutrophil counts were among MODS. Clinical data of these two patients 268 

revealed that one patient did not survive and another had the PELOD score of 32, the 269 

highest score among all patients, suggesting that these patients had a risk profile similar 270 

to the ECMO patients despite not being started on ECMO. 271 

We then examined the expression of marker genes of neutrophils (from 272 

CIBERSORT), monocytes, cytokines and genes involved in NF-kB and inflammatory 273 

response from Hall et al., 2007 [16]. All the marker genes were down-regulated in 274 

ECMO compared to MODS (Figure S2-S6). In addition to CIBERSORT, gene set 275 

enrichment analysis of cell-type specific biomarker genes was performed in order to 276 

confirm the findings. Neutrophil gene markers and genes involved in inflammatory 277 

response displayed significantly decreased expression in ECMO compared to MODS 278 

(P-value < 0.03) (Fig. 2b and 2c). Marker genes pertaining to monocytes, cytokines, and 279 

NF-kB displayed a significant enrichment in MODS compared to CT (P-value < 0.04) 280 

(Fig. 2d-2f).  281 
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The finding of changes in the neutrophil count was independently validated using  282 

additional single cell RNA-seq data of ECMO adult patients data [8], where we observed 283 

decrease of expression of neutrophil gene markers and genes involved in inflammatory 284 

response in deceased ECMO patients compared to patients that survived (Figure S7 285 

and S8). Further paired comparison of neutrophil levels for each patient showed no 286 
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significant change across different time points (Fig. 2g and 2h). 287 

 288 

Fig. 2 Immune cell composition analyses in ECMO and MODS patients. (a) Neutrophils 289 

counts computed from CIBERSORT decreased in ECMO (P = 0.034) compared to MODS at 290 

baseline. (b-f) Enrichment of genes involved in various immune responses (Monocytes, 291 

Cytokines, NF-kB, Neutrophils and Inflammation) in CT, MODS and ECMO at different time 292 

points (0h, 72h and 8d). Abundance of neutrophils in MODS (g) and ECMO (h) patients at 293 
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different time points (0h, 72h and 8days). Blue color - control (CT), grey color - MODS patients 294 

and cyan color - ECMO patients. 295 

 296 

Furthermore, differential expression (DE) analysis between MODS and control 297 

(CT) as well as between ECMO and MODS was performed at baseline (0h). A total of 298 

51 DE genes (log2 fold change ≥ 1 or ≤ -1 with false discovery rate (FDR)  ≤ 0.2) 299 

between MODS and CT, and 28 DE genes between ECMO and MODS were identified 300 

at baseline (Fig. 3a). Comparison of DE genes from these two groups showed only one 301 

pseudogene ( RNU1-67P) common to these two DE lists. As expected, these DE genes 302 

clearly separate CT, MODS and ECMO patients (Fig. 3b and 3c) in reduced 303 

dimensional (PC) space. Heatmap visualization of these genes highlights their 304 

differential patterns of expression between groups (Fig. 3d).  305 

In addition, 50 and 32 DE genes between MODS and CT were identified at 72h 306 

and 8d time points, respectively (Figure S9a), while 9 and 11 DE genes were identified 307 

between ECMO and MODS at 72h and 8d time points, respectively (Figure S9b). Only 308 

one gene (pseudogene- RNU1-67P) was common among all the three time points (0h, 309 

72h and 8d) in both comparisons.  310 
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 311 

Fig. 3 Differential gene expression analyses at baseline (0h). (a) Comparison of differentially 312 

expressed (DE) genes between MODS vs. control (CT), and ECMO vs. MODS at baseline (0h). 313 

(b) First two principal components and (c) first three principal component analysis, using the 314 

union of DE genes obtained from the comparison between MODS and CT and that those 315 

between ECMO and MODS at baseline. Patients are clustered by their pathology group (CT, 316 

MODS and ECMO). (d) Expression of the DE genes. 317 

 318 

Biological processes and co-expression networks regulated by DE genes  319 

Gene ontology (GO) enrichment analysis of total DE genes from MODS to CT 320 

comparison revealed that immune-related (innate immune response, mast cell 321 

activation, neutrophil migration, interleukin-6 production, and cytokine production) and 322 
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fatty acid-related pathways are enriched in MODS compared to CT (corrected P-value ≤ 323 

0.01, Fig. 4a) (Table S3). Notable genes included in immune responses are ADGRE2, 324 

C3AR1, CD177, FCER1G, IRAK3, MMP8, PLSCR1, PPARG, SOCS3, and TLR5. 325 

Similar pathways were also observed in a previous analysis between MODS and CT [5]. 326 

In addition, gene expression related to epigenetic processes (e.g., regulation of gene 327 

silence, DNA packaging, chromatin assembly) was activated in ECMO compared to 328 

MODS (Fig. 4b and Table S4). 329 

Further, co-expression analysis was performed to delineate the relationships 330 

between gene expression and their regulated pathways. The TPM count of all the genes 331 

for baseline patients was used to create co-expressed network modules. The DE genes 332 

from MODS to CT and ECMO to MODS were mapped on these modules and identified 333 

the corresponding modules. Two modules were identified in each comparison (Fig.4c 334 

and 4d). Notably, some of the DE genes from MODS to CT were mapped on module 335 

M15 of ECMO to MODS, deciphering the phase transition of MODS to ECMO support. 336 

Module M14 was specific to the comparison of ECMO and MODS, whereas modules 337 

M1 and M4 were specific to the comparison of MODS and CT. Pathways analysis of 338 

each module showed that genes in module M1 were involved in immune responses 339 

(Figure S10a) and genes in module M4 were involved in glucose metabolisms and 340 

glycogen breakdown (Figure S10b). However, module M15 (shared by both 341 

comparisons) showed enrichment of signaling pathways and proteins maintenance 342 

