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 1 

Gene flow and selection interact to promote adaptive divergence in 1 

regions of low recombination 2 

 3 

Abstract   4 

Adaptation to new environments often occurs in the face of gene flow. Under these conditions, 5 

gene flow and recombination can impede adaptation by breaking down linkage disequilibrium 6 

between locally adapted alleles. Theory predicts that this decay can be halted or slowed if adaptive 7 

alleles are tightly linked in regions of low recombination, potentially favoring divergence and 8 

adaptive evolution in these regions over others. Here, we compiled a global genomic dataset of over 9 

1300 individual threespine stickleback from 52 populations and compared the tendency for adaptive 10 

alleles to occur in regions of low recombination between populations that diverged with or without 11 

gene flow. In support of theory, we found that adaptive alleles (FST and dXY outliers) tend to occur 12 

more often in regions of low recombination in populations where divergent selection and gene flow 13 

jointly occur. This result remained significant when we: employed different genomic window sizes; 14 

controlled for the effects of mutation rate and gene density; controlled for overall genetic 15 

differentiation; varied the genetic map used to estimate recombination and used a continuous (rather 16 

than discrete) measure of geographic distance as proxy for gene flow/shared ancestry. We argue that 17 

our study provides the first statistical evidence that gene flow per se shapes genomic patterns of 18 

differentiation by biasing where divergence occurs in the genome. 19 

 20 

Introduction 21 

 Understanding the genetic basis of adaptation is a fundamental goal of evolutionary biology. 22 

Yet, we still know little about the myriad interacting factors that determine the number, genomic 23 

location and effect size of loci underlying adaptive traits. Recent work suggests that interactions 24 

between two common evolutionary forces, natural selection and gene flow, may profoundly shape 25 

where adaptation occurs in the genome (Kirkpatrick & Barton 2006; Noor & Feder 2006; Yeaman & 26 

Whitlock 2011; Nachman & Payseur 2012; Aeschbacher et al. 2016). When divergent selection and 27 

gene flow co-occur (hereafter ‘DS-GF’), hybridization between migrant and local individuals breaks 28 

down positive linkage disequilibrium (LD) between sets of locally adapted alleles, impeding 29 

adaptation (Kirkpatrick & Barton 2006; Nachman & Payseur 2012; Sousa & Hey 2013). This decay 30 

of positive LD can be slowed if locally adapted alleles are tightly genetically linked, e.g. physically 31 
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close on the same chromosome, or occurring together in a region of low recombination (Rieseberg 32 

2001; Noor et al. 2001a; Navarro & Barton 2003; Yeaman & Whitlock 2011). Accordingly, theory 33 

predicts that DS-GF will drive a tendency for locally adapted alleles to be tightly linked in the 34 

genome, either by physical proximity or by co-localization in regions of low recombination (Yeaman 35 

& Whitlock 2011; Bürger & Akerman 2011; Aeschbacher et al. 2016).   36 

 Recent studies have offered mixed support for this prediction. Roesti et al. (2013) and 37 

Marques et al. (2016) both report that parapatric pairs of stickleback ecotypes exhibit elevated 38 

divergence in region of low recombination (suggesting that gene flow and selection may interact as 39 

predicted), while Renaut et al. (2013) and Burri et al. (2015) found no relationship between gene 40 

flow, selection and recombination in sunflowers and flycatchers respectively.  41 

 However, definitively testing the prediction that gene flow and selection interact to promote 42 

divergence in regions of low recombination requires a system in which we can carry out replicated 43 

comparisons of the genomic distribution of adaptive alleles between populations with and without 44 

gene flow, and populations with and without divergent selection. This has not yet been possible, as 45 

previous studies have focused on individual populations or several pairs of populations (Roesti et al. 46 

2013; Renaut et al. 2013; Marques et al. 2016).  It is also necessary to disentangle the effects of 47 

selection and gene flow from other processes that can generate clustering of adaptive alleles. For 48 

example, linked selection – hitchhiking and background selection – is widely known to cause 49 

clustering of diverged loci (e.g. a single adaptive allele and surrounding linked neutral alleles), an 50 

effect that is amplified in regions of low recombination even in the absence of gene flow 51 

(Charlesworth 2012; Cutter & Payseur 2013). In addition, recombination may itself be mutagenic, 52 

which would result in decreased rates of divergence in regions of low recombination (Hairston et al. 53 

2005; Nachman & Payseur 2012). Isolating the effects of these various processes has thus far proved 54 

challenging (Renaut et al. 2013; Burri et al. 2015). 55 

 To approach this problem, we assembled a large population genomic dataset of threespine 56 

sticklebacks (Gasterosteus aculeatus) from across the northern hemisphere (Figure S1, Table S1). 57 

Threespine sticklebacks are a holarctic species of fish that have evolved into a variety of unique 58 

forms over the last 10,000 years (McKinnon & Rundle 2002). Notably, the various forms of 59 

stickleback have evolved repeatedly in the presence and absence of gene flow (McKinnon & Rundle 60 

2002). This allows for statistical comparisons of the genomic distribution of adaptive alleles among 61 

groups of population pairs experiencing varying levels of divergent selection and gene flow. Here, 62 

we focused on comparing population pairs in which divergent selection occurs in the face of gene 63 
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flow to population pairs experiencing selection alone, gene flow alone, or neither. Using this 64 

approach, we tested the theoretical prediction that when divergent selection and gene flow co-occur, 65 

adaptive alleles are more likely to fix in regions of low recombination and/or occur in tightly linked 66 

clusters throughout the genome. 67 

 68 

Results 69 

Population genomic dataset 70 

We obtained DNA sequences from databases and generated new genomic data for 20 71 

populations. The combined dataset included genomic data from 1356 individuals from 52 unique 72 

populations, each belonging to one of seven described ecotypes: oceanic, lake, stream, benthic, 73 

limnetic, white, and Sea of Japan (Figure S1, Table S1).  The genomic data were a mixture of 74 

