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abstract: When environmental variation is spatially continuous,

dispersing individuals move among nearby sites with similar habi-

tat conditions. But as an environmental gradient becomes steeper,

gene flow may connect more divergent habitats, and this is pre-

dicted to reduce the slope of the adaptive cline that evolves. We

compared quantitative genetic divergence of Rana temporaria frog

populations along a 2,000-m elevational gradient in eastern Switzer-

land (new experimental results) with divergence along a 1,550-km

latitudinal gradient in Fennoscandia (previously published results).

Both studies found significant countergradient variation in larval

development rate (i.e., animals from cold climates developed more

rapidly). The cline was weaker with elevation than with latitude. Ani-

mals collected on both gradients were genotyped at ∼2,000 single-

nucleotide polymorphism markers, revealing that dispersal distance

was 30% farther on the latitudinal gradient but 3.9 times greater with

respect to environmental conditions on the elevational gradient. A

meta-analysis of 19 experimental studies of anuran populations span-

ning temperature gradients revealed that countergradient variation

in larvaldevelopment,while significantoverall,wasweakerwhenmea-

sured on steeper gradients. These findings support the prediction that

adaptive population divergence is less pronounced, and maladapta-

tion more pervasive, on steep environmental gradients.

Keywords: amphibian, climate gradient, countergradient variation,

gene flow, isolation-by-distance method, maladaptation.

Introduction

Classic theory of adaptation under environmental hetero-
geneity holds that genetic divergence among populations
arises from a balance between the homogenizing effect of
gene flow and the diversifying effect of selection (Felsen-

stein 1976; Slatkin 1987; reviewed in Lenormand 2002).
The early models of so-called protected polymorphism in
two habitats attempted to understand this balance (Hal-
dane 1930; Wright 1931; Levene 1953; Bulmer 1972; re-
viewed in Felsenstein 1976; Spichtig and Kawecki 2004).
Thesemodelsmade simplifying assumptions about the en-
vironment and the genetic basis of adaptation, and they
highlighted specific thresholds such that adaptation to lo-
cal conditions occurs when selection is sufficiently strong
relative to gene flow but not otherwise. The expectation is
different when environmental variation is spatially explicit,
with populations arranged along a geographic gradient pre-
senting a continuously changing selection regime. Here too
there are threshold conditions stating that precise local ad-
aptation at each point along the gradient can evolve if the
spatial change in the environment is sufficiently gradual
relative to gene dispersal distance (Haldane 1948; Slatkin
1973; Endler 1977; Pease et al. 1989; Kirkpatrick andBarton
1997; Alleaume-Benharira et al. 2006). But spatially explicit
theory predicts that a clinal genetic pattern will evolve even
if the rate of spatial change in the environment exceeds the
threshold criterion. The equilibrium slope of the cline will
simply be lower than the slope of the optimal trait value. If
the phenotypic optimum is equated with the condition of
the environment itself, then these models predict that in-
creasing gene flow will reduce the slope of a cline, when
measured against a given environmental gradient (Slat-
kin 1973; Pease et al. 1989; Lenormand 2002). Steep gradi-
ents should therefore exhibit some degree of maladaptation
across much of the gradient. Our study tests this prediction
by comparing amphibian populations occurring along geo-
graphic gradients in climate.
There is strong evidence that gene flow counteracts ad-

aptation in spatially structured populations. Many studies
observe a negative correlation between the degree of lo-
cal adaptation and the spatial isolation of populations or
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their inferred immigration rates, consistent with the idea
that diversifying selection is more effective in populations
that are at least partially shielded from immigration (May
et al. 1975; Stearns and Sage 1980; King and Lawson 1995;
Storfer and Sih 1998; Hendry and Taylor 2004; Nosil and
Crespi 2004; Tack and Roslin 2010; Kalske et al. 2016).
Similar analyses of adaptation along spatial environmen-
tal gradients are less frequent, but two studies of insects
observed that clinal variation in quantitative traits along
elevational gradients was more pronounced under condi-
tions expected to reduce gene flow (longer gradient: Bri-
dle et al. 2009; species with wingless adults: Levy and Nu-
fio 2015). Paul et al. (2011) discovered that the latitudinal
cline in growth rate of a plant was shallower than pre-
dicted based on the environmental gradient and that the
mismatch between phenotype and environment was great-
est in populations receiving many immigrants.
Here, we evaluate the role of gene flow by comparing

the extent of adaptive population divergence along climate
gradients that differ in steepness, which we define as the
rate of change in the environment with geographic dis-
tance. The rationale for our comparison is as follows. Sup-
pose that dispersal distance is independent of the steep-
ness of the environmental gradient and that dispersing
gametes or progeny do not select habitats that match their
natal environment. In this case, immigrants at any partic-

ular site will originate from a broader range of natal envi-
ronments if the gradient is steeper, thus importing more
locally maladapted genotypes and reducing the frequency
of locally adapted genotypes. Hence, gene flow should
more strongly oppose local selection and reduce the slope
of a cline on steep environmental gradients (Slatkin 1973;
Endler 1977; Keller et al. 2013).
To test this hypothesis empirically, one must first char-

acterize the adaptive cline. This is a simple matter in our
study system of amphibian populations occupying gra-
dients of temperature and seasonality. The development
rate of larval amphibians has evolved to be faster in pop-
ulations originating from cold environments (Berven et al.
1979; Berven 1982; Skelly 2004; Muir et al. 2014; Luquet
et al. 2019). This is known as countergradient variation
because quantitative genetic divergence along the climate
gradient is opposed by environmental effects on the phe-
notype acting in the opposite direction (see fig. 1). Counter-
gradient variation in development rate is interpreted as an
adaptation that allows the larval portion of the life cycle to
be completed even under an abbreviated growing season
in cold regions. The argument is that rapid development
rate evolves to compensate for the suppressive influence
of cold temperature on development (Levins 1969; Berven
1982; Hodkinson 2005; Conover et al. 2009; Keller et al.
2013). There is much evidence supporting this argument

Source populations along a climate gradient
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Figure 1: Expected results of a comparison between steep and shallow climate gradients. Populations spanning the gradients are reared
under two temperatures in a common-garden experiment. The steepness of the climate gradient refers to the rate of change in the environ-
ment with respect to geographic distance. The adaptive cline is less pronounced on a steep climate gradient, as predicted if gene flow opposes
adaptation. In this example, the phenotype shows countergradient variation because populations from warmer climates have lower trait
values while warmer experimental temperatures increase the trait. Here, we also depicted steeper countergradient variation in the warm
treatment because the trait is larger and has greater scope for response. In anuran tadpoles, the diagram corresponds to development rate
because that trait is expected to show adaptive countergradient variation. The expected pattern is uncertain for traits without a clear adaptive
cline along the gradient.
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(Arendt 1997; Conover et al. 2009). For example, individ-
uals from cold-adapted populations of poikilothermic taxa
usually develop rapidly, as mentioned above, but not when
they can escape time constraints (e.g., species with flexible
life histories or in nonseasonal environments; De Block
et al. 2008; Eckerstrom-Liedholm et al. 2017). The hypoth-
esis that countergradient variation is adaptive implies a
cost of rapid development, and such costs have been iden-
tified in fish, insects, and amphibians (Arendt 1997; Bil-
lerbeck et al. 2001; Stoks et al. 2005; Dmitriew 2011). Al-
though changes in natural selection on development along
climate gradients have not been measured directly, there
is evidence from QSF=FST comparisons in amphibians that
development rate and body size undergo divergent selection
associated with elevation and latitude (Palo et al. 2003; Muir
et al. 2014; Luquet et al. 2015). All of these findings suggest
that countergradient variation in development rate—and
perhaps also growth rate—is likely to be adaptive. This
leads to the prediction that amphibians will exhibit weaker
countergradient variation in development rate along steeper
climate gradients where gene flow connects populations oc-
cupying distinct environments (fig. 1).
There is less consensus on the adaptive direction of

clinal genetic variation in body size—and to some extent
growth rate—with temperature or seasonality (see “Dis-
cussion”; Abrams et al. 1996; Hodkinson 2005; Dmitriew
2011; Keller et al. 2013). Furthermore, we did not expect
phenotypic plasticity in development or growth to vary
adaptively along climate gradients because, apart from
acclimation (Bacigalupe et al. 2018), there is little evi-
dence that temperature-induced plasticity in development
or growth of ectotherms is adaptive (van der Have and de
Jong 1996; Angilletta and Dunham 2003; Overgaard et al.
2011). In summary, the pattern illustrated in figure 1 is ex-
pected for development rate, but for other traits and plas-
ticities there is no clear prediction.
We used two approaches to compare adaptation along

steep and shallow climate gradients. First, we performed a
common-garden experiment on tadpoles of the frog Rana
temporaria originating from populations spanning a rela-
tively short and steep elevational gradient. Studies such as
this can demonstrate adaptation only indirectly because
they do not reveal the fitness consequences of population
divergence within natural settings. But common-garden
experiments can be convincing when they evaluate rela-
tionships between functionally relevant characters and the
environment and when populations originating from a
range of environments are reared under treatments that
manipulate appropriate featuresof the environment, thereby
testing for adaptation to specific factors (Kawecki and Ebert
2004). In this study, the feature of the environment wema-
nipulated was temperature, and the functionally relevant
character was development rate (fig. 1). Our new experi-

mental resultswere thencompareddirectlywith those from
a similar experiment on the same species measuring adap-
tation to a long latitudinal gradient (Laugen et al. 2003,
2005). Gene flow on both gradients was inferred using
neutral markers. We predicted that gene flow with respect
to environmental conditions would be greater on the el-
evational gradient, and as a consequence adaptive popula-
tion divergence should be weaker. The second approach
was a meta-analysis of many studies comparing the larval
performance of amphibians under controlled temperatures
in the laboratory. These studies sampled populations from
multiple source locations that differed in their environ-
mental temperature.We predicted that adaptive clinal var-
iation would be most pronounced in studies that sampled
very shallow gradients. The results of both comparisons
demonstrated that gene flow can reduce population di-
vergence by 70%–90% on the steepest climate gradients,
strongly supporting models of adaptation with gene flow
along spatial environmental gradients.