(Figure S10c). Module M14 belonging to genes that differed between ECMO and MODS 343 

was enriched with genes related to DNA damage, DNA maintenance and histone 344 

acetylation (Figure S10d). Together, DE analysis showed enrichment of immune related  345 
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 346 

Fig. 4 Gene enrichment and co-expression network analysis of DE genes in MODS and 347 

CT, and in ECMO and MODS. (a) Gene ontology (GO) enrichment of DE genes from MODS to 348 

CT showed their involvement in immune responses. (b) However, GO enrichment of DE genes 349 

from ECMO to MODS displayed enrichment in epigenetic regulations. (c) The DE genes 350 
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obtained from the comparison of MODS and CT were clustered into two separate groups. (d) 351 

Similarly, two co-expression networks were created after mapping the DE genes in ECMO and 352 

MODS. The highlighted genes in co-expressed networks are hub genes. Notably, many DE 353 

genes from both comparisons were shared in module 15 (M15), suggested phase transition. 354 

Size of circles in GO represents the number of mapped genes. 355 

 356 

and glycogenolysis pathways in MODS, while protein maintenance and epigenetic-357 

related pathways were enriched in ECMO. The protein-protein interaction network of the 358 

DE genes also revealed two distinct clusters: histone activation and blood coagulation 359 

were uniquely enriched in ECMO (Figure S11). 360 

The GO enrichment analysis and co-expression analysis of DE genes expressed 361 

at 72h and 8d did not show any significantly enriched pathway in any of the 362 

comparisons. This observation may suggest that the MODS and ECMO patients have 363 

important physiological differences at baseline, but that other processes obfuscate 364 

these differences as diverse disease processes and therapeutic interventions unfold. 365 

Such baseline differences could be exploited for prognostic and potentially diagnostic 366 

purposes.  367 

 368 

Identification of molecular signatures associated with ECMO  369 

In 2018, Sweeney et al. [4] evaluated four prognostic biomarker signatures consisting of 370 

genes positively or negatively correlated with mortality in sepsis. We computed the 371 

geometric mean of the expression of these signature genes and investigated whether 372 

these values could be used as risk scores for MODS to ECMO progression. We 373 

observed that the risk scores derived from the signature genes that are positively 374 
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correlated with mortality among sepsis patients could differentiate ECMO and MODS 375 

(P-value ranges from 0.04 to 0.01) (Figure S12).   376 

 377 

Fig. 5 Univariate analyses of differentially expressed (DE) genes in ECMO and MODS. (a) 378 

Odds ratio of the DE genes between ECMO and MODS (reference). A total of 6 genes from 28 379 

DE genes are significant (OR > 1 and P value < 0.05). (b) Expression of the DE genes in CT, 380 

ECMO and MODS patients at different time points. The higher expression of the genes in 381 

ECMO than in MODS at three time points (0h, 72h and 8d) suggests their strong association 382 
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with the deterioration from MODS to ECMO. Blue color displayed- control (CT), grey color 383 

displayed- MODS patients and cyan color displayed- ECMO patients.*** P-value < 1E-06. 384 

 385 

 We next sought to derived the predictive power of the differentially expressed 386 

genes identified between ECMO and MODS. Six genes from our differential gene 387 

expression analysis demonstrated a very strong association with MODS for their 388 

progression to ECMO  (P-value < 0.04, Fig. 5a) and these were used to create a 389 

signature for ECMO prediction. Most of these genes belong to the histone family 390 

(HIST2H3C, HIST1H4A, HIST1H2AI, HIST1H1B, and H1F0, Table 2) and these were 391 

expressed significantly higher in ECMO than MODS (P-value < 3.5e-6, Fig. 5b). In 392 

addition, the Human Protein Atlas dataset showed the enhanced expression of these 393 

genes in neutrophils (Figure S14).    394 

 395 

Table 2: List of signature genes strongly associated with ECMO. 396 

 397 

Re-classification of patients and signature-based risk estimation  398 

Expression of the genes in our 6 gene risk signature was similar between CT and 399 

MODS, but higher in ECMO than MODS (Fig. 6a). Interestingly, when the additional 400 

Gene Ensemble 
Log2 
Fold 

change 

Log 
CPM 

P-value Adj. P-value 
Protein 
coding 

Function 

HIST2H3C ENSG00000203811 2.11 3.88 9.10E-07 0.055 Y histone cluster 2, H3c 

HIST1H4A ENSG00000278637 1.85 0.24 1.00E-06 0.061 Y histone cluster 1, H4a 

HIST1H2AI ENSG00000196747 1.62 3.86 3.40E-06 0.207 Y histone cluster 1, H2ai 

HIST1H1B ENSG00000184357 1.92 4.24 2.40E-06 0.147 Y histone cluster 1, H1b 

H1F0 ENSG00000189060 1.73 4.5 3.50E-06 0.212 Y H1 histone family, member 0 

DDIT4 ENSG00000168209 2.02 3.74 4.40E-07 0.026 Y 
DNA-damage-inducible 
transcript 4 
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time points (72h and 8d) were added, these signature genes were not different in 401 

MODS and ECMO and could also be confirmed by the overlap of patients (Figure S15a 402 

and S15b). The risk scores derived from these genes were significantly different 403 

between ECMO and MODS (95%CI 1.54-42.91,P-value = 7E-04, Fig. 6b) at baseline. In 404 

contrast, risk scores of MODS patients at 72h and 8d are close to those of ECMO 405 

patients at 72h and 8d (Fig. 6b). 406 

 407 

Fig. 6 Signature based re-classification of patients in the test (CT, MODS and ECMO) 408 

dataset and validation dataset. (a) Heatmaps showed the clustering of signature genes in 409 