Restriction Amplified Digest (RAD), Genotyping-By-Sequencing (GBS), and whole genome re-75 

sequencing datasets. We used a single bioinformatics pipeline to standardize the identification of 76 

single nucleotide polymorphisms (SNPs) across all study populations (see Methods). Using a variety 77 

of criteria (see Methods), we classified each pair of populations into four discrete “evolutionary 78 

regimes”: divergent selection with gene flow (DS-GF), divergence selection in allopatry (DS-Allo), 79 

parallel selection with gene flow (PS-GF), and parallel selection in allopatry (PS-Allo). 80 

 81 

Localizing candidates for adaptive divergence 82 

 In accordance with previous work, we found a general pattern of divergence being higher in 83 

regions of low recombination (Figure 1). We identified adaptively differentiated regions of the 84 

genome by separately locating SNPs and 75 kilobase pair windows that exhibited unusually high 85 

levels of genetic divergence in each pair-wise comparison. For all loci (SNPs or windows), we used 86 

two metrics of divergence: FST and dXY, each analyzed independently. We considered loci with 87 

divergence scores larger than the 95th percentile of the total distribution to be putatively adaptive 88 

loci. While other forces may have caused divergence at these loci, loci subject to divergent selection 89 

should be enriched in this set (Narum & Hess 2011). For convenience, we refer to these hereafter as 90 

‘outlier SNPs’ and ‘outlier windows’. For each window, we also estimated mutation rates using a 91 

phylogenetic approach, and obtained estimates of gene density for each window from the 92 

ENSEMBL database. 93 

 94 

Divergence in regions of low recombination 95 
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 For each pairwise comparison we used logistic regression to fit outlier status of windows 96 

(outlier vs. non-outlier) to their estimated rates of recombination, while controlling for mutation rate 97 

and gene density. The slopes of these regressions were then compared among the four gene 98 

flow/selection regimes using a permutation test (see Methods) 99 

  In agreement with previous work (Noor & Bennett 2009; Roesti et al. 2013; Renaut et al. 2013; 100 

Marques et al. 2016), we found that FST outlier windows occurred most often in regions of low 101 

recombination, even between allopatric populations and between populations inhabiting similar 102 

environments (Figure 2). However, as predicted, this tendency was significantly more extreme in 103 

DS-GF comparisons compared to other evolutionary regimes (Figure 2; Figure S2, permutation test 104 

on difference in correlation coefficients between regimes: two-sided p = 0.0002). The result 105 

remained significant after re-analysis using a window size of 150kb (permutation test, p < 0.0002) 106 

and when recombination rates were estimated using a genetic map derived from North American 107 

stickleback populations (Glazer et al. 2015; permutation test, p < 0.0024). 108 

 dXY outliers also showed a tendency (albeit non-significant) to occur most often in regions of 109 

low recombination (Figure S2; permutation test: two-sided p = 0.475).  That said, our estimates of 110 

dXY from GBS/RAD dataset had considerable levels of noise, likely due to low marker density in the 111 

75kb windows. We thus repeated the dXY analysis, but restricted the analysis to whole genome 112 

datasets (see Methods). Using this reduced dataset and 75 kb windows, we found that the 113 

relationship between dXY (both outlier status and mean dXY) and recombination was negative in DS-114 

GF comparison and positive in DS-Allo comparisons (Figure 3). This difference in slopes between 115 

regimes was highly significant (likelihood ratio test: χ22 = 28.85, p = 5.41×10-5).  Thus, DS-GF 116 

comparisons exhibited unusually high levels of both relative and absolute divergence in regions of 117 

low recombination. 118 

 119 

Ruling out potential sources of bias 120 

Discretization of geographic distance  121 

The use of a continuous measure of geographic distance led to qualitatively similar results for both 122 

FST and dXY (Figure S5). The tendency for outliers of any type to occur in regions of low 123 

recombination was inversely correlated with geographic distance, but only when populations 124 

exhibited divergent adaptation (Figure S5; permutation test on differences in divergent vs. parallel 125 

slopes: two-sided p = 0.0002).  126 

 127 
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Differences in genome-wide FST 128 

Previous studies have reported that the relationship between divergence and recombination might 129 

scale with genome-wide divergence (Lowry et al. 2008; Burri et al. 2015). However, we found that the 130 

tendency for FST outlier windows to occur in regions of low-recombination was negatively associated 131 

with genome-wide FST (Figure 4, permutation test on correlation, two-sided p = 0.0001). This 132 

suggests that the correlation between geography (as a proxy for gene flow) and FST in our dataset 133 

likely biased our results in the opposite direction of our findings: as a regime, DS-GF had the greatest 134 

number of low-FST comparisons (Figure 4, red points). Further, we found that if we restricted our 135 

analyses in Figure 2 to comparisons in which genome-wide FST is in the range shared across all 136 

regimes (0.185 – 0.675), the tendency for DS-GF comparisons to exhibit more FST outliers in 137 

regions of low recombination remained significant (Figure S4, permutation test: two-sided p = 138 