Methods

Common-Garden Experiment

The experiment included Rana temporaria collected from
12 breeding ponds in eastern Switzerland, ranging in ele-
vation from 445 to 2,542 m (fig. 2A; table A1; tables A1–
A6 are available online). There were no strong elevational
trends in the surface area of source ponds, depth, or the
number of egg clutches. Although the most distant ponds
were located 102 km apart, this region has a steep eleva-
tional gradient: distances from the four lowest elevation
sites to the nearest known high-elevation population of
R. temporaria (12,000 m) were never greater than 8.5 km.
Populations above 1,000mwere situated on three different
mountains separated by low valleys, which suggests that
these higher sites were colonized independently from lower
elevations after glacial retreat. Therefore, although the ex-
periment includes just a single “replicate” elevational tran-
sect, potentially independent instances of colonization may
confer some degree of generality.
The laboratory experiment exposed tadpoles from the

12 source populations to a 2#2 complete factorial design,
with 10 families per population and two replicate tadpoles
per family and treatment. The experimental factors were
temperature and the presence or absence of predator cues.
We chose these factors because they were expected to vary
across the elevational gradient in the Alps. Indeed, air
temperature during the larval period of R. temporaria
averages about 57C lower at an elevation of 2,500 m than
at 500 m (fig. A1G; figs. A1, A2 are available online). We
used data loggers tomeasurewater temperature in 23 ponds
over the same elevational range and found a decline of 4.27C
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on cloudy days during the larval period between 500 and
2,500 m; on sunny days water temperature was warm
even at high elevation (fig. A1H).We anticipated that pre-
dation risk would decline with elevation, as has been
reported in many previous studies (de Mendoza and Cat-
alan 2010; Roslin et al. 2017; Moreira et al. 2018; Har-
greaves et al. 2019). But survey data collected after the ex-

periment was underway suggested that predator density
was not strongly associated with elevation in our study area
(fig. A1B). Hence, the predictions discussed in the intro-
duction are mainly relevant for adaptation to temperature;
results from the predator treatment are included here for
the sake of completeness and to improve estimation of sta-
tistical error.
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Figure 2: Locations of populations of Rana temporaria sampled along elevational (A) and latitudinal (B) gradients, superimposed on a color-
contoured map representing mean annual temperature. The symbols in A are color coded to reflect the elevation of the site (ranging from 445
to 2,542 m). B shows the six sites included in the laboratory experiment of Laugen et al. (2003, 2005) and the 15 populations that contributed
data on single-nucleotide polymorphism variation.
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Tadpoles were reared individually in 200-mL cups that
floated in large plastic tubs in a windowless room. There
were 32 tubs, each containing 80 L of water and a maxi-
mum of 39 tadpoles in a 5#8 grid (one position was oc-
cupied by a device to regulate water level). The photope-
riod was 13L∶11D.
Nominal temperatures were 157 and 217C. These tem-

peratures realistically reflect midafternoon water temper-
ature in shallow areas where tadpoles spendmuch of their
time (fig. A1H), and the duration of the larval stage in our
experiment was similar to that observed in nature (Lo-
man 2002; Laugen et al. 2003). We controlled water tem-
perature with a flow-through system in which four res-
ervoirs were maintained at constant temperature using
aquarium heaters and water coolers. There were two res-
ervoirs per temperature treatment; from each reservoir,
water was pumped into eight of the 80-L plastic tubs ar-
ranged in random positions around the room. Five data
loggers recorded temperature at 20-min intervals within
each treatment, and this confirmed that actual tempera-
tures were 15.07C (SD, 0.16) and 21.47C (SD, 0.46). Eighty
percent of all readings were between 14.947 and 15.187C
in the cold treatment and between 21.097 and 21.687C
in the warm treatment.
Apparent predation risk was manipulated by adding

water with or without chemical cues of predation to every
cup three times per week.Water containing predator cues
was prepared by feeding a 100-mg R. temporaria tadpole
to each of three late-instar dragonfly larvae (Aeshna cya-
nea), kept individually in 5-L containers. Immediately af-
ter the Aeshna fed, we combined water from the three
containers and added 20mL to each cup containing a tad-
pole assigned to the predator treatment. This created a
concentration of 6 mg tadpole L21 consumed per week.
Cups in the predator-free treatment received 20 mL of
aged tap water. To minimize the chance of spilling the
wrong water into a cup, we assigned predator treatments
at random to entire rows of five cups within tubs.
We collected 10 freshly laid clutches of R. temporaria in

each of the 12 source populations. Collection dates ranged
fromMarch 21 to June 18, 2014, following the progression
of breeding phenology with increased elevation (fig. A1D).
Eggs were held at 147C in the laboratory for about 10 days
until they hatched. Tadpoles were added to the experiment
when they reached Gosner (1960) developmental stage 25,
at an average of 5.5 days after hatching. The experiment
contained 960 individuals: 2 temperatures# 2 predator
treatments#12 populations#10 sibships#2 replicates.
We fed the tadpoles 15% of their mass per day on a

finely ground 4∶1 mixture of rabbit food and TetraMin
fish flakes, and we changed the water three times per
week. Tadpoles were weighed and returned to their cups
when they were at about Gosner stage 35, which occurred

at an average age of 32 days (SD, 9.7; range, 20–51 days
[depending on temperature]). We calculated proportional
growth rate until stage 35 as exp[log(m2=m1)=t], wherem1

is the mass at the start, m2 is the mass at stage 35, and t
is the number of days from the start to weighing. When
an individual reached metamorphosis—defined as emer-
gence of the first forelimb (stage 42)—it was removed from
the cup andweighed.We calculated development rate (stages
day21) as (422 25)=t, where t is the number of days be-
tween stages 25 and 42. These measurements assume that
early growth rate is exponential and development rate is
linear, both of which are approximately correct (Alford
and Jackson 1993; Van Buskirk 2002; Muenst 2015).
Results were analyzed with mixed effects models using

restrictedmaximum likelihood to test the effects of exper-
imental treatments and elevation of origin on growth rate,
development rate, survival to metamorphosis, and log-
transformed mass at metamorphosis. Elevation was cen-
tered and treated as a continuous fixed effect at the level of
the population. Categorical fixed effects were temperature
at the level of the tub and predator treatment at the level
of the individual tadpole. All interactions were included.
Random intercepts were included for tub, population,
and sibship nested within population. We judged the sig-
nificance of random effects using likelihood ratio tests af-
ter refitting models using maximum likelihood. Because
the random effect of tub was never important, fixed ef-
fects were evaluated using models without tub. We deter-
mined the significance of fixed effects by inspecting 95%
profile likelihood confidence intervals (Venzon andMool-
gavkar 1988). Models were fitted using the lme4 package
in R version 3.3.2 (Bates et al. 2015).