ECMO patients compared to control (CT) and MODS patients. Risk scores derived from the 410 

signature genes showed difference in (b) ECMO and MODS in our data, and in (c) MODS and 411 

noMODS (patients doesn’t develop MODS) in the validation data (Cabrera et at., 2017). (d) 412 

Receiver operating characteristics (ROC) of the classification using our data and the validation 413 

data. A risk score for each patient was computed based on the geometric mean of the signature 414 

gene expression. Risk scores were strongly associated with ECMO and can be helpful to predict 415 

the probability of the MODS patients who require ECMO support. 416 
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  Due to the lack of an appropriate pediatric cohort, we used previously published 417 

microarray data of adult patients that developed MODS after a major trauma as validation 418 

data. The authors had categorized the patients into two groups, those that developed 419 

MODS and those that did not (noMODS), however these were more sick compared to 420 

controls  [9]. In their cohort, the risk score derived from our signature was significantly 421 

higher (95%CI 1.02-10.35,P-value = 2E-02) in MODS than noMODS (Fig. 6c). We further 422 

found that our signature genes can also classify patients (noMODS, and MODS) in the 423 

validation cohort at 0h (Figure S17a) as well as 72h timepoint (Figure S17b). Using logistic 424 

regression to train the risk scores led to a remarkable separation (AUC of 0.91 [95%CI 425 

0.79-1.00] for ECMO and MODS patients at baseline in our data and AUC of 0.8 [95%CI 426 

0.53-0.93] in the validation set) of two group of patients from our data as well as validation 427 

data, indicating a strong association of risk scores with MODS deterioration (Fig. 6d). 428 

 429 

Discussion 430 

The decision to initiate ECMO is often subjective, determined by the clinical judgement 431 

of the multidisciplinary care team in a very stressful and dynamic setting as opposed to 432 

quantitative measures of pathophysiology. Biological sampling of the exact organs 433 

affected is impractical if not impossible, but circulating white blood cells may serve as a 434 

proxy read out of stressed be experienced by multiple organ systems. We employed 435 

transcriptomics of peripheral white cells in an effort to improve our understanding of the 436 

response of circulating cells to multi-organ failure and its progression to either recovery 437 

or cardiopulmonary collapse culminating in the need for extra corporeal life support.  438 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 20, 2020. ; https://doi.org/10.1101/2020.02.15.20022772doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.15.20022772
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

White blood cells are uniquely suited for this because aside from a few 439 

exceptions (e.g., memory T cells, some tissue macrophages), most of the mature blood 440 

cell types are mitotically inactive, metabolically active and relatively short-lived with half-441 

lives ranging over hours to a few days. Thus, they are reflective of the environment they 442 

course through [17]. We found the gene AREG which regulates Amphiregulin a 443 

mediator for macrophage activity were preferentially activated in patients prior to ECMO 444 

[18-19]. Amphiregulin has been shown to an essential cardioprotective mediator 445 

produced by cardiac Ly6C macrophages in response to fluid overload, which is not 446 

unusual in MODS [20].  447 

The activation of immune response and glycogenolysis in MODS compared to 448 

CT showed that patients in MODS need excessive energy for cellular homeostasis and 449 

activation of immune response against the initial infections. However, during the 450 

transition from MODS to ECMO, various signaling and protein maintenance pathways 451 

also got activated. Notably, DNA repair, DNA methylation and other epigenetic changes 452 

were activated in the patients who deceased further and needed ECMO support.  453 

One of the key observations is the enrichment and strong association of histone 454 

genes with ECMO. The histone octamer HIST2H3C, HIST1H2AI, HIST1H4, and 455 

HIST1H1B, are genes that increase the availability of histones. Among these histones, 456 

HIST2H3C, HIST1H2AI, and HIST1H4A are highly expressed in neutrophils (Figure 457 

S14). Histones are a protein class, containing histone H1 and the core histones H2A, 458 

H2B, H3, and H4 [21] that are involved in numerous biological processes, largely 459 

through repressing transcription [22-23]. These are important due to their capability to 460 

determine if DNA is accessible for transcription and they have a major impact on gene 461 
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expression, too [24]. However, to allow processes like transcription or replication, this 462 

structure needs to change dynamically from a condensed state to an open one.  463 

Genes that are associated with the histone cluster were found to be elevated. 464 

Increases in serum histones have previously been shown to be elevated in patients with 465 

sepsis and heart failure [25-26]. Higher concentrations of circulatory histones are 466 

associated with poor survival in patients undergoing ECMO [27]. The increased 467 

availability of histones in pathologies that concur with a prolonged inflammatory 468 

response as is the case of sepsis. This is not only due to tissue damage but also to a 469 

second source: activated neutrophils generate neutrophil extracellular traps (NETs), 470 

structures made of cellular components which include specifically modified histones 471 

[28]. Generation of circulating histones from NETs or from necrotic neutrophils implies 472 

the release of a high concentration of histones to the bloodstream. Both processes, 473 

NET and apoptosis of neutrophils and necrosis of neutrophils and other immune cells, 474 

contribute to the pathogenesis of sepsis. NET however has been linked to organ failure 475 

[29-31]. In this study we showed that these processes are active enough to be 476 

uncovered by gene-expression. 477 

This study shows that serial whole-blood transcriptomic profiling holds a great 478 

promise to predict MODS patients, which may need EMCO support. Several published 479 

gene signatures developed to predict mortality showed a significance in predicting 480 