0.0002). Moreover, when analysed in a similar fashion, the enrichment of dXY outliers in regions of 139 

low recombination in DS-GF populations was also significant (Figure S4, permutation test: two-140 

sided p = 0.0002). 141 

 142 

Differences in heterozygosity vs. recombination among regimes 143 

Intra-population heterozygosity (HS) was generally lower in regions of low recombination (as 144 

expected from linked selection in general), but DS-GF comparisons did not exhibit unusually low 145 

levels of heterozygosity these regions (Figure S2; permutation test: two-sided p = 0.755). This 146 

suggests that the tendency for outliers to occur more often in regions of low recombination in DS-147 

GF comparisons is not an artifact of reduced diversity in those specific comparisons.  148 

 149 

Clustering of outlier SNPs 150 

  In addition to our windowed analyses, we performed a separate analysis to test if individual 151 

outlier SNPs from DS-GF comparisons were more clustered than outlier SNPs in other regimes. To 152 

do this, we calculated (a) the nearest neighbor distance in centimorgans (cM) between outlier SNPs 153 

relative to nearest neighbor distance between all SNPs; and (b) the coefficient of variation of genetic 154 

distances (in cM) between outlier SNPs. Importantly, these clustering metrics control for variation in 155 

SNP density among genomic regions, and thus are not biased by differences in sequencing coverage.  156 

 DS-GF population pairs showed more clustering of FST outlier SNPs than population pairs in 157 

other gene flow/selection regimes (Figure S4). Specifically, DS-GF outlier SNPs were on average 158 

approximately one standard deviation closer together in map distance than expected on the basis of 159 
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overall SNP density (Figure S4, permutation test: two-sided p < 0.0001). Coefficients of variation 160 

for the distance between FST outlier SNPs showed similar results (Figure S4, permutation test: two-161 

sided p < 0.0001), again indicating the highest levels of clustering in DS-GF comparisons.  162 

 163 

Discussion 164 

 The role of gene flow in shaping the course of evolution remains a key topic in modern 165 

evolutionary genetics. Here, we found that in stickleback populations experiencing divergent 166 

selection in the face of gene flow (DS-GF), signatures of adaptation are unusually frequent in 167 

regions of low recombination. This finding is consistent with theory predicting that maladaptive 168 

gene flow favors genetic clustering of adaptive alleles (Yeaman & Whitlock 2011; Bürger & 169 

Akerman 2011; Aeschbacher et al. 2016).  170 

 This finding has several key implications for our understanding of the genetics of adaptation. 171 

First, we provide key support for theoretical predictions (Navarro & Barton 2003; Yeaman & 172 

Whitlock 2011; Nachman & Payseur 2012; Aeschbacher et al. 2016) that DS-GF should exhibit 173 

unique patterns of genomic divergence. Testing these predictions has been a major challenge, 174 

because it is difficult to control for, or rule out the effects of other evolutionary processes – 175 

divergent selection per se being the most important (see below). Given that gene flow and selection 176 

often co-occur in nature, and our results imply that the relative strengths of these processes are likely 177 

an important determinate of the genomic architecture of adaptation in general (Schluter & Rambaut 178 

1996; Nosil et al. 2009; Feder et al. 2012). Secondly, our results suggest that by constraining where 179 

divergence can occur, gene flow may cause the “usable area” of the genome to become effectively 180 

smaller. This may represent a general constraint on adaptation, and could be an important 181 

contribution to our ability to explain and predict where adaptation occurs in the genome. Another 182 

key implication of this constraint is that by limiting the useable areas of the genome, gene flow may 183 

indirectly increase the probability that the same loci will be reused during phenotypic evolution in 184 

general. Thus, we might predict that pairs of DS-GF populations (perhaps even ones where selective 185 

pressures are different) should display unusual levels of concordance in the loci involved in 186 

divergence, and that these loci will occur in regions of low recombination. Interestingly, many QTLs 187 

involved in parallel adaptation in sticklebacks localize to regions of low recombination in the 188 

genome (Noor et al. 2001b; Peichel & Marques 2017)  189 

 Note that the analyses presented here were not designed to detect changes in genome 190 

structure or the modification of recombination rate among populations. We assume that 191 
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recombination rates are highly conserved between threespine stickleback populations. This is likely a 192 

reasonable assumption given that (a) recombination maps are highly similar among threespine 193 

stickleback populations from Europe and the United States (Roesti et al. 2013; Glazer et al. 2015) and 194 

(b) homologous chromosomes in the distantly-related ninespine stickleback show very similar 195 

patterns of recombination (Rastas et al. 2016). While modification of recombination can be 196 

important in some systems, our results pertain to the (likely far more common) scenario in which 197 

many loci with potentially varying linkage relationships underlie adaptation and DS-GF favors 198 

genetic architectures in which adaptive alleles are tightly linked over other architectures (Yeaman & 199 

Whitlock 2011). Future studies could extend our framework to study how gene flow shapes the 200 

evolution of recombination rate and genome structure. 201 

 202 

The costs of low recombination 203 

 By definition, loci in regions of low recombination have increased physical linkage to all 204 

nearby loci. We have argued this linkage can facilitate the formation of clusters of adaptive alleles, 205 

which are more likely to persist in the face of gene flow. However, low recombination also makes it 206 

more difficult to (a) establish LD between adaptive alleles that arise on different backgrounds and 207 

(b) break down LD among adaptive alleles and deleterious alleles that happen to arise nearby (the 208 

Hill-Robertson effect, (Barton 2010). What then, is happening in the case of DS-GF populations? 209 

One possibility is that recombination is still sufficiently common in regions of low recombination to 210 

mitigate Hill-Robertson effects. This would imply that the extent of adaptation in regions of low 211 

recombination is a complex balance between selection, migration, recombination and the rate of 212 

deleterious mutation (Yeaman & Whitlock 2011; Bürger & Akerman 2011; Marques et al. 2016). 213 