Comparison with the Latitudinal Gradient

We compared results from the Swiss elevational gradient
with those of Laugen et al. (2003, 2005), who performed a
laboratory experiment on five to six populations of R.
temporaria collected from 55.77N to 697N along a latitu-
dinal gradient in Fennoscandia (fig. 2B). Laugen et al.
used methods similar to ours: tadpoles were held in indi-
vidual cups under three temperatures (147, 187, 227C),
food was a 3∶1 mixture of rabbit food and fish flakes,
and the light regime was 16L∶8D. Laugen et al. did not in-
clude a predator treatment and we did not have an 187C
treatment, so these two treatments were not used here.
The comparison between the elevational and latitudi-

nal gradients and among other climate gradients else-
where in this study was accomplished by expressing each
gradient on a common scale corresponding to the dura-
tion of the growing season at the source populations. On
the Swiss and Fennoscandian gradients, growing season
varies linearly with elevation and latitude, yielding a lapse
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rate of 92 m of elevation per degree of latitude (fig. A1A).
Other comparative measures of climate are available, but
we used the duration of the growing season for several
reasons. First, in various organisms the amount of time
available is known to impose selection favoring rapid de-
velopment (Rowe and Ludwig 1991; Conover et al. 2009;
Sniegula et al. 2012). Second, R. temporaria behave as if
they are sensitive to the duration of the growing season.
For example, on both gradients the date of oviposition shows
a very similar linear and negative relationship with grow-
ing season (fig. A1D). This is presumably caused by the
sensitivity of breeding phenology to the date of snowmelt,
which is related to local temperature and season length
(Beebee 1995; Phillimore et al. 2010). And third, the upper
distribution limits of plants on latitudinal and elevation
gradients are strongly correlated with each other and with
season- and temperature-related measures, with some in-
dication that distributions extend into slightly colder envi-
ronments on elevation than on latitude (Halbritter et al.
2013; Randin et al. 2013). This information suggests that
adaptation may respond specifically to season length, al-
though other environmental variables may be associated
with season length. We defined the duration of the grow-
ing season as the number of days with a mean air temper-
ature exceeding the developmental zero temperature, TDZ

(the temperature below which development ceases). Be-
low, we review several studies suggesting that TDZ averages
6.47C in larval R. temporaria. Spatial temperature data for
the elevational gradient came from Gugerli et al. (2008) at
200-m resolution, and those for the latitudinal gradient
came from WorldClim version 2 (Fick and Hijmans 2017)
at 1-km resolution. Growing season length was highly cor-
related with both elevation (r p 20:988) and latitude (r p
20:987; fig. A1E).
We used linear models to compare mass at metamor-

phosis and development rate between the two gradients.
The unit of observation was the treatment mean; for Lau-
gen et al. (2003, 2005), these values came from figures and
tables because the original data were not available. Inde-
pendent variables were the length of the growing season
of the source population (centered), the identity of the
gradient (latitude or elevation), the temperature treat-
ment (14/157 or 21/227C), and their interactions. We did
not compare growth rates between gradients because the
only available measure of growth along the latitudinal gra-
dient comparable to our measure was made at 187C (Lind-
gren et al. 2018).

Estimating Gene Flow

We indirectly inferred rates of gene flow across both gra-
dients by measuring population divergence using ge-

nomic single-nucleotide polymorphisms (SNPs).Our sam-
ple of the elevational gradient was the 12 populations
from the common-garden experiment, collected in 2013
(fig. 2A; table A1): these were part of a larger set of 82 pop-
ulations sampled across all of Switzerland (Jansen van
Rensburg 2018). The latitudinal gradient was sampled in
2014 and included 15 sites between 55.67N and 697N; these
broadly represented the same gradient studied by Laugen
et al. (2003), and four sites were coincident or nearly so
with populations used by Laugen et al. (fig. 2B; table A2).
One egg from each of 20 clutches was collected at each
site; tadpoles were reared in the laboratory and preserved
in ethanol when they reached stage 36. We implemented
a modified version of the double-digest restriction site–
associated DNA protocol (Peterson et al. 2012), described
in the appendix (available online), to discover genome-wide
SNP markers. The variant file was filtered to maximize the
number of individuals and loci in the data set while mini-
mizing spurious SNPs and loci that may be under selection
or that deviate from expectations such as Hardy-Weinberg
equilibrium.Weobtained1,827SNPsgenotyped in148 indi-
viduals in the 12 Swiss populations (7–20 individuals per
population; median, 10) and 2,081 SNPs in 132 individuals
in the 15 Fennoscandian populations (2–17 per population;
median, 9).
We used the slope of the relationship between genetic

divergence and distance to compare the extent of gene flow
in Switzerland and Fennoscandia with respect to geographic
space (measured in kilometers) and the environmental gra-
dient (measured as difference in the duration of the grow-
ing season, defined above). Population divergence with re-
spect to pairwise geographic or environmental distance was
measured using linearized FST: FST=(12 FST). Rousset (1997)
demonstrated that b, the slope of the regression of linear-
ized FST against log distance, is proportional to 1=N ej

2,
where Ne is the average effective population size and j is
the average natal dispersal distance (i.e., the distance be-
tween the positions at which parents and their offspring
reproduce). Using FST to reflect population divergence is
reasonable in this instance because the mutation rate of
SNPs is low (!1028 in various taxa; Schrider et al. 2013;
Krasovecetal.2018)andthedemographichistoryofR. tem-
poraria within Switzerland and Fennoscandia is relatively
homogeneous (Teacher et al. 2009; Jansen van Rensburg
2018). Our SNP data revealed mostly weak geographic
trends within regions: genetic diversity declined weakly
with elevation and latitude, and Ne showed no trend (ta-
ble A3; fig. A1C). These are conditions under which FST

provides a relatively interpretable measure of population
structure (Whitlock 2011). However, we caution that vio-
lation of assumptions related to mutation, dispersal, and
demography can bias the extent of gene flow implied by
FST (Whitlock and McCauley 1999). In spite of this,
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Rousset’s (1997) isolation-by-distancemethod for estimat-
ing effectivemigration distance has been shown to be robust
to violations of many of these assumptions (Rousset 2001;
Sumner et al. 2001; Leblois et al. 2003, 2004; Robledo-
Arnuncio and Rousset 2010).
Weir and Cockerham’s (1984) FST was estimated with

the hierfstat package in R (Goudet 2005). We usedMantel
correlograms with 9,999 permutations (function mantel
.correlog in the vegan package; Legendre and Legendre
2012, ch. 13) to evaluate the significance of relationships
between linearized FST, calculated for each pair of popula-
tions, and both the log of the geographic distance between
them and the difference in growing season length. We es-
timated Ne in Fennoscandia and Switzerland using the
single-sample linkage disequilibrium method LDNe, im-
plementedinNeEstimatorversion2.1(Doetal.2014).Details
are given in figure A1. We then compared average dispersal
distance between gradients by combining information onNe

and the slope of the isolation-by-distance relationship, b:
jfenn=jswitzpsqrt[(N e(switz) ⋅ bswitz)=(Ne(fenn) ⋅bfenn)]. The anal-
ogous comparison of dispersal with respect to growing sea-
son was made using information on Ne and the slope of lin-
earized FST regressed against the difference in growing season
duration.

Meta-analysis

We used meta-analysis to compare our results with the
broader literature on amphibian population divergence
along temperature gradients. The hypothesis was that
countergradient variation in development rate will be less
apparent when the environmental gradient is steep. We
located relevant literature by searching the Web of Sci-
ence for “temperature” and “population*

” and “amphibian*

or tadpole*”; studies were included if they (1) sampled
eggs from at least two populations occupying different
thermal environments, (2) reared larvae under at least
two constant-temperature treatments, (3) reported either
of two measures of larval performance (size at metamor-
phosis [mass or body length] or development rate tometa-
morphosis [stages day21]), and (4) reported variation in
larval performance among replicates within temperature
treatments. We did not analyze larval growth rate because
it was available for only four studies (Olsson and Uller
2002; Meier 2007; Lindgren and Laurila 2009; this study).
The inclusion criteria yielded 19 studies for which we could
evaluate evidence of counter- or cogradient variation: phe-
notypic plasticity came from comparison of temperature
treatments, and population genetic divergence came from
comparison ofmultiple populations of known origin reared
under common environmental conditions.
We characterized the environmental gradient sampled

by each study from the duration of the growing season at

the source localities of the populations, calculated as de-
scribed above using the species-specific developmental
zero temperature (TDZ) andWorldClim temperature data.
TDZ was calculated as –a/b averaged across all studies of
the same species, where a and b are the intercept and
slope from a regression of development rate against ex-
perimental temperature. The effective steepness of the en-
vironmental gradient in each study was the maximum
difference in growing season divided by the geographic
distance between the pair of populations with the greatest
difference in growing season. The appendix describes how
we estimated the environmental gradient for studies of ad-
aptation to microgeographic variation in water tempera-
ture (Orizaola and Laurila 2009; Richter-Boix et al. 2010,
2015; Edge et al. 2013).
The two measures of larval performance were analyzed

within a mixed effects meta-analytic framework, in which
observations i in study j were modeled as

yj,i p m1 covariates1 sj 1 ej,i 1mj,i, ð1Þ

where y is larval performance, m is the intercept, s are
study-level deviations, e are observation-level residuals,
andm aremeasurement errors. The random effect of study
modeledpotential covariance amongmultiple observations
from the same study. Measurement error was assumed to
be proportional to a diagonal matrix of the standard devi-
ation of the performance measure among replicates. In this
case, measurement error includes any source of deviation
at the level of the replicate, including variation due to geno-
type, spatial position within the experiment, and measure-
ment itself (Ives et al. 2007). The fixed covariates were tem-
perature, growing season length in the source locality, the
effective steepness of the geographic temperature gradi-
ent, the temperature-by-season interaction, and the grow-
ing season–by–steepness interaction. The latter interaction
tests our central hypothesis that the extent of population
divergence depends on steepness of the gradient. The steep-
ness of the gradient was log transformed because it showed
a right-skewed distribution and because a unit change in
the geographic length of a gradient creates a greater change
in steepness for the steepest gradients. We scaled perfor-
mance measures to comparable units by dividing by the
standard deviation among replicates pooled at the level
of the study. Experimental temperature, growing season,
and steepness were centered. The models were fitted with
Markov chain Monte Carlo techniques implemented in
the R package MCMCglmm (Hadfield 2010); equation (1)
is model 5 from the online appendix of Hadfield and Na-
kagawa (2010). Parameter estimates and their credible in-
tervals came from 2,000 essentially independent samples
from the posterior distribution.
A preliminary analysis compared four possible struc-

tures of the study-level random effect: no study, study
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intercepts only, intercepts along with heterogeneity among
studies in slopes on season length, and the latter model in-
cluding the covariance between slopes and intercepts (i.e.,
unstructured variance-covariancematrix). For both perfor-
mance measures, the deviance information criterion (Spie-
gelhalter et al. 2002) indicated that the best-supported
modelwas thatwithonly study intercepts andparallel slopes.
Hence, we evaluated the importance of fixed effects using
equation (1).
All data and analysis scripts used in this study are avail-

able in the Dryad Digital Repository (https://doi.org/10
.5061/dryad.41ns1rn96; Bachmann et al. 2020).