ECMO, but none of them suffice as a marker in our case. Our new signature genes 481 

could remarkably differentiate MODS and ECMO. Their association with ECMO is 482 

considerably strong and is also able to distinguish the severe and moderate MODS 483 

patients in the validation cohort. The risk score derived from the signature genes for 484 
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each patient can be used to classify patients into two groups (ECMO and MODS) in our 485 

cohort . This is important because in spite of the limited sample size, using pediatric 486 

ECMO samples, the multiple time points and validation datasets increase the 487 

robustness of our findings. Furthermore the study included patients, where sepsis was 488 

not the primary cause of MODS indicating that histone signatures that occur in patients 489 

with MODS do so regardless of the initial insult. The signature genes need further 490 

evaluation by prospective studies in pediatric MODS/ECMO patients. Nevertheless, this 491 

study is one of the first to demonstrate that the potential of exploring clinical and 492 

transcriptomic features in identifying MODS patients from those requiring ECMO. In 493 

addition, this work may be of some help to guide the treatment of those infected patients 494 

at highest risk for progression to requiring ECMO support. 495 

 496 

Data and Code Availability 497 

The codes used in this analyses are available at https://github.com/Bin-Chen-498 

Lab/MODS. The processed data used in this study is available through NCBI GEO 499 

accession GSE144406. 500 
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Figure S1. Correlation of neutrophils obtained from lab test data and

derived from CIBERSORT. The values closely correlated with each other

(Correlation value= 0.97).
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Figure S2. Expression of monocyte genes (based on study of Hall et al.,

2007) in control (CT), MODS and ECMO patients at different time points

(0h, 72h and 8d). (* 0.01 < P value < 0.05; ** 0.001 < P value < 0.01; *** 7.3e-

6 < P value < 0.001).
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Figure S3. Expression of neutrophils genes (based on CIBERSORT cell

marker) in control (CT), MODS and ECMO patients at different time

points(0h, 72h and 8d). (* 0.05 > p <= 0.01 and ** 0.01 > p < 0.001).
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Figure S4. Expression of cytokines genes (based on study of Hall et al.,

2007) in control (CT), MODS and ECMO patients at different time points(0h,

72h and 8d). (* 0.05 > p <= 0.01 and ** 0.01 > p < 2.5e-05).

**

** *

**

*

**E
x
p

re
s
s
io

n
 v

a
lu

e
 (

F
P

K
M

)

TNF IL1B IL6 CXCL8

IL10 IL18 L1RN

https://doi.org/10.1101/2020.02.15.20022772
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S5. Expression of NF-kB signaling pathway (based on study of Hall

et al., 2007) in control (CT), MODS and ECMO patients at different time

points(0h, 72h and 8d). (* 0.05 > p <= 0.01 and ** 0.01 > p < 7.3e-05).
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Figure S6. Expression of genes involved in inflammasome elements

(based on study of Hall et al., 2007) in control (CT), MODS and ECMO

patients at different time points(0h, 72h and 8d). (* 0.05 > p <= 0.01 and **

0.01 > p < 7.8e-06).
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Figure S7. Expression of marker genes for neutrophils cells in single cell

data of ECMO adult patients (Kort et al., 2019). Red- Surviving ECMO

patients and Green- Died ECMO patients. (* 0.01 < P value < 0.05; ** 0.001 < P

value < 0.01; *** 2e-16 < P value < 0.001).
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Figure S8. Expression of genes involved in inflammatory response in each

cell from the single cell data of ECMO adult patients (Kort et al., 2019). Red-

Surviving ECMO patients and Green- Died ECMO patients. (* 0.01 < P value <

0.05 and ** 0.0008 < P value < 0.01.
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Figure S9. Comparisons of differential gene expression. Venn diagram

showing the comparisons of differentially expressed genes in between (a)

MODS and control (CT) and (b) in between ECMO and MODS patients at

different time points; baseline (0h), 72h and 8d.
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Figure S10. Pathways enriched by the genes present in different co-

expressed networks module. (a, b) Enriched pathways are shown by the DE

genes from MODS vs CT and mapped on two co-expressed networks. (c)

Enriched pathways shared by the DE genes in MODS vs CT and in ECMO vs

MODS are shown. This showed the transition from MODS to ECMO. (d) In

addition, epigenetic modifications related processes were activated in the severe

MODS patients, who require ECMO support.
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&
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Figure S11. Interaction of genes associated with ECMO at baseline (0h). Two

main networks (Histone interactions and gene markers for liver failure) were

enriched.
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Figure S12. Risk scores derived from the putative signatures predicted for

sepsis patients (Sweeney et al., 2018). The signatures have been derived

from different models namely, Duke, Sage LR, Sage RF and Stanford. These

signatures are composed of two categories, i.e, positively and negatively

associated with patients mortality. However, only the signature which are

positively associated with patients mortality showed the difference in MODS

and ECMO.



Figure S13. Odds ratio for clinical data. Clinical data available for all the

ECMO and MODS patients at different time points were used to compute

the odds ratio. Significantly (P value ≤ 0.03) higher odds ratio for Albumin

was observed in ECMO as compared to MODS patients.

OR 95% CI P- value

Plateletes-72h 0.123 0.008-1.71 0.1

Lactate-0h 3.212 0.77-13.36 0.1

Albumin-72h 4.033 1.12-14.45 0.03

1 10 20 30

Odds ratio
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Figure S14. Expression pattern of some of histone genes in blood cells

(Human protein atlas). It was observed that HIST2H3C, HIST1H4A,

HIST1H2AI is highly expressed in neutrophils.



Figure S15. Labeled PCA comparing CT, MODS and ECMO at different time

points. (a) Labeled PCA based on gene signature separated all the patients of

different time points into CT, MODS and ECMO group. (b) PC1 and PC2 with PC3

provide more clear differentiation of patients.
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Figure S16. Comparison of all genes in validation data (Cabrera et at., 2017).