Another possibility is that the cumulative selective effects of a block of linked adaptive alleles are 214 

large enough to negate all but the strongest deleterious mutations. This latter scenario would imply 215 

that the (putatively adaptive) clusters of linked alleles are gradually accumulating weakly deleterious 216 

alleles, and thus may eventually decay (Kirkpatrick 2016). 217 

 218 

Heterogenous genomic divergence 219 

 Our findings also suggest that the patterns of heterogenous genomic divergence observed in 220 

many speciation studies (Marko & Hart 2011; Feder et al. 2012) may be partly a product of the 221 

interaction between gene flow and selection. Explaining this phenomenon has become a major 222 

question in speciation genetics, and many recent studies have shown that patterns of heterogenous 223 
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divergence in the genome are correlated with recombination rate (Roesti et al. 2013; Renaut et al. 224 

2013; Burri et al. 2015). The association between diversity, divergence and recombination is widely 225 

thought to be the result of linked selection, i.e. background selection and hitchhiking (Charlesworth 226 

2012). Our results suggest that there is a general negative association between recombination rate 227 

and both diversity and divergence (probably generated by background selection) and this 228 

relationship can be further shaped by the effects of selection (hitchhiking) and gene flow (decay of 229 

divergence in regions of high recombination and/or favoring linkage between adaptive alleles).  230 

 Interestingly, previous work (Renaut et al. 2013; Burri et al. 2015) found no relationship 231 

between gene flow and patterns of genomic divergence. One reason for this may simply be power: 232 

our dataset had many individuals and populations, and included pairs of populations across the 233 

speciation continuum (in terms of magnitude and time of divergence, geography and type of 234 

selection). In the case of Burri et al. (2015), there also appears to be limited amounts of actual 235 

introgression between flycatcher populations (although hybridization occurs), weakening any 236 

potential pattern. Another possible explanation is that statistically detectable clustered genetic 237 

architectures may require long temporal scales and/or recurrent bouts of gene flow to develop. 238 

Although most stickleback populations are less than 10 000 years old, the stickleback 239 

metapopulation has repeatedly cycled between adapting to freshwater environments during 240 

interglacial periods, followed by extinction of these populations during glacial periods (Taylor & 241 

McPhail 2000; Hendry et al. 2009). However, gene flow between freshwater and marine populations 242 

has likely allowed ancient freshwater haplotypes to persist in marine populations throughout this 243 

process (Schluter & Conte 2009). This recurrent process coupled with large effective population 244 

sizes of marine stickleback may have increased the opportunity for clustered sets of co-selected 245 

alleles to arise and persist. 246 

  247 

The effect of divergent selection 248 

 Divergent selection alone is predicted to generate a correlation between recombination rate 249 

and genomic divergence across the genome (Barton 2010). This effect is particularly apparent in 250 

reduced representation datasets, such as the RAD and GBS datasets we analyzed here (Lowry et al. 251 

2016). Our data support this prediction: all “divergent selection” comparisons (DS-GF and DS-Allo) 252 

show increased divergence in regions of low recombination (e.g. Figure 2B, red and yellow lines). 253 

However, the divergence-recombination correlation is significantly more negative in DS-GF 254 

populations, which we interpret as a unique joint effect of gene flow and divergent selection. Note 255 
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that this pattern held when the analysis was restricted to whole-genome data (Figure 3), suggesting 256 

that low marker density is not the sole source of the low-recombination bias (although undoubtedly 257 

a contributor). Interestingly, gene flow alone (e.g. parallel selection + gene flow, blue lines in Figures 258 

2 and 4) appears to not be sufficient to generate a bias for divergence in regions of low 259 

recombination.  260 

 A potential alternate explanation for the increase in outlier density in regions of low 261 

recombination in DS-GF comparisons is that maladaptive gene flow per se increases the strength of 262 

divergent selection (Lenormand 2002). Stronger selection magnifies the scale of linked selection (i.e. 263 

the number of loci influenced), and this in turn could increase the negative correlation between 264 

recombination and divergence (Barton 2010). We cannot completely rule out this alternative. 265 

However, several facts suggest that variation in the strength of selection is not the sole explanation 266 

for our results. For one, the increased clustering of divergence in regions of low recombination we 267 

observe is partly generated by a deficit of highly-diverged loci in regions of high recombination (e.g. 268 

high recombination regions in Figure 2A). Stronger selection per se should not result in fewer 269 

divergent loci in regions of high recombination (Barton 2010; Cutter & Payseur 2013). Gene flow, 270 

on the other hand, is predicted to cause such a deficit, particularly when divergent selection is also 271 

acting (Yeaman & Whitlock 2011; Aeschbacher et al. 2016). Secondly, because we took an “all-272 

pairwise” approach for our FST analyses, populations experiencing unusually strong directional 273 

selection are also included in DS-Allopatry comparisons. Thus, any population-specific effects were 274 

balanced between comparisons of regimes. Finally, it should be noted that the connection between 275 

gene flow and the strength of selection is by no means well characterized – indeed under some 276 

circumstances, gene flow may actually decrease the strength of divergent selection (Rolshausen et al. 277 