Results

Common-Garden Experiment

Growth rate of Rana temporaria tadpoles early in the
larval period was higher in the warm treatment (fig. 3A;

table 1). Populations originating from high elevation tended
to grow more slowly, although the confidence interval for
the effect of elevation included zero (23.296 to 0.0001).
The direction of this trend indicated cogradient variation
(i.e., the opposite of countergradient variation; Conover
et al. 2009). A negative interaction between elevation and
temperature indicated that high-elevation populations en-
joyed less benefit from warm conditions than did low-
elevation populations, although figure 3A suggests that this
effect was small. Early growth rate was not influenced by
the predator treatment.
Survival to metamorphosis averaged 89% (fig. 3B). Sur-

vival was affected by a temperature-by-predator interac-
tion: warm conditions caused a reduction in survival of
about 7% in the predator treatment but a slight increase
in the predator-free treatment. Survival was not signifi-
cantly related to the elevation of origin or interactions in-
volving elevation.
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Figure 3: Early tadpole growth rate (A), survival to metamorphosis (B), mass at metamorphosis (C), and development rate (D) in the labo-
ratory experiment of Rana temporaria originating from populations at different elevation. Blue symbols are population means for the cool
treatment (157C), and red is the warm treatment (217C). Open symbols and dashed lines represent the predator treatment. In B, symbols are offset
to improve visibility, and lines show fitted curves from the model in table 2. Error bars (51 SE) are sometimes obscured by the symbols.
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Mass at metamorphosis was on average 53% smaller in
the warm treatment than in the cold treatment (fig. 3C;
table 1). Exposure to predator chemicals caused mass to
increase by about 5%, and the temperature-by-predator
interaction reflected a larger predator-induced increase
in body size at cold temperature. An interaction between
elevation and temperature arose because body size de-
clined with elevation at 217C but not at 157C. This pattern,
too, suggested cogradient variation, although the main ef-
fect of source elevation was not significant.
Tadpole development rate increased by 85% in thewarm

treatment relative to cold, and predator cues caused a de-
crease of about 4% (fig. 3D). Tadpoles from high-elevation
populations developed significantly faster than those from
low-elevation populations. This is countergradient varia-
tion. For development rate and all other traits, there was
significant variation among populations and full-sib fami-
lies within populations (table 1).

Comparison with the Latitudinal Gradient

The range in duration of the growing season was greater
on the elevational gradient (40–226 days) than on the lat-
itudinal gradient (90–195 days; figs. 4, A1A). For mass at
metamorphosis, there was no overall trend with, nor inter-
actions involving, growing season length (table 2). For de-
velopment rate, a strong three-way interaction among grow-
ing season duration, gradient, and temperature was caused
by variation in slopes against growing season (fig. 4B). Pop-
ulation divergence in development rate was steeper with
latitude in the warm treatment. The overall effect of grow-

ing season was negative: tadpoles from colder climates de-
veloped more rapidly along both gradients. This indicates
countergradient variation in both studies. The results in
figure 4Bwere therefore similar to the prediction illustrated
in figure 1. Slope estimates for the latitudinal gradient were
2.8 times more negative than those for the elevational gra-
dient at cold temperature and 9.5 times more negative at
warm temperature (latitude vs. elevation [#1024]: 26.51
vs. 22.36 for cold, 226.92 vs. 22.83 for warm). Confi-
dence intervals did not include zero for any of the four
estimates evaluated separately. The strong difference be-
tween gradients in table 2 is not meaningful because exper-
imental conditions, including containers, food, and tem-
perature treatments, were not identical in the two studies.

Estimates of Gene Flow

The matrices of pairwise FST values for the Swiss and Fen-
noscandian populations are in tables A4 and A5. Isolation
by distance was significant in both Fennoscandia and Swit-
zerland: Mantel correlograms revealed significant positive
spatial autocorrelation in FST=(12 FST) over shorter dis-
tances (fig. 5B). The slopes of the regressions of FST=(12
FST) against log distance were similar in Fennoscandia
(b p 0:039850:0224 jackknifed SD) and Switzerland
(b p 0:051350:0574 SD; fig. 5A). Effective population
size estimated by LDNe, N̂ e, did not significantly differ be-
tween Fennoscandia (N̂ e p 291; table A2) and Switzer-
land (N̂ e p 231 for all 82 populations; N̂ e p 388 for the
populations used in the experiment; table A1). N̂ e did
not vary significantly with elevation or latitude (details in

Table 1: Summary of mixed effects models on four measures of tadpole performance in the laboratory experiment

Level

Dependent variable

Early growth rate

(proportional)

Survival

(proportion)

Mass at

metamorphosis (mg)

Development rate

(stages day21)

Fixed effects (SE):

Elevation . . . 21.648 (.849) 2.203 (.341) .345 (2.020) 2.230 (.852)

Temperature Warm 7.527 (.112) .263 (.310) 240.069 (1.282) 27.943 (.391)

Predation Present .199 (.111) .909 (.353) 6.030 (1.262) 21.961 (.385)

Elevation# temperature Warm 2.304 (.147) 2.458 (.406) 29.448 (1.671) .067 (.509)

Elevation# predation Present 2.076 (.145) 2.044 (.466) 2.470 (1.648) 2.117 (.502)

Temperature# predation Warm,

present

2.111 (.159) 21.295 (.467) 25.022 (1.800) .113 (.548)

Elevation# temperature#

predation

Warm,

present

2.244 (.208) .621 (.614) 21.794 (2.345) 2.316 (.715)

Random effects (LR statistic):

Population . . . 4.98e24 (1060) 2.67e22 (10.0) 3.45e2 (45.8) 3.93e24 (114)

Sibship (population) . . . 3.37e25 (64.7) 6.57e21 (8.57) 3.64e2 (18.1) 2.39e24 (31.0)

Note: Entries in the table are the coefficient with standard error in parentheses (for fixed effects) and the variance component with the likelihood ratio (LR)

statistic on 1 df in parentheses (for random effects). Coefficients for early growth rate, mass, and development rate were multiplied by 100. Mass at metamor-

phosis was log transformed before analysis. Elevation was measured in kilometers and centered. Boldface highlights effects for which the 95% profile confi-

dence interval did not overlap zero (fixed effects) or the LR test was significant at a p :05 (random effects).
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fig. A1C). These values of N̂ e are somewhat higher than
published estimates for most anurans (Schmeller and Me-
rilä 2007; Phillipsen et al. 2011), and they imply that natal
dispersal distance averages 63.2m in Switzerland and 82.8m
in Fennoscandia.
Divergence along the axis of growing season duration

was highly significant on the latitudinal gradient but not
on the elevational gradient (fig. 5C, 5D). This difference

was due to the geography of the two gradients: in Fennos-
candia, growing season length is highly spatially autocor-
related up to about 500 km, whereas positive spatial auto-
correlation is weaker and extends ≤30 km in Switzerland
(fig. A2). As a result, the slope of FST=(12 FST) regressed
against the difference in growing season lengthwas 20 times
steeper on the latitudinal gradient (b p 1:82#1023) than
on the elevational gradient (b p 9:12#1025). After ac-
counting for the values of N̂ e in Fennoscandia and Switzer-
land, gene flow along the environmental gradient of season
length was estimated to be 3.9 times higher in Switzerland
than in Fennoscandia.

Meta-analysis

Meta-analysis supported the hypothesis that adaptive pop-
ulation divergence is weaker on steep climate gradients.
Across all studies listed in table 3, animals from popula-
tions in warmer climates exhibited strongly reduced devel-
opment rate and smaller body size atmetamorphosis (fig. 6;
table 4). This represented countergradient variation in the
case of development because temperature-induced plastic-
ity was positive. In other words, evolved divergence in de-
velopment compensated for phenotypic plasticity induced
by environmental temperature. But in the case of size (fig. 6A),
the decreasing trend along the gradient in growing season
length represented cogradient variation because the in-
duced response to temperature was in the same direction.
Bothmeasures of performance had significant interactions
between season length and the steepness of the gradient:
that is, the slopes in figure 6 were less negative for studies
that sampled steeper environmental gradients. For devel-
opment rate, this finding indicates that countergradient
variation, while significant overall, was weaker when mea-
sured along steep climate gradients (compare fig. 6B with
fig. 1). The temperature–by–season length interaction, also
significant for both size and development rate, reflected
higher detectability of population divergence at warm ex-
perimental temperatures (fig. 6; table 4). Variance compo-
nents due to measurement error and study were always
important.