The violin plot displayed differences in the expression values in MODS and noMODS

patients at (P = 0.04) 0h and (P = 0.03) 72h time point.



Figure S17. Labeled PCA separated the control (CT), noMODS (patients

doesn’t develop MODS) and MODS (develop MODS) patients in the

validation cohort (Cabrera et at., 2017). (a) The labeled PCA using the

signature genes associated with ECMO separated the MODS and noMODS.

(b)The labeled PCA from different time points also separated MODS and

noMODS patients with minimal overlap of patients at 72h. Although patients in the

validation cohort data were adult, the remarkable separation indirectly validated

the signature genes associated with pediatrics ECMO.

(a)

(b)



RNA-Seq cohort

Demographics MODS ECMO P-value MODS ECMO P-value

Time 72h 8d

Number 16 5 - 9 4 -

Age (months) - - - - - -

Male 9 4 - 4 3 -

Female 7 1 - 5 1 -

BMI - - - - - -

Weight - - - - - -

Height - - - - - -

Mortality - - - - - -

Clinical Features

Liver Failure (%) - - - - - -

Renal Failure - - - - - -

Creatinine 0.53(0.16-1.16) 0.95(0.25-2.5) 0.4 0.74(0.16-2.38) 0.63(0.15-1.86) 0.84

Bilirubin 1.25(0.1-11.5) 2.2(0.6-6.8) 0.51 0.61(0.2-2) 0.67(0.3-1.2) 0.83

AST 182.93(14-2010) 1798.2(45-4924) 0.19 34.87(11-112) 51.25(15-80) 0.39

Albumin 2.66(2-4.5) 3.58(2.6-4.4) 0.03* 2.85(2.2-3.6) 3.3(2.5-4.1) 0.28

Lactate 1.37(0.6-2.5) 1.8(1.2-3.2) 0.34 1.5(0.9-2.2) 1.47(1.3-1.8) 0.8

WBC 10.94(4.05-24.7) 9.97(5.72-14.9) 0.65 8.46(1.42-17.9) 11.59(9.7-13.38) 0.25

platelet 230(35-772) 111.8(73-148) 0.025* 141.25(97-161) 202.57(30-404) 0.23

CRP 83(0.9-189) 60.83(5.6-121) 0.49 78.12(8.6-167) 57.1(13-135) 0.69

Pelod Score 14.18(11-31) 17.2(1-32) 0.3 10.7 (1-21) 8.5(1-21) 0.33

Bacterial infection (%) - - - - - -

Viral infection (%) - - - - - -

Respiratory failure (%) - - - - - -

Neurological - - - - - -

Table S1. Patient demographics at 72h and 8d time points.

Where relevant, mean(range). T-test and fisher's exact test was used to compute P-value between MODS and ECMO.



Gene Ensemble
Log2 Fold 
Change

Log CPM P-value Adj. P-value
Protein 
coding

Function

RGS1 ENSG00000090104 4.12 2.75 1.3E-08 0.001 Y regulator of G-protein signaling 1

APOH ENSG00000091583 6.91 -2.00 2.5E-08 0.001 Y apolipoprotein H (beta-2-glycoprotein I)

FAM83D ENSG00000101447 1.97 -0.23 1.7E-07 0.010 Y family with sequence similarity 83, member D

AREG ENSG00000109321 3.51 0.49 2.0E-06 0.118 Y amphiregulin

APOC1 ENSG00000130208 3.37 -1.93 2.0E-06 0.121 Y apolipoprotein C-I

APCS ENSG00000132703 5.12 -2.93 5.6E-07 0.034 Y amyloid P component, serum

GC ENSG00000145321 6.76 -2.08 3.0E-08 0.002 Y group-specific component (vitamin D binding protein)

PRG3 ENSG00000156575 5.74 -1.27 5.9E-14 0.000 Y proteoglycan 3

DUSP2 ENSG00000158050 3.13 1.79 3.4E-08 0.002 Y dual specificity phosphatase 2

ALB ENSG00000163631 7.92 1.80 3.6E-09 0.000 Y albumin

KBTBD6 ENSG00000165572 1.69 3.50 1.2E-07 0.007 Y kelch repeat and BTB (POZ) domain containing 6

WEE1 ENSG00000166483 1.54 2.52 1.5E-06 0.091 Y WEE1 homolog (S. pombe)

DDIT4 ENSG00000168209 2.02 3.74 4.4E-07 0.026 Y DNA-damage-inducible transcript 4

FGG ENSG00000171557 6.02 -1.45 2.1E-07 0.013 Y fibrinogen gamma chain

FGB ENSG00000171564 7.08 -1.11 6.3E-08 0.004 Y fibrinogen beta chain

SAA1 ENSG00000173432 7.55 -1.02 5.7E-08 0.003 Y serum amyloid A1

HIST1H1B ENSG00000184357 1.92 4.24 2.4E-06 0.147 Y histone cluster 1, H1b

PRG2 ENSG00000186652 4.96 1.67 2.3E-08 0.001 Y proteoglycan 2

H1F0 ENSG00000189060 1.73 4.50 3.5E-06 0.212 Y H1 histone family, member 0

HIST1H2AI ENSG00000196747 1.62 3.86 3.4E-06 0.207 Y histone cluster 1, H2ai

RNA5S9 ENSG00000201321 5.54 -0.35 5.7E-08 0.003 Y RNA, 5S ribosomal 9

HIST2H3C ENSG00000203811 2.11 3.88 9.1E-07 0.055 Y histone cluster 2, H3c

RNU1-67P ENSG00000207175 3.94 0.78 1.2E-08 0.001 N NA

HMGB1P30 ENSG00000244089 3.59 -2.84 5.2E-08 0.003 Y high mobility group box 1 pseudogene 30

RP11-1H15.1 ENSG00000254765 3.83 -3.28 2.1E-06 0.125 N NA

MRC1 ENSG00000260314 3.55 2.13 3.3E-08 0.002 Y mannose receptor, C type 1

CTD-2033D15.2 ENSG00000276107 3.32 -0.61 1.1E-08 0.001 N NA

HIST1H4A ENSG00000278637 1.85 0.24 1.0E-06 0.061 Y histone cluster 1, H4a

Table S2. List of differentially expressed genes in ECMO as compared to MODS patients at

baseline (0h).