2015).  278 

 279 

Caveats 280 

The main strength of the approach we applied here was that it allowed for replication within each 281 

gene-flow/selection regime, which is necessary for examining statistical differences between regimes 282 

in their recombination bias. However, the number of comparisons involved (1000+) also created 283 

serious computational bottlenecks, which precluded using more sophisticated methods for detecting 284 

natural selection and gene flow (Aeschbacher et al. 2016). Further, we do not have detailed 285 

knowledge of the demographic history and historical rates of introgression between any of the 286 

populations studied here. Both of these factors are known to affect patterns of divergence, and can 287 
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potentially alter the relationship between divergence and recombination (Tine et al. 2014). It is 288 

possible that the more extreme recombination vs. divergence bias we observed in DS-GF 289 

populations was a result of an unusual demographic or introgression history that was somehow 290 

confounded with the contemporary “DS-GF” classification. For example, these comparisons may be 291 

enriched for populations that have experienced a period of allopatry, followed by the resumption of 292 

gene flow (secondary contact). However, this would still imply that divergent selection and gene 293 

flow interact to generate a low-recombination bias, as loci not involved in divergent selection should 294 

still flow freely between populations. Thus, while the mechanistic details behind the patterns we 295 

describe here are still unclear, we hope our study stimulates further studies of the relationship 296 

between gene flow, selection and recombination in shaping patterns of divergence. 297 
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Methods 319 

 320 

Github Repository 321 

The code used to generate our dataset and perform the analyses described here is available on 322 

Github at https://github.com/ksamuk/gene_flow_linkage. Additional raw data is also hosted on 323 

Dryad (Dryad accession, to be made available). All scripts were written in Perl or R 3.2.2 (Team 324 

2015). 325 

 326 

Data Sources 327 

The stickleback population genomic datasets used in this study came from two sources: 328 

online databases, and new data from two of the authors. During the period from May to July 2014, 329 

we periodically searched the Short Read Archive (SRA), the European Nucleotide Archive (ENA) 330 

and the Databank of Japan Sequence Read Archive (DRA) for “threespined/three-331 

spined/threespine/three-spine stickleback”, “stickleback”, “Gasterosteous aculeatus”. We also 332 

searched for stickleback population genetic studies on Google Scholar using the same terms as 333 

above, with the inclusion of “genomic”, “genome scan”, “population genetic”, and “genetics”, and 334 

examined them for SRA/ENA/DRA accession numbers. Detail information for all the populations 335 

included in the study is shown in Table S1 (Hohenlohe et al. 2010; Roesti et al. 2012; Catchen et al. 336 

2013; Yoshida et al. 2014; Chain et al. 2014; Feulner et al. 2015). 337 

In addition to previously published data, we prepared three new datasets from 338 

benthic/limnetic, freshwater lake, and white/marine populations from various locations in Canada. 339 

The libraries for these datasets were prepared using a mix of Genotyping-by-Sequencing method of 340 

(Elshire et al. 2011) and whole-genome genomic DNA (TruSeq DNA PCR-Free Library Preparation 341 

Kit, Illumina, California). The collection locations and sequencing methods are listed in Table S1. 342 

The resultant GBS libraries were sequenced at the University of British Columbia Biodiversity 343 

Sequencing Centre, and the whole-genome libraries were sent for sequencing at Genome Quebec. 344 

Sequencing was performed on an Illumina Hi-Seq 2000 at both facilities. These datasets are available 345 

on the SRA (accessions # to be made available). 346 

 347 

Variant identification and processing 348 

We identified variants using a standard, reference-based bioinformatics pipeline (see Github 349 

code repository for details). After demultiplexing, we used Trimmomatic v0.32 (Bolger et al. 2014) to 350 
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filter low quality sequences and adapter contamination. We then aligned reads to the stickleback 351 

reference genome (BROAD S1, (Jones et al. 2012) using BWA v0.7.10 (Li & Durbin 2010), followed 352 

by realignment with STAMPY v1.0.23 (Lunter & Goodson 2011). We then followed the GATK 353 

v3.3.0 (Cachat et al. 2010) best practices workflow except that we skipped the MarkDuplicates step 354 

when reads were derived from reduced representation libraries (RAD and GBS). We realigned reads 355 

around indels using RealignTargetCreator, and IndelRealigner, identified variants in individuals using 356 

the HaplotypeCaller, and each dataset using GenotypeGVCFs. The results were sent to a VCF file 357 

containing all variant and invariant sites and converted to tabular format. All datasets were 358 

combined for processing. 359 

 360 

Calculation of divergence metrics 361 

Our final dataset included individuals from 56 unique populations. As there was no a priori 362 

reason to select only a subset pairs of populations in the analysis, we instead performed all possible 363 

pairwise comparisons. We employ an unbiased significance testing method to overcome redundant 364 

use of populations in multiple pairs (see permutation test).  365 

For each of the 1128 pairwise comparisons, we calculated two divergence metrics: Weir and 366 

Cockerham’s FST (Weir & Cockerham 1984)and Nei’s dXY (Nei 1987) . We calculated FST at two 367 

scales: first, at each individual shared SNP; and second, averaged across 75 kilobase pair (kbp) 368 

windows. For all SNPs, we required: a minor allele frequency of at least 0.05, coverage in at least 5 369 

individuals per population. For windowed analysis, we required that windows contain at least 3 370 

variable sites genotyped in at least 5 individuals per population. The distribution of total sequenced 371 

and total variable sites for all the comparisons is shown in Figure S10. 372 

Window-averaged FST values were calculated by dividing the sum of the numerators of all 373 

SNP-wise FST estimates within a given window by the sum of their denominators. We calculated dXY 374 

in 75-kbp windows, including all shared variant and invariant sites in the window. We required dXY 375 

windows to contain more than 500 shared sequenced sites (i.e. nucleotides with a genotype call in 376 

both populations), because we found that the variance in dXY greatly increases below this threshold. 377 