Discussion

Our results support the prediction that quantitative ge-
netic divergence along environmental gradients should be
most pronounced on shallow gradients. This prediction
comes from classic theory describing the balance between
the spatial change in selection and the spatial extent of gene
flow (Haldane 1948; Antonovics 1968; Slatkin 1973; End-
ler 1977; Kirkpatrick and Barton 1997; Lenormand 2002).
Many empirical studies illustrate that gene flow erodes the
influence of local selection (e.g., Storfer and Sih 1998; Hendry
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Figure 4: Comparison of population divergence of Rana tempo-
raria in tadpole mass at metamorphosis and development rate,
from across gradients in elevation (filled symbols; this study) and
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are expressed in units of growing season duration, defined as thenum-
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and Taylor 2004; Bridle et al. 2009; Tack and Roslin 2010;
Kalske et al. 2016), but earlier evidence that gene flow can
moderate the slope of a cline along a spatial environmental
gradient is more limited (Bridle et al. 2009; Levy andNufio
2015). Our study supports this prediction in two ways.
First, we observed stronger countergradient variation in
larval development rate among frog populations occupy-
ing a long, shallow latitudinal gradient in Fennoscandia
than along a short, steep elevational gradient in Switzer-
land (fig. 4). Second, a meta-analysis of 19 studies found
that this pattern is widespread in anurans: countergradient
variation in larval development rate wasmore pronounced
on shallow climate gradients (fig. 6). These findings sug-
gest that presumably adaptive divergence on steep gra-
dients is eroded by gene swamping due to frequent dis-
persal among distinct environments.
The intuitive explanation of our results is that dispers-

ing individuals along shallow geographic gradients settle
in an environment that is not very different from that in
which they originated. On steeper gradients, dispersing
individuals will frequently move into new environments,
and this counteracts local adaptation by importing geno-
types adapted to other conditions (Keller et al. 2013). This
explanation is closely related to Levins’s (1968) concept of
environmental grain, which also emphasizes the scale of
environmental variation relative to the mobility of the or-
ganism. On a continuous spatial environmental gradient,
two length scales are relevant (Slatkin 1973). One is called
the “characteristic length” of the cline (lc p j=s1=2), which
weighs the average gene flow distance (j) relative to the to-
tal difference in selection between opposite ends of the gra-
dient (s). A population cannot adapt precisely to changes in
the local phenotypic optimum that occur on a spatial scale
less than lc. Our comparison between the Fennoscandian
and Swiss gradients suggests that lc may be twice as large
on the long latitudinal gradient as on the short elevational
gradient, assuming that the difference in selection across

a gradient is related to its amplitude of environmental
change. The latitudinal gradient had somewhat greater
estimated gene flow distance, and the elevational gradient
had somewhat greater environmental amplitude. The sec-
ond length scale is the spatial distance over which the
change in selection occurs (k). This value is much larger
for a long latitudinal gradient than for a short elevational
gradient. For large values of k, adaptation closely follows
the optimum and gene flow is not important, especially
toward the center of the gradient (Fisher 1950; Slatkin
1973). But for smaller values of k, gene flow prevents local
demes from tracking their local selection regime, and they
instead adapt to environmental conditions averaged over
a broader range of the spatial gradient. Hence, popula-
tions adapting to a steep gradient (small k) should exhibit
shallow phenotypic clines and suffer maladaptation over
much of the gradient (Slatkin 1973). A similar prediction
emerges frommodels of quantitative traits, inwhich a crit-
ical parameter B balances gene flow against the steepness
of the environmental gradient and hence combines infor-
mation from Slatkin’s two length scales (Kirkpatrick and
Barton 1997; Polechová and Barton 2015; Polechová 2018).
In our study, the much smaller value of k in Switzerland
suggests that gene flow should keep R. temporaria popula-
tions on the elevational gradient away from their local op-
tima, and indeed the slope of the cline in development rate
was shallower on the elevational gradient in Switzerland
(fig. 4). Assuming that populations in Fennoscandia are
closely tracking the phenotypic optimum, those in Swit-
zerland showmaladaptive values of development rate over
at least part of the gradient. Measured against the common
scale of growing season length, population divergence on
the elevational gradient was reduced by 64% (cold treat-
ment) or 89% (warm treatment).
The preceding argument about length scales of the two

gradients is not greatly affected by our finding that esti-
mated effective population size was slightly higher in

Table 2: Comparison of body size and development rate measured at metamorphosis in Rana temporaria tadpoles sampled

along an elevational gradient in Switzerland (this study) and a latitudinal gradient in Fennoscandia

Source of variation Level

Mass at metamorphosis Development rate

Coefficient SE P Coefficient SE P

Growing season length (days) .0293 .2181 .894 22.36e24 .91e24 .016

Gradient Latitude 387.55 27.18 .001 25.38e22 1.16e22 .001

Temperature Warm 2170.41 21.25 .001 2.79e21 8.84e23 .001

Growing season# gradient Latitude .1759 .6122 .776 24.15e24 2.63e24 .127

Growing season# temperature Warm .3133 .3085 .319 24.70e25 1.29e24 .719

Gradient# temperature Latitude, warm 2273.92 38.44 .001 1.44e21 1.64e22 .001

Growing season# gradient# temperature Latitude, warm 2.7946 .8658 .367 21.99e23 3.73e24 .001

Note: Both gradients were expressed on a scale of growing season length, measured in days and centered before analysis. Temperatures in the cold/warm

treatments were 157/21.47C in Switzerland and 147/227C in Fennoscandia. This analysis was done on mean values at the level of population and temperature

treatment.
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Switzerland than in Fennoscandia. The 30% difference in
N̂ e lowers the estimate of dispersal distance in Switzer-
land, and therefore lc is somewhat shorter. But the great
length of the Fennoscandian gradient nevertheless ensures
that k, the distance over which selection changes, is at least
100 times greater for latitude than for elevation. This sug-
gests that estimated gene flow among distinct selective en-
vironments would be much higher in Switzerland even if
the difference between gradients in N̂ e were substantially
greater. This accounts for the shallower cline observed on
the elevational gradient.

The meta-analysis produced a quantitatively similar
picture of the consequences of gene flow on steep climate
gradients. Based on the statistical model in table 4, the
predicted slope of development rate against length of
the growing season at the source locality is 20.0345 SD
units 7C21 (highest posterior density interval: 20.0457
to 20.0236) for the shallowest environmental gradients
in the data set. These were primarily long latitudinal or
longitudinal gradients (Laurila et al. 2008; Orizaola et al.
2010; Edge et al. 2013; Liess et al. 2013). Themodel predicts
that the corresponding slope for a gradient as steep as the
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Figure 5: Patterns of population divergence at single-nucleotide polymorphism markers with respect to geographic distance and the dif-
ference in growing season length. A depicts isolation by distance among the 12 experimental populations of Rana temporaria on the
elevational gradient in Switzerland (blue symbols) and 15 populations on the latitudinal gradient from southern Sweden to northern Finland
(red symbols). Each point represents a pair of populations. Lines are major axis regressions, and shading represents 95% confidence intervals
estimated by jackknifing over populations. B is the spatial correlogram of genetic divergence relative to distance, with pairs of populations
sorted into five bins of equal sample size. The Mantel correlation is a Pearson correlation coefficient between the above-diagonal elements of
two matrices representing genetic distance and geographic distance (FST=[12 FST] and the log of great circle distance). Significant correla-
tions, indicated with larger symbols, were judged by permuting rows and columns of the genetic divergence matrix 9,999 times and con-
trolling the false discovery rate for five tests (Benjamini and Hochberg 1995). C and D illustrate population divergence with respect to the
difference in the length of the growing season between sites (measured in days 16.47C). Gene flow among environmentally divergent sites
was greater across elevation than across latitude.
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Table 3: Common-garden experiments that manipulated temperature and compared populations sampled across gradients in environmental temperature

Species TDZ (7C)

No.

populations

Maximum

geographic

extent (km)

Maximum

season

difference

(days)

Steepness

(days/km)

Temperature

treatments

(7C) Traits Source

Bufo calamita 15.5 6 56.1 6.0 .147 20/27 Development rate, size Rogell et al. 2010

Rana arvalis 4.9 7 35.6 32.8a 1.058 15/20 Development rate, size Richter-Boix et al. 2015

13 1,638.2 94.0 .058 16/19 Development rate, size Luquet et al. 2019

Rana clamitans 15.55 4 217.5 45.0 .207 18/23/28 Development rate, size Berven et al. 1979

Rana lessonae 10.25 3 5.2 14.2a 3.186 20.3/25.4 Development rate, size Orizaola and Laurila 2009

8 901.1 31.0 .035 19/22/26 Development rate, size Orizaola et al. 2010

Rana sylvatica 10.0 9 218.2 52.0 .239 13–25b Development rate, size Berven 1982

10.0 8 1,408.6 55.0a .039 20/22/24 Development rate, size Edge et al. 2013

Rana temporaria 6.4 2 1,412.6 90.0 .064 14/22 Development rate, size Merilä et al. 2000