GO Ids Description p.adjust qvalue geneID

GO:0033003 regulation of mast cell activation 0.005 0.003ADGRE2/FCER1G/PLSCR1

GO:0045088 regulation of innate immune response 0.005 0.003IRAK3/PPARG/FCER1G/SOCS3/TLR5/PLSCR1

GO:0043300 regulation of leukocyte degranulation 0.005 0.003ADGRE2/FCER1G/CD177

GO:0097530 granulocyte migration 0.005 0.003ADGRE2/FCER1G/C3AR1/CD177

GO:0002886 regulation of myeloid leukocyte mediated immunity 0.006 0.004ADGRE2/FCER1G/CD177

GO:0045576 mast cell activation 0.006 0.004ADGRE2/FCER1G/PLSCR1

GO:0002526 acute inflammatory response 0.006 0.004PPARG/FCER1G/C3AR1/PLSCR1

GO:0002431 Fc receptor mediated stimulatory signaling pathway 0.011 0.007MYO10/FCER1G/PLSCR1

GO:0050727 regulation of inflammatory response 0.011 0.007MMP8/PPARG/FCER1G/C3AR1/SOCS3

GO:0097529 myeloid leukocyte migration 0.011 0.007ADGRE2/FCER1G/C3AR1/CD177

GO:0032868 response to insulin 0.020 0.013RETN/GRB10/PPARG/SOCS3

GO:0043302 positive regulation of leukocyte degranulation 0.020 0.013FCER1G/CD177

GO:0002673 regulation of acute inflammatory response 0.021 0.013PPARG/FCER1G/C3AR1

GO:0071404 cellular response to low-density lipoprotein particle stimulus 0.021 0.013PPARG/FCER1G

GO:0072593 reactive oxygen species metabolic process 0.021 0.013MMP8/HK2/SH3PXD2B/CD177

GO:1990266 neutrophil migration 0.021 0.013FCER1G/C3AR1/CD177

GO:0060330 regulation of response to interferon-gamma 0.021 0.013PPARG/SOCS3

GO:0060334 regulation of interferon-gamma-mediated signaling pathway 0.021 0.013PPARG/SOCS3

GO:0071621 granulocyte chemotaxis 0.021 0.013ADGRE2/FCER1G/C3AR1

GO:0043304 regulation of mast cell degranulation 0.021 0.013ADGRE2/FCER1G

GO:0002888 positive regulation of myeloid leukocyte mediated immunity 0.021 0.013FCER1G/CD177

GO:0033006 regulation of mast cell activation involved in immune response 0.021 0.013ADGRE2/FCER1G

GO:0032675 regulation of interleukin-6 production 0.021 0.013IRAK3/MMP8/FCER1G

GO:0055094 response to lipoprotein particle 0.021 0.013PPARG/FCER1G

GO:0061082 myeloid leukocyte cytokine production 0.021 0.013IRAK3/FCER1G

GO:0071402 cellular response to lipoprotein particle stimulus 0.022 0.014PPARG/FCER1G

GO:0032635 interleukin-6 production 0.022 0.014IRAK3/MMP8/FCER1G

GO:0046627 negative regulation of insulin receptor signaling pathway 0.022 0.014GRB10/SOCS3

GO:1900077 negative regulation of cellular response to insulin stimulus 0.022 0.014GRB10/SOCS3

GO:1903305 regulation of regulated secretory pathway 0.022 0.014ADGRE2/FCER1G/CD177

GO:0032680 regulation of tumor necrosis factor production 0.024 0.015IRAK3/MMP8/FCER1G

GO:0032640 tumor necrosis factor production 0.024 0.015IRAK3/MMP8/FCER1G

GO:0002755 MyD88-dependent toll-like receptor signaling pathway 0.024 0.015IRAK3/TLR5

GO:1903555 regulation of tumor necrosis factor superfamily cytokine production 0.024 0.015IRAK3/MMP8/FCER1G

GO:0071706 tumor necrosis factor superfamily cytokine production 0.025 0.016IRAK3/MMP8/FCER1G

GO:0045089 positive regulation of innate immune response 0.025 0.016IRAK3/FCER1G/TLR5/PLSCR1

GO:0001959 regulation of cytokine-mediated signaling pathway 0.029 0.018IRAK3/PPARG/SOCS3

GO:1903532 positive regulation of secretion by cell 0.029 0.018RETN/MMP8/FCER1G/CD177

GO:0043303 mast cell degranulation 0.029 0.018ADGRE2/FCER1G

GO:0002279 mast cell activation involved in immune response 0.029 0.019ADGRE2/FCER1G

GO:0002448 mast cell mediated immunity 0.030 0.019ADGRE2/FCER1G

GO:0002429 immune response-activating cell surface receptor signaling pathway 0.030 0.019MYO10/FCER1G/C3AR1/PLSCR1

GO:0060759 regulation of response to cytokine stimulus 0.030 0.019IRAK3/PPARG/SOCS3