After calculating FST or dXY, we classified SNPs and windows exhibiting extreme values as ‘outliers’, 378 

defined as those in the 95th percentile or higher of FST or dXY. Note, only dXY window ‘outliers’ were 379 

used because individual site dXY scores are uninformative. All calculations were performed using 380 

custom Perl and R scripts (see code repository).  381 

 382 
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Classification of Populations 383 

For populations with multiple individuals (48 of the 56), we classified all pair-wise 384 

comparisons between our 48 populations (n = 1128 comparisons) along two axes: ecology and gene 385 

flow. We scored populations as ecologically “divergent” or “parallel” based on whether they (a) 386 

inhabited different ecosystems or ecological niches and/or (b) had been directly identified by 387 

previous authors as ecologically divergent (Figure S1, see Table S1 for details). The correlation 388 

between divergent selection and ecology in stickleback is extremely well-supported (Schluter 1993; 389 

McKinnon & Rundle 2002; Hendry et al. 2009) and while the strength of divergent selection may 390 

vary among comparisons, we believe this is a reasonable proxy. 391 

Secondly, we scored whether there has been opportunity for gene flow between populations 392 

(“gene flow” / “allopatry”), based on geographic distance and barriers. This is a common 393 

assumption in comparative studies, and there is strong empirical evidence that this is a reasonable 394 

assumption for threespine sticklebacks. Extensive previous work suggests that nearby stickleback 395 

populations often interbreed (Hendry et al. 2009; Marques et al. 2016). This interbreeding leads to 396 

gene flow, as complete reproductive isolation is extremely rare among stickleback populations 397 

(McKinnon & Rundle 2002; Hendry et al. 2009). Indeed, even the most highly differentiated 398 

populations (e.g. benthic to limnetic) experience ongoing gene flow (Gow et al. 2006). In some cases, 399 

gene flow between nearby populations becomes opposed by divergent selection, limiting the number 400 

of loci affected by gene flow, although still allowing substantial gene flow in much of the genome 401 

(Roesti et al. 2012; Jones et al. 2012). Thus, the use of geographic isolation as a proxy for the 402 

opportunity (past or present) for gene flow is likely highly reasonable for this species. 403 

We thus considered any populations within 500km of one another as having the potential 404 

for gene flow. We calculated geographic distance (great circle distance) between all pairs of 405 

populations using the function “earth.dist” from the R package fossil (Vavrek 2011). Note that this 406 

classifier is conservative, as it likely causes populations that are largely allopatric (DS-Allopatry) to be 407 

classified as DS-GF, decreasing the power to detect a difference between regimes. 408 

Note that for both classification schemes, we are not assuming a perfect, discrete mapping 409 

of selection and gene flow onto individual populations. We only assume that when considered 410 

together, populations in each category will tend to exhibit greater (or less) gene flow and/or 411 

divergent selection. In total, our classification scheme resulted in the following number of 412 

comparisons: 130 divergent selection with gene flow, 31 parallel selection with gene flow, 113 413 

parallel selection with gene flow, and 821 divergent selection in allopatry. 414 
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 415 

Addition of Genomic Variables 416 

We measured three genomic variables in each 75-kbp window in the divergence dataset with: 417 

recombination rate, mutation rate and gene density. Recombination rates (cM/MB) were obtained 418 

from a previously published high-density genetic map (Roesti et al. 2013). Where windows 419 

overlapped regions with different estimates of recombination rate, we assigned them an average of 420 

the two rates weighted by the degree of overlap. 421 

We obtained estimates of mutation rate by estimating the synonymous substitution rate (dS) 422 

in a phylogenetic framework. For neutral sites, dS is an estimator of the primary mutation 423 

rate(Wielgoss et al. 2011) . To do this, we used the R (version 3.2.2) package biomaRt to obtain a list 424 

of all annotated G. aculeatus coding DNA sequences (CDS) from ENSEMBL. For each G. aculeatus 425 

CDS, we queried ENSEMBL for all homologous CDS from three other fish species: Xiphophorous 426 

maculatus, Poecilia formosa, and Oreochromis niloticus. These species all have identical estimated 427 

divergence times from G. aculeatus (150 MYR). We aligned each set of homologous coding sequences 428 

using PRANK (Löytynoja & Goldman 2008) and analyzed the output using PAML (Branch model 429 

2) to estimate dS trees. We excluded trees with fewer than three species, in order to ensure that 430 

lineage-specific artefacts did not bias dS estimates. We also excluded any individual branches where 431 

dS exceeded 5 standard deviations of the distribution of the dS values from all branches of every tree 432 

(values exceeding this threshold were categorically the result of bad alignments). After filtering dS 433 

trees, we used the R package ape (Paradis et al. 2004) to calculate the mean pairwise branch distance 434 

between G. aculeatus and each other species in the tree. Because the other three species all have 435 

identical divergence times from G. aculeatus, this results in a single normalized value of dS for each 436 

coding sequence. After obtaining all the mutation rate estimates, we assigned them to 75 kbp 437 

windows in the divergence datasets by averaging the dS estimates for genes in each window (if any), 438 

weighted by the degree of overlap for each gene.  439 

Estimates of gene density (number of genes overlapping the window) were calculated by 440 

querying ENSEMBL (Kautt et al. 2012) for the physical position of all genes in the stickleback 441 

genome using biomaRt (Yang 2007). We then wrote a custom R script (see Github repository) to 442 

count the number of genes in each 75-kbp window along the reference genome. 443 

 444 

Tendency for adaptive divergence in regions of low recombination 445 
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To quantify the tendency for outliers to occur in regions of low recombination in each 446 

comparison, we employed a linear modeling approach. Using the 75-kbp windows as data points, we 447 

fit a logistic regression model to each comparison dataset using the following form: Outlier status = 448 