2 1,531.2 106.0 .069 16/20 Development rate, size Laurila et al. 2001

2 123.8 68.0 .549 14/19.7 Development rate, size Sommer and Pearman 2003

6 1,534.7 105.0 .068 14/18/22 Development rate, size Laugen et al. 2003, 2005

7 1,513.0 106.0 .071 15/18 Development rate, size Laurila et al. 2008

8 1,471.6 95.0 .067 15/18 Size Lindgren and Laurila 2009

6 224.7 31.6a 1.711 15.2/18.3 Development rate, size Richter-Boix et al. 2010

8 503.0 39.0 .078 18/23 Development rate, size Liess et al. 2013

10 49.6 103.0 2.083 10/15/20 Size Muir et al. 2014

2 2.7 19.0 6.970 16/20 Development rate, size Oromi et al. 2015

12 102.4 186.0 3.734 15/21.4 Development rate, size This study

Note: TDZ is the temperature below which development rate is zero. TDZ was averaged at the level of the species from the studies listed in this table. Maximum geographic extent is the great circle distance

between the two most distant populations. Maximum season difference is the difference in length of the growing season (number of days with mean temperature above TDZ) between the two most environ-

mentally distinct populations. Steepness is the maximum season difference divided by the geographic distance between the two most environmentally distinct populations.
a Variation in length of the growing season was estimated from local average water temperatures reported in the article (see the appendix).
b Six temperature treatments: 137, 157, 187, 207, 227, and 257C.
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Swiss elevational gradient is20.0102 (20.0224 to 0.0023).
Hence, divergence in development rate on the steepest gra-
dients was only 29.7% as strong as that on a shallow gradi-
ent. This 70% difference, we argue, is a measure of malad-
aptation due to higher gene flow on steep gradients.
Clinal divergence in development rate is predicted by

models on adaptation under time constraints, which find

that larval development should accelerate as the timewin-
dow available for development shortens (Ludwig andRowe
1990; Rowe and Ludwig 1991; Abrams et al. 1996). As ex-
pected, diverse taxa show a pattern of countergradient var-
iation in development with along elevation or latitude
(Hodkinson 2005; Keller et al. 2013; fig. 6B in this study).
Therefore, our interpretation assumes that countergradient
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Figure 6: Size at metamorphosis (A) and development rate (B) in relation to growing season duration (days per year at which average local
temperature exceeds the developmental zero temperature of the species) from studies of countergradient variation in amphibians. The ver-
tical axes are in units of pooled standard deviation among replicates within treatments. The lines are fitted curves from the models in table 4.
The color ramp from blue to red corresponds to temperature treatments from cool to warm, and line thickness is proportional to the steep-
ness of the environmental gradient. For each study, the first author and publication year are labeled adjacent to the fitted curves for one
temperature (details of all studies are in table 3).
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variation in development rate is an adaptation to the ab-
breviated growing season in cold climates.
However, the results for body size and growth rate were

different: population divergence was either not associated
with the gradient in season length or showed a trend to-
ward cogradient variation (figs. 3A, 4A). For body size,
other empirical studies of ectotherms along climate gra-
dients show all possible patterns (Blanckenhorn and De-
mont 2004; Hodkinson 2005; Keller et al. 2013; Rollinson
and Rowe 2018; fig. 6A in this study). Blanckenhorn and
Demont (2004) argued that geographic trends in body
size are unpredictable in ectotherms because a short sea-
son favors small size whereas cold temperature induces
large size, and the causal mechanisms are completely in-
dependent. In Abrams et al.’s (1996) model of life-history
evolution under time constraints, the change in optimal
body size at metamorphosis with the length of the grow-
ing season depends on two relationships: how adult fit-
ness scales with size at emergence and how larval survival
scales with larval growth rate. Body size is predicted to be
insensitive to season length when log fitness increases lin-
early with size and larval mortality increases linearly with
growth. Both relationships are probably positive in an-
urans (Gibbons andMcCarthy 1986; Arendt 2003; Lardner
and Loman 2003; Dmitriew 2011), but little is known of
whether they may be linear, accelerating, or decelerating.
For growth rate, the weak cogradient pattern measured

in our experiment may contradict the outcome predicted
by theory, which is that optimal growth rate will decrease
as the growing season becomes longer; this is because the

costs of high growth should be avoided when time con-
straints relax (Abrams et al. 1996). Exceptions occur, how-
ever, if the log-fitness advantages of large body size in-
crease linearly with size (or greater than linearly), in which
case optimal growth rate will then be unrelated to or may
even increase with season length (Abrams et al. 1996).
Empirical evidence for predictions about growth rate

are difficult to evaluate. Dmitriew (2011) cited numerous
studies that report countergradient variation in growth
on latitudinal gradients and hence appear to support the
prediction that optimal growth declines with season length.
But all of these studies calculated growth as the ratio of final
size to development time, which creates several problems.
First, growth rate is not independent of development rate,
and this means that growth may appear to increase with
latitude or elevation simply because the duration of the
larval phase declines so strongly (Merilä et al. 2000; Arm-
bruster andConn 2006; Laurila et al. 2008;Muir et al. 2014).
A second issue is that this growth metric assumes a linear
growth model originating at the origin, which is inappro-
priate for volumetric measures of body size such as mass.
Amphibians andmany invertebrates grownearly exponen-
tially during the first part of the larval phase (Wilbur 1984;
Alford and Jackson 1993; Peacor and Pfister 2006; Man-
sano et al. 2014; Muenst 2015; Meister et al. 2017). Nonlin-
earity is especially obvious in amphibians, which lose sub-
stantial weight late in the larval stage, so that the entire
growth trajectory can be approximated as an exponen-
tial process that damps exponentially (Wilbur and Collins
1973). Incorrectly assuming a linear growthmodel can bias

Table 4: Summary of Bayesian mixed effects models on measures of tadpole performance reported

in studies of countergradient variation in amphibians

Dependent variable

Size at metamorphosis Development rate

Fixed effects (P value):

Temperature treatment 2.3752 (.001) 1.4975 (.001)

Season length 2.0077 (.005) 2.0288 (.001)

Steepness of gradient 2.5136 (.443) 2.9630 (.259)

Temperature# season length 2.0018 (.001) 2.0037 (.002)

Season length# steepness .0031 (.002) .0066 (.001)

Random effects (LR statistic, P value):

Study 24.67 (1,214, .001) 35.75 (2,176, .001)

Measurement error 1.052 (336, .001) 10.52 (1,966, .001)

Sample sizes:

Observations 367 327

Studies 19 17

Species 6 6

Note: Entries in the table are the coefficient with the Markov chain Monte Carlo P value in parentheses (for fixed effects)

and the variance component with the likelihood ratio (LR) statistic and P value on 1 df in parentheses (for random effects).

Fixed covariates are temperature treatment (7C; centered by study), season length (days above TDZ; centered), and steepness of

the gradient (log-transformed days km21; centered). Boldface highlights significant effects. Studies contributing to this anal-

ysis are listed in table 4, and the results are illustrated in figure 6.
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comparison of “growth rate” among populations for which
development time also differs. And a third issue is that em-
pirical data on linear growth are difficult to compare with
theoretical predictions because the models refer to propor-
tional (or relative) growth rate (Rowe and Ludwig 1991;
Abrams et al. 1996). Of the four studies in our literature
survey for which proportional growth rate could be esti-
mated, just one showed any indication of countergradient
variation (in this case, with latitude; Lindgren and Laurila
2009). Available amphibian data therefore do not strongly
demonstrate an increase in intrinsic growth rate in cold
climates. In the end, this may be unsurprising given that
growth rate is subject to trade-offs and environmental in-
fluences other than temperature and duration of the growth
season (Blanckenhorn 2000; Dmitriew 2011; Meister et al.
2017).
We have focused on the swamping effect of gene flow

on adaptation, but what about positive effects? Theory
suggests two ways that gene flow can increase the rate
of adaptation. First, dispersal into marginal populations
can increase population size, augment genetic variation,
and consequently enhance the rate of response to local
natural selection (Holt and Gomulkiewicz 1997; Alleaume-
Benharira et al. 2006; Yeaman and Guillaume 2009; Pole-
chová 2018). This is predicted to occur at low to interme-
diate levels of immigration into populations that are
demographically inviable and subject to genetic drift. Sec-
ond, gene flow can enhance the rate of adaptation if indi-
viduals move nonrandomly, adaptively selecting habitats
for which they are well suited (Armsworth and Rough-
garden 2008; Bolnick and Otto 2013; Edelaar et al. 2017).
This process ismost effective when dispersal is high relative
to the change in selection, such as on a steep environmental
gradient (Bolnick andOtto 2013). Bothmechanisms there-
fore predict that adaptation tracks the phenotypic opti-
mum more closely on steep gradients, which is opposite
to what we observed. Nevertheless, our results do not ex-
clude either possibility: clinal variation in development rate
may be steeper in some instances than it would have been
in the complete absence of gene flow, and this would be dif-
ficult to detect in a comparative study such as ours. Atmin-
imum, however, our study suggests that the swamping im-
pact of gene flow greatly outweighs any positive impacts
and therefore supports the conclusion that the dominant
impact of gene flow along climate gradients is to erode local
adaptation.
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Appendix from J. C. Bachmann et al., “Gene Flow Limits Adaptation

along Steep Environmental Gradients”

(Am. Nat., vol. 195, no. 3, p. E000)

Double-Digest Restriction Site–Associated DNA (ddRAD) Single-Nucleotide Polymorphism
(SNP) Discovery

Divergence at genomic SNPs was used to infer gene flow among populations. We sampled 82 Rana temporaria

populations along the elevational gradient (J. Van Buskirk and A. Jansen van Rensburg, unpublished manuscript),

including the 12 populations from the common-garden experiment and 15 sites along the latitudinal gradient. One egg

from each of 20 clutches was collected at each site; tadpoles were reared in the laboratory and preserved in ethanol when

they reached stage 36.