GO:0006911 phagocytosis, engulfment 0.030 0.019PPARG/FCER1G

GO:0043434 response to peptide hormone 0.031 0.019RETN/GRB10/PPARG/SOCS3

GO:1903307 positive regulation of regulated secretory pathway 0.031 0.019FCER1G/CD177

GO:0051047 positive regulation of secretion 0.031 0.019RETN/MMP8/FCER1G/CD177

GO:2000377 regulation of reactive oxygen species metabolic process 0.031 0.020MMP8/HK2/CD177

GO:0009612 response to mechanical stimulus 0.031 0.020RETN/PPARG/TLR5

GO:0017157 regulation of exocytosis 0.033 0.021ADGRE2/FCER1G/CD177

GO:0032653 regulation of interleukin-10 production 0.034 0.021MMP8/FCER1G

GO:0050900 leukocyte migration 0.034 0.021ADGRE2/FCER1G/C3AR1/CD177

GO:0032613 interleukin-10 production 0.034 0.021MMP8/FCER1G

GO:0046626 regulation of insulin receptor signaling pathway 0.034 0.021GRB10/SOCS3

GO:0099024 plasma membrane invagination 0.034 0.021PPARG/FCER1G

GO:0032869 cellular response to insulin stimulus 0.034 0.021GRB10/PPARG/SOCS3

GO:0001960 negative regulation of cytokine-mediated signaling pathway 0.034 0.021IRAK3/PPARG

GO:0045824 negative regulation of innate immune response 0.035 0.022IRAK3/PPARG

GO:0043388 positive regulation of DNA binding 0.035 0.022MMP8/PPARG

GO:1900076 regulation of cellular response to insulin stimulus 0.035 0.022GRB10/SOCS3

GO:0034394 protein localization to cell surface 0.035 0.022FCER1G/CD177

GO:0046324 regulation of glucose import 0.035 0.022GRB10/HK2

GO:0060761 negative regulation of response to cytokine stimulus 0.035 0.022IRAK3/PPARG

GO:0045444 fat cell differentiation 0.037 0.023RETN/PPARG/SH3PXD2B

GO:0045600 positive regulation of fat cell differentiation 0.037 0.023PPARG/SH3PXD2B

GO:0031348 negative regulation of defense response 0.037 0.023IRAK3/PPARG/SOCS3

GO:0010324 membrane invagination 0.038 0.024PPARG/FCER1G

GO:0032418 lysosome localization 0.038 0.024ADGRE2/FCER1G

GO:0030595 leukocyte chemotaxis 0.039 0.025ADGRE2/FCER1G/C3AR1

GO:0046323 glucose import 0.042 0.026GRB10/HK2

GO:0006909 phagocytosis 0.047 0.030PPARG/MYO10/FCER1G

GO:0006801 superoxide metabolic process 0.048 0.031SH3PXD2B/CD177

GO:0038094 Fc-gamma receptor signaling pathway 0.048 0.031MYO10/FCER1G

GO:0050766 positive regulation of phagocytosis 0.048 0.031PPARG/FCER1G

GO:0010827 regulation of glucose transmembrane transport 0.049 0.031GRB10/HK2

GO:0045921 positive regulation of exocytosis 0.051 0.032FCER1G/CD177

GO:0034121 regulation of toll-like receptor signaling pathway 0.052 0.033IRAK3/TLR5

GO:0032760 positive regulation of tumor necrosis factor production 0.053 0.033MMP8/FCER1G

GO:0002758 innate immune response-activating signal transduction 0.053 0.033IRAK3/FCER1G/TLR5

GO:0051348 negative regulation of transferase activity 0.054 0.034IRAK3/PPARG/SOCS3

GO:1903557 positive regulation of tumor necrosis factor superfamily cytokine production 0.054 0.034MMP8/FCER1G

GO:0002703 regulation of leukocyte mediated immunity 0.054 0.034ADGRE2/FCER1G/CD177

GO:0002718 regulation of cytokine production involved in immune response 0.054 0.034IRAK3/FCER1G

GO:0002699 positive regulation of immune effector process 0.054 0.034ADGRE2/FCER1G/CD177

GO:0030100 regulation of endocytosis 0.054 0.034PPARG/FCER1G/CD177

GO:0022617 extracellular matrix disassembly 0.054 0.034MMP8/SH3PXD2B

GO:0032755 positive regulation of interleukin-6 production 0.056 0.036MMP8/FCER1G

GO:0002218 activation of innate immune response 0.057 0.036IRAK3/FCER1G/TLR5

GO:1990823 response to leukemia inhibitory factor 0.059 0.037HK2/SOCS3

GO:1990830 cellular response to leukemia inhibitory factor 0.059 0.037HK2/SOCS3

GO:0071375 cellular response to peptide hormone stimulus 0.064 0.040GRB10/PPARG/SOCS3

GO:0050764 regulation of phagocytosis 0.066 0.042PPARG/FCER1G

GO:0060326 cell chemotaxis 0.067 0.042ADGRE2/FCER1G/C3AR1

GO:0007229 integrin-mediated signaling pathway 0.069 0.043FCER1G/CD177

GO:0071496 cellular response to external stimulus 0.069 0.043PPARG/UPP1/TLR5

GO:0002367 cytokine production involved in immune response 0.069 0.044IRAK3/FCER1G

GO:1904659 glucose transmembrane transport 0.069 0.044GRB10/HK2

GO:0032103 positive regulation of response to external stimulus 0.069 0.044MMP8/FCER1G/C3AR1

GO:0030593 neutrophil chemotaxis 0.071 0.045FCER1G/C3AR1

GO:0007596 blood coagulation 0.072 0.046FCER1G/PLSCR1/CD177

GO:2000379 positive regulation of reactive oxygen species metabolic process 0.072 0.046MMP8/CD177