Recombination rate + mutation rate + gene density, where outlier status is 1 if a window is an 449 

outlier (>95th percentile) and 0 otherwise. We performed separate model fits for FST and dXY outliers. 450 

We also fit models of the same type using mean intra-population heterozygosity (HS) as the response 451 

variable in order to assess its role in driving any patterns of increased divergence. 452 

We fit these models in R (version 3.2.2) using the generalized linear model function “glm”. 453 

Prior to model fitting, we filtered out pairwise population comparisons with fewer than 100 75-kbp 454 

windows represented to ensure convergence of the linear models. To assess statistical significance of 455 

the model fits, we extracted the regression coefficient for the recombination rate term from each 456 

model, representing the slope of the relationship between outlier occurrence and recombination rate. 457 

The steepness of the slope coefficients estimates the tendency for outliers to occur in regions of low 458 

recombination, controlling for the effects of mutation rate and gene density.  459 

 460 

Permutation tests 461 

To test the hypothesis that adaptation with gene flow favors divergence in regions of low 462 

recombination, we employed a permutation test to assess whether the slopes from the models 463 

described above differed significantly between populations differing in divergent selection and gene 464 

flow. To do this, we randomly shuffled regime assignments of all the populations and estimated the 465 

mean low recombination outlier tendency (the grouped mean of the regression coefficients from 466 

above) for each regime in 10,000 permutations. This generated a null distribution of mean slopes for 467 

each regime, accounting for sample size differences between categories (Figure S2). We then 468 

calculated a two-sided P value for each empirical mean by the computing the fraction of samples in 469 

the null distribution greater than the observed value and multiplying by two. Note this method of 470 

analysis also employed elsewhere throughout the paper (referred to as “permutation test” wherever 471 

it was applied). 472 

 473 

Clustering vs. geographic distance and overall divergence 474 

To ensure our results were not influenced by our discrete geographic categorization scheme, 475 

we examined how the tendency for FST outliers to occur in regions of low-recombination varied with 476 

pairwise geographic distance. To do this, we regressed the low recombination outlier tendency 477 
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(regression coefficients from above) on geographic distance between populations using the R 478 

function “lm”. The linear model was of the form recombination bias = distance + ecology + 479 

distance * ecology (interaction). We then assessed significance of the model terms using a 480 

permutation test similar to the one previously described (see code supplement) 481 

The results of (Burri et al. 2015) and (Roesti et al. 2013) suggest that the tendency for FST 482 

outliers to occur in regions of low recombination may be highest at intermediate levels of overall 483 

genetic divergence  484 

(FST = 0.3-0.5). Overall FST thus represents a potential source of bias, as our use of geographic 485 

distance as a proxy for gene flow is naturally confounded with overall FST – with isolation by 486 

distance, more distant populations will have higher divergence, all else being equal. To test if this 487 

may have influenced our results, we examined the correlation between low-recombination clustering 488 

tendency and overall FST. To obtain overall FST estimates between each pair of populations, we 489 

divided the sum of the numerator terms by the sum of the denominator terms of all locus-specific 490 

FST values for each pair (Weir & Cockerham 1984). This yielded a single average FST value for each 491 

pair of populations. We then employed the same approach as the analysis of distance, with a linear 492 

model the form recombination bias = FST + ecology + FST * ecology (interaction). We assess the 493 

significance of this difference again via permutation test (see code supplement). 494 

 495 

Increased clustering of outlier SNPs 496 

To test the hypothesis that adaptation with gene flow favors clustering (reduced genetic map 497 

distance) between outlier SNPs, we used two metrics of clustering: nearest neighbor map distance 498 

between outliers (NND) and the coefficient of variation in map distance between consecutive 499 

outliers. Both of these metrics were calculated using the SNP-level data.  500 

We first asked: do map distances between nearest-neighbour outlier loci differ significantly 501 

from the expected map distances of identical numbers of nearest-neighbour SNPs? This approach 502 

was designed to account for disparities in SNP density that might occur due to differences in 503 

sequencing outcomes between our various datasets. To do this, we first partitioned each SNP data 504 

set by chromosome. Then, for each chromosome we identified the number of outlier loci using the 505 

previously described method. We then drew 10,000 samples of random SNPs from each 506 

chromosome equal to the number of outliers on that chromosome, and calculated the mean map 507 

distance between each SNP and its nearest neighbor in the random sample. We then compared the 508 

empirical mean nearest neighbor map distance of outliers to this null distribution for each 509 
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chromosome within each individual comparison dataset. We then used permutation tests to 510 

compare (a) the proportion of chromosomes that were significantly over-clustered and (b) the 511 

difference between the average NND between outliers and the average NND expected between 512 

SNPs, in units of standard deviations, between the four selection and gene flow regimes. 513 

In addition to the re-sampled approach, we also computed a coefficient of variation: the 514 

ratio of the standard deviation in map distances between consecutive SNP on the chromosome 515 

divided by the mean distance. Values exceeding one are indicative of over-dispersion (clustering), 516 

whereas values below one suggest under-dispersion (uniformity of distances). We calculated the 517 

coefficient of variation for outliers on each chromosome, and computed the mean for all 518 

chromosomes containing outliers for each comparison. We then used a permutation test (as 519 

described above) to compare the means of this quantity among gene flow/selection regimes. 520 