Genome-wide SNP markers were discovered using a modified version of the ddRAD protocol (Peterson et al. 2012).

We constructed 22 libraries, each containing 48 individually barcoded samples, for single-end sequencing (125 bp) on

an Illumina HiSeq 2500 system (ver. 4). Restriction enzymes were EcoRI and MseI. After individual barcodes were

added and prior to pooling, sample concentrations were normalized to ensure even representation, using Qubit dsDNA

assays (Thermo Fisher Scientific). We demultiplexed reads based on the 5-bp unique barcode and the 4-bp restriction

enzyme recognition site, allowing one mismatch (process_radtags; Catchen et al. 2011).

De novo assembly and variant calling was performed in PyRAD (Eaton 2014). Our pipeline accepted a Phred

quality score of !20 in a maximum of four sites per sequence and then clustered sequences based on ≥94% base pair

alignment. We retained clusters only if they had 15# coverage per individual and occurred in at least four individuals.

The PyRAD variant file was filtered to eliminate SNPs that were genotyped in ≤80% of individuals, had a minor

allele frequency !0.058, had an observed heterozygosity 10.6, or deviated from Hardy Weinberg equilibrium (HWE;

tested with PLINK; Purcell et al. 2007). No pair of loci was strongly or consistently linked (i.e., r2 was never 10.8 in

more than five populations; tested with PLINK). These filters were chosen to maximize the number of individuals and

loci in the data set while minimizing spurious SNPs and loci that may be under selection or deviate from biological

expectations (i.e., HWE and expected heterozygosity). Roesti et al. (2012) show that inclusion of alleles occurring at a

frequency below 5% can bias FST downward. In agreement with Shafer et al.’s (2017) sensitivity analysis, we found

that the amount of missing data (20%–50%) had very little influence on estimates of FST. These procedures produced

1,827 SNPs genotyped in 148 individuals in the 12 Swiss populations (7–20 individuals per population; median, 10) and

2,081 SNPs in 132 individuals in the 15 Fennoscandian populations (2–17 per population; median, 9).

Swiss and Fennoscandian samples were sequenced as separate libraries, and SNP detection was performed separately.

Genotyping was performed separately after testing a combined genotyping approach in PyRAD. The combined data

set identified many fewer loci because the clustering threshold to call loci differed too much from the separate clustering

thresholds within Switzerland and within Fennoscandia. It is possible to optimize clustering thresholds for divergent

data sets, such as in phylogenetic studies, but we elected to analyze the data sets separately because we make no direct

comparison between Switzerland and Fennoscandia at the level of individual markers. Independent PyRAD analysis

produces a better estimate of variation within regions. Quality filtering was also done separately, although the same filters

were applied to both data sets.

Steepness of the Gradient

For each study included in the meta-analysis, we estimated the steepness of the environmental gradient as the difference in

duration of the growing season between the pair of sites with the greatest difference (measured in days) divided by

the geographic distance between the same two sites (measured in kilometers). However, this method was not appropriate

for studies that focused on thermal gradients created by variation in canopy cover within small geographic regions

(Orizaola and Laurila 2009; Richter-Boix et al. 2010, 2015; Edge et al. 2013). The 1-km spatial resolution of the

WorldClim database was too coarse for these studies. Therefore, we estimated the duration of the growing season for

each site in these studies according to the following steps.

q 2020 by The University of Chicago. All rights reserved. DOI: 10.1086/707209
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1. Using data from all studies in table 3, we determined that the season length at a site was predicted accurately

from the mean annual temperature at that site (MAT; 7C), the elevation of the site (elev; km), the developmental

zero temperature for the species (TDZ; 7C), and the annual sum of degree days exceeding TDZ (degr.days; 7C):

Season:length ∼ 1471 6:04 ⋅MAT2 5:52 ⋅ elev2 9:69 ⋅ TDZ 1 0:029 ⋅ degr:days (R2
p 0:981, N p 140

sites; all four independent variables significant at P ! :0001).
2. Orizaola and Laurila (2009), Richter-Boix et al. (2010, 2015), and Edge et al. (2013) reported mean water

temperature during the summer, and these values varied with local features of the site such as canopy cover,

water depth, or proximity to the coast (range of 1.657C in Orizaola and Laurila [2009], 3.67C in Richter-Boix

et al. [2010], 3.767C in Richter-Boix et al. [2015], and 5.77C in Edge et al. [2013]).

3. We used WorldClim data to calculate the MAT averaged across all sites within the study. We then added the

centered mean water temperature to the average MAT to estimate the MAT for each site. The degree days for

each site, at a 1-km spatial scale, was also estimated using WorldClim data.

4. Season length for each site was then predicted using the fitted model given in step 1. For MAT, we used the site-

specific estimate from step 3.
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Figure A1: See next page for legend.
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Figure A1: Patterns of environmental variation and properties of Rana temporaria populations associated with elevation and latitude.

Dark blue symbols are ponds sampled along the elevational gradient in Switzerland as part of a different study (Jansen van Rensburg

2018); the filled blue symbols are the 12 populations included in the laboratory experiment. Dark red symbols are ponds sampled along

the latitudinal gradient in Fennoscandia, including those from Laugen et al. (2003, 2005) and those newly sampled for restriction site–

associated DNA sequencing (fig. 2B). Correlations among environmental variables are given in table A6. A, Calibration of elevation and

latitude against one another with reference to the duration of the growing season. Growing season is the number of days per year with

an average air temperature 16.47C, which is the critical minimum temperature for development in R. temporaria (TDZ; see “Methods”).

Air temperature on the elevational gradient was estimated at 200-m spatial resolution with a model that included longitude, latitude, and

elevation, using distance-weighted temperature measurements from 977 weather stations in the alpine region between 1980 and 1989

(Gugerli et al. 2008). On the latitudinal gradient, air temperature was estimated at 1-km spatial resolution using WorldClim version 2

(Fick and Hijmans 2017). Both estimates were available as monthly means, so we interpolated daily mean temperature with a cubic

spline. The solid line is a regression through both the Swiss and Fennoscandian observations (the two are identical). The lapse rate

estimated from these data is 91.8 m of elevation per degree of latitude. This rate was used to scale the two axes relative to each other in

C–G. B, Estimated predation risk in 22 ponds sampled on the elevational gradient in 2013 (pale blue symbols) and 13 ponds sampled in

2014 (pale red symbols). Some ponds were sampled in both years, and some ponds were the same as those in the laboratory experiment.

Sampling was done 25–30 days after the tadpoles hatched by sweeping a dip net 51 cm wide along the substrate of the pond for a dis-

tance of 2 m (covering 1.02 m2) and then counting and measuring organisms that were captured. On average, 27 such sweeps were made

per pond. Predators included aeshnid dragonfly larvae, libellulid larvae, dytiscid beetle larvae, adult newts (Lissotriton, Mesotriton

alpestris, Triturus cristatus), and adult backswimmers (Notonecta glauca). Predation risk was the sum of the densities of all predators,

weighted by their dangerousness as measured by mortality rates of tadpoles exposed to each predator in outdoor mesocosm experiments

(Van Buskirk and Arioli 2005). The correlation between elevation and the log of predation risk was weak (2013: r p 20:31, P p :17;
2014: r p 0:26, P p :39). C, Effective population size (Ne) estimated by the single-sample linkage disequilibrium method LDNe,

implemented in NeEstimator version 2.1 (Do et al. 2014). We used this estimator because it performed best over a variety of demographic

scenarios evaluated by Gilbert andWhitlock (2015). Bias correction was as described byWaples (2006), and we excluded loci with minor

allele frequency (!0.05). Undefined values of the estimator can occur because the denominator includes the term (r2 2 1=S), where r2 is
the correlation among allele frequencies at pairs of loci and S is the number of individuals sampled. Undefined values were not included in

these analyses. The diameter of the symbol is proportional to the number of individuals sampled. Lines show regressions of N̂e against

elevation or latitude for the 12 Swiss populations used in the experiment (solid blue), all 82 Swiss populations (dashed blue), and all