GO:0032963 collagen metabolic process 0.072 0.046MMP8/PPARG

GO:0002696 positive regulation of leukocyte activation 0.072 0.046MMP8/FCER1G/CD177

GO:0007599 hemostasis 0.072 0.046FCER1G/PLSCR1/CD177

GO:0050817 coagulation 0.072 0.046FCER1G/PLSCR1/CD177

GO:0008645 hexose transmembrane transport 0.072 0.046GRB10/HK2

GO:0015749 monosaccharide transmembrane transport 0.074 0.047GRB10/HK2

GO:0034219 carbohydrate transmembrane transport 0.075 0.048GRB10/HK2

GO:0050867 positive regulation of cell activation 0.075 0.048MMP8/FCER1G/CD177

GO:0032368 regulation of lipid transport 0.079 0.050RETN/PPARG

GO:1901653 cellular response to peptide 0.079 0.050GRB10/PPARG/SOCS3

GO:0045765 regulation of angiogenesis 0.083 0.052PPARG/HK2/C3AR1

GO:0038093 Fc receptor signaling pathway 0.083 0.052MYO10/FCER1G

Table S3. Complete list of gene enriched in different processes in MODS as compared to CT at base

line (0h).



GO Id Description p.adjust qvalue geneID

GO:0006342 chromatin silencing 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0060968 regulation of gene silencing 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0045814 negative regulation of gene expression, epigenetic 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0006334 nucleosome assembly 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0031497 chromatin assembly 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0061045 negative regulation of wound healing 0.00 0.00 APOH/APCS/FGG/FGB

GO:0007596 blood coagulation 0.00 0.00 APOH/FGG/FGB/SAA1/HIST2H3C/HIST2H3A

GO:0031639 plasminogen activation 0.00 0.00 APOH/FGG/FGB

GO:0034728 nucleosome organization 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0007599 hemostasis 0.00 0.00 APOH/FGG/FGB/SAA1/HIST2H3C/HIST2H3A

GO:0050817 coagulation 0.00 0.00 APOH/FGG/FGB/SAA1/HIST2H3C/HIST2H3A

GO:1903035 negative regulation of response to wounding 0.00 0.00 APOH/APCS/FGG/FGB

GO:0006333 chromatin assembly or disassembly 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0072378 blood coagulation, fibrin clot formation 0.00 0.00 APOH/FGG/FGB

GO:0042730 fibrinolysis 0.00 0.00 APOH/FGG/FGB

GO:0006323 DNA packaging 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0072376 protein activation cascade 0.00 0.00 APOH/APCS/FGG/FGB

GO:0000183 chromatin silencing at rDNA 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:0065004 protein-DNA complex assembly 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0002576 platelet degranulation 0.00 0.00 APOH/ALB/FGG/FGB

GO:0061041 regulation of wound healing 0.00 0.00 APOH/APCS/FGG/FGB

GO:0071103 DNA conformation change 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0030195 negative regulation of blood coagulation 0.00 0.00 APOH/FGG/FGB

GO:1900047 negative regulation of hemostasis 0.00 0.00 APOH/FGG/FGB

GO:0071824 protein-DNA complex subunit organization 0.00 0.00 HIST1H1B/H1F0/HIST2H3C/HIST2H3A/HIST1H4A

GO:0031638 zymogen activation 0.00 0.00 APOH/FGG/FGB

GO:0050819 negative regulation of coagulation 0.00 0.00 APOH/FGG/FGB

GO:1903034 regulation of response to wounding 0.00 0.00 APOH/APCS/FGG/FGB

GO:0032102 negative regulation of response to external stimulus 0.00 0.00 APOH/APCS/FGG/FGB/SAA1

GO:0030193 regulation of blood coagulation 0.00 0.00 APOH/FGG/FGB

GO:0045652 regulation of megakaryocyte differentiation 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:1900046 regulation of hemostasis 0.00 0.00 APOH/FGG/FGB

GO:0050818 regulation of coagulation 0.00 0.00 APOH/FGG/FGB

GO:0016584 nucleosome positioning 0.00 0.00 HIST1H1B/H1F0

GO:0060964 regulation of gene silencing by miRNA 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:0060147 regulation of posttranscriptional gene silencing 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:0060966 regulation of gene silencing by RNA 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:0030219 megakaryocyte differentiation 0.00 0.00 HIST2H3C/HIST2H3A/HIST1H4A

GO:0031936 negative regulation of chromatin silencing 0.00 0.00 HIST1H1B/H1F0

GO:0051004 regulation of lipoprotein lipase activity 0.01 0.00 APOH/APOC1

GO:0045637 regulation of myeloid cell differentiation 0.01 0.00 APCS/HIST2H3C/HIST2H3A/HIST1H4A

GO:0034375 high-density lipoprotein particle remodeling 0.01 0.00 APOC1/ALB

GO:0006898 receptor-mediated endocytosis 0.01 0.01 APOC1/ALB/SAA1/MRC1

GO:0031935 regulation of chromatin silencing 0.01 0.01 HIST1H1B/H1F0

GO:0034116 positive regulation of heterotypic cell-cell adhesion 0.01 0.01 FGG/FGB

GO:0038111 interleukin-7-mediated signaling pathway 0.01 0.01 HIST2H3C/HIST2H3A

GO:0045907 positive regulation of vasoconstriction 0.01 0.01 FGG/FGB

GO:0098760 response to interleukin-7 0.01 0.01 HIST2H3C/HIST2H3A

GO:0098761 cellular response to interleukin-7 0.01 0.01 HIST2H3C/HIST2H3A

Table S4. Complete list of gene enriched in different processes in ECMO as compared to

MODS at base line (0h).