 521 

Whole genome data collection 522 

 We obtained whole-genome sequences from single individuals from a total of nine stickleback 523 

populations. One of these is the reference genome, derived from a marine-like individual from Bear 524 

Paw Lake, Alaska (Jones et al. 2012). Four were individuals collected from two pairs of populations 525 

that have diverged into benthic and limnetic ecotypes from Paxton and Priest Lake on Texada Island 526 

in BC, Canada. These two pairs of populations (one limnetic and one benthic in each lake) have 527 

diverged from each other in the face of gene flow (Taylor & McPhail 2000), making them “DS-GF” 528 

populations in our classification scheme. The remaining five were collected from freshwater lakes 529 

with a single, non-diverged stickleback population – Hoggan, Bullock, Trout, Cranby and Stowell 530 

lakes (Miller). These latter populations diverged from the marine ancestor in allopatry – i.e. they are 531 

“DS-Allopatry” populations in our scheme. DNA from these individuals was extracted via phenol-532 

chloroform extraction, and whole-genome library preparation carried out using Nextera DNA 533 

Library Prep Kits (Illumina Inc.). All populations were sequenced on an Illumina HiSeq 2000 in the 534 

University of British Columbia Biodiversity Sequencing Facility. 535 

 536 

Whole genome dXY calculation and analysis 537 

 We used the GATK best practices workflow described above to call variants on the eight 538 

populations above (not including the reference). We emitted VCF files containing all variant and 539 

invariant sites for each population. We then computed dXY in 75,000 base pair windows using the 540 

method described previously (see “Calculation of Divergence Metrics” above; code available in 541 



 18 

repository). For the two pairs of DS-GF populations (Paxton and Priest), we computed dXY between 542 

sympatric populations within each lake. For the remaining DS-Allopatry populations, we computed 543 

dXY between each population and a marine population (Bear Paw Lake, i.e. the reference genome). 544 

We allowed for missing sites, and for windows with no variable sites. Prior to analysis, we inspected 545 

relationships between the number of genotyped sites in each window and dXY. We found that the 546 

variance in dXY was highly inflated in windows containing fewer than 7500 genotyped sites (variant 547 

and invariant). We thus excluded all windows with less than 7500 sites (out of 75,000) from the 548 

analysis. As before, we classified windows with dxy values exceeding the 95th percentile as “outlier 549 

windows”. 550 

 We used a generalized linear mixed model (GLMM) to test if the relationship between dXY 551 

outlier status (0,1) and recombination differed between DS-GF pairs and DS-Allo pairs. We used the 552 

function “glmer” in the R package lme4 (Bates et al. 2015) fit a GLMM of the following form: dXY 553 

outlier status = recombination rate + regime + comparison (random effect). Outlier status was a 554 

binary variable, and we thus used a binomial error function (i.e. a logistic regression). We then refit 555 

the model, but included an interaction term: recombination rate × regime. We then compared the fit 556 

of the latter model to the simpler model using a likelihood ratio test, implemented via the R function 557 

“anova”. 558 

 559 

 560 

 561 
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Figure 1 | Representative plots of genome-wide FST between single pairs of populations from four gene-flow and selection regimes. Each 
coloured line represents a loess smooth of FST vs. chromosomal position for a single chromosome (numbered along bottom). Raw FST (calculated in 
75000 base-pair windows) is depicted in grey behind each smoothed line. Line color corresponds to gene flow and selection regime (labeled on the right 
side of the plot). Below the main plots, recombination rate estimates from Roesti et al. (2013) (black lines) are shown for each chromosome. Population 
pairs were chosen on the basis of similarity in overall FST and coverage of genomic data. Detailed additional statistics (diversity, dxy, dS, etc.) for each 
representative comparison are provided in supplemental figures S6-S9.
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Figure 2 | Patterns of low recombination bias among the four gene flow and selection 
regimes. (a) Representative logistic regressions of outlier status against recombination rate. Each 
panel corresponds to a population shown in Figure 1. Regressions are corrected for variation in 
mutation rate and gene density. (b) Individual logistic regression coefficients for all pairwise 
comparisons (points) in each gene flow / selection regime. Colored horizontal lines indicate means. 
Increasingly negative coefficients indicate a stronger bias for outliers to occur in the regions of low 
recombination. Black arrows indicate the coefficient of each representative comparison used in 
Figure 1 and panel (a) above. 
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Figure 3 | The relationship between recombination rate and dXY estimated from whole 
genome sequence from seven pairs of stickleback populations. Each panel depicts the 
relationship between recombination rate and dXY in a single population, calculated by comparing the 
whole genome sequences of two individuals. Each point represents the value of dXY in a single 1000 
bp window. Points have been randomly down-sampled by a factor of 100 to aid in visualization. 
Colored lines represent lines of best fit. DS-GF (red) comparisons represent dXY between two 
sympatric populations (a single benthic/limnetic pair), whereas DS-Allopatry (yellow) comparisons 
represent dxy between two allopatric populations (solitary lake vs. marine). Values on the x axis were 
transformed via log(value + 1).  
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Figure 4 | The relationship between the tendency for divergence outliers to occur in regions 
of low recombination (y-axis) and overall genetic divergence (x-axis) when measured for (a) 
the FST outliers and (b) dXY outliers. Y-axis values are regression coefficients derived by performing 
logistic regressions of outlier probability vs. recombination rate for 75 kb genomic windows in each 
comparison. X-axis values are averages of FST at all loci across the genome for each comparison. 
Each point represents a single comparison of two populations. Colors indicate different gene flow + 
selection regimes, with divergent and parallel selection separated for clarity in each of (a) and (b).  
 