Fennoscandian populations (solid red). An analysis on the log of N̂ e, including the 12 Fennoscandian and six experimental Swiss popu-

lations for which N̂ e was estimable, revealed no significant effect of growing season duration (estimate p 0:0004,F1, 14 p 0:36,P p :56),
no effect of the number of samples (estimate p 0:0865, F1, 14 p 0:49, P p :50), and no difference between Switzerland and Fenno-

scandia (estimatefenn p 20:547, F1, 14 p 0:54, P p :48). Average N̂e was 291 in Fennoscandia, 231 in all Swiss populations, and 388

in the Swiss populations used in the experiment. N̂e therefore appears to be similar in Switzerland and Fennoscandia. D, Date of ovipo-

sition with respect to elevation and latitude. Swiss oviposition dates were recorded in 2013, and the Fennoscandian dates come from

Laugen et al. (2003, 2005). E, Duration of the growing season declined with elevation and latitude: 7.97 days per 100 m of elevation,

and 7.33 days per degree of latitude. The growing season is defined and temperature data are as described in A. F, Cumulative air tem-

perature sum during the growing season declined with elevation and latitude: 92.6 degree-days per 100 m of elevation, and 69.3 degree-

days per degree of latitude. The units are the cumulative sum of degree-days above TDZ (6.47C). In the Swiss Alps, the highest populations

occur at sites where the 60-day average air temperature sum is zero. Although these sites are cold, they do offer opportunities for devel-

opment and growth because midafternoon temperature can be well above the daily average temperature and tadpoles usually bask in

shallow water on sunny days (see H). G, Average air temperature over a 60-day period beginning on the date of hatching declined with

elevation, particularly above 1,500 m: 0.2267C per 100 m of elevation. Sixty-day air temperature showed a nonlinear relationship with

latitude, reaching a maximum at about 607–647N. The 60-day period was chosen because it includes most or all of the larval stage of R.

temporaria: the larval period was 30–60 days in our laboratory experiment, 20–65 days in the experiment of Laugen et al. (2003), and

about 60 days in natural ponds in Fennoscandia (Laugen et al. 2003). H, Water temperature during the 60-day period beginning on the

date of hatching, measured in 23 ponds on the elevational gradient in Switzerland during 2013. Readings were taken at 30-min intervals

using data loggers that remained in the ponds for several months beginning when eggs were collected, shortly after oviposition. We

floated the loggers at a depth of 5 cm in an effort to sample shallow regions of the pond, although we were not able to position them

exactly at the pond edges where tadpoles frequently occur. Filled symbols are the average daily temperature maximum, open symbols

are the average daily minimum, orange represents sunny days, and gray represents cloudy days. We modeled these data using a linear

mixed effects model in lme4 (Bates et al. 2015). There were fixed effects of elevation, weather (sunny/cloudy), and whether the mea-

surement was the daily maximum or minimum and a random effect modeling the covariance among repeated measures within ponds. A

significant elevation-by-weather interaction indicated that temperature declined with elevation on cloudy days but not on sunny days

(t p 3:92, P ! :0001). Aweather-by-max/min interaction occurred because maximum temperatures were especially high on sunny days

(t p 4:11, P ! :0001). All three main effects were also significant. Correlations between pairs of environmental variables on the Swiss

and Fennoscandian gradients are reported in table A6.
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Figure A2: Geographic autocorrelation in the duration of the growing season differed between the elevational and latitudinal gradients.

A shows that the difference in growing season, defined as the number of days per year with mean temperature 16.47C, between pairs of

Rana temporaria populations rises much more steeply in Switzerland (blue symbols) than in Fennoscandia (red symbols). Each point

represents a pair of populations, lines depict major axis regressions, and shaded regions are 95% confidence intervals obtained by

jackknifing over populations. B is the spatial correlogram of growing season on both gradients, estimated with the vegan package

in R (function mantel.correlog; Legendre and Legendre 2012, ch. 13). The vertical axis is the Pearson correlation coefficient between

above-diagonal elements of two matrices representing the growing season difference and the log of the great circle distance. Pairs of

populations are sorted into five bins of equal sample size. Significant correlations, indicated by the larger filled symbols, were detected

with a permutation test while controlling the false discovery rate for five tests (Benjamini and Hochberg 1995). For the 15 populations

along the latitudinal gradient, spatial autocorrelation in growing season was positive over the first several hundred kilometers, whereas

autocorrelation in Switzerland was weaker and restricted to ∼20–30 km.

Table A1: Populations of Rana temporaria used in the laboratory experiment

Site Latitude Longitude Elevation (m) Surface area (m2) Depth (cm) No. clutches N̂ e (95% CI)

Egelsee 47.251 9.495 445 1,200 65 184 180.1 (48.9 to ∞)

Vilters 47.032 9.446 486 450 60 556 130.0 (42.4 to ∞)

Siechenstuden 46.989 9.551 517 1,100 ≥200 1,006 . . .

Munte 46.728 9.439 648 25,000 ≥200 488 718.3 (70.9 to ∞)

Chapfensee 47.047 9.386 1,033 80,000 1200 880 924.8 (130.4 to ∞)

Schwendiseen 47.188 9.330 1,159 34,000 ≥200 1,927 . . .

Pradaschier 46.784 9.528 1,449 1,000 150 2,730 . . .

Stelsersee 46.965 9.750 1,672 4,700 ≥200 130 194.4 (11.0 to ∞)

Upper Gruensee 46.858 9.787 2,120 380 70 563 . . .

Berninapass 46.407 10.028 2,342 1,000 70 185 . . .

Fluelapass 46.748 9.952 2,388 1,200 120 262 . . .

Muot Cotschen 46.482 9.717 2,542 675 80 152 183.3 (22.7 to ∞)

Note: Locations are given in decimal degrees north and east. Surface area and maximum depth were estimated at spillway depth. The number of clutches was averaged over

two years (2013 and 2014). Effective population size (N̂ e) was estimated with the single-sample linkage disequilibrium method LDNe using NeEstimator version 2.1 (Do et al.

2014; details in fig. A1C). CI p confidence interval.
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Table A2: Populations of Rana temporaria on the latitudinal gradient in Fennoscandia from
which genetic samples were collected in 2014

Site Latitude Longitude Elevation (m) N̂ e (95% CI)

Skåne Horby 3 55.859 13.764 162 193.9 (14.4 to ∞)

Skåne SF 55.558 13.638 51 76.9 (21.0 to ∞)

Skåne 1 55.723 13.287 76 221.9 (62.3 to ∞)

Uppsala Granby 59.878 17.667 26 42.4 (15.5 to ∞)

Uppsala Jarlasa 59.891 17.242 68 58.9 (18.8 to ∞)

Uppsala Osterby 60.179 17.854 36 58.0 (14.9 to ∞)

Umeå Gro 63.792 20.367 30 48.9 (15.5 to ∞)

Umeå Taftea 63.830 20.486 1 288.5 (23.0 to ∞)

Umeå UT3 63.658 20.294 11 . . .

Luleå LT1 65.684 22.213 5 46.3 (23.2 to 381.6)

Luleå LT2 65.750 21.602 42 . . .

Luleå LT3 65.583 22.319 31 1942.7 (37.4 to ∞)

Kiruna Gällivare 67.111 20.656 410 468.7 (59.1 to ∞)

Kiruna Leipojärvi 1 67.052 21.224 279 47.8 (16.7 to ∞)

Kilpisjärvi Finland 69.044 20.805 485 . . .

Note: Locations are given in decimal degrees north and east. Effective population size (N̂ e) was estimated with the single-sample

linkage disequilibrium method LDNe using NeEstimator version 2.1 (Do et al. 2014; details in fig. A1C). CIp confidence interval.

Table A3: Summary of measures of genetic diversity in Rana temporaria populations on the elevational gradient in
Switzerland and the latitudinal gradient in Fennoscandia

Switzerland

Fennoscandia, all populationsPopulation in the experiment All populations

Sample sizes:

No. populations 12 79 13

No. SNP loci 1,826 1,826 2,081

No. individuals per population 12.3 12.4 9.8

Summary statistics (mean5SD):

Proportion of loci polymorphic .845 .071 .805 .080 .865 .100

Hexp .335 .040 .315 .043 .305 .046

Hobs .205 .024 .185 .026 .215 .029

Correlations with elevation/latitude (r and P value):

Proportion of loci polymorphic 2.65 (.022) 2.12 (.207) 2.42 (.149)

Hexp 2.40 (.197) 2.08 (.484) 2.33 (.269)

Hobs 2.15 (.650) .17 (.141) 2.60 (.030)

Note: For this summary, populations were not included if fewer than six individuals were genotyped. SNP p single-nucleotide polymorphism.

Table A4: Matrix of pairwise FST values for the 12 Rana temporaria populations used in the laboratory experiment

egel vilt siec munt csee shwe prad stls gruu bnnp flue mct1

Egelsee (egel) 0 .0315 .0389 .0627 .0302 .0570 .0489 .0369 .0421 .1446 .0644 .0649

Vilters (vilt) . . . 0 .0289 .0475 .0277 .0812 .0366 .0384 .0426 .1220 .0560 .0569

Siechenstuden (siec) . . . . . . 0 .0395 .0355 .1084 .0492 .0464 .0545 .1365 .0571 .0602

Munte (munt) . . . . . . . . . 0 .0541 .1357 .0338 .0522 .0561 .0941 .0419 .0461

Chapfensee (csee) . . . . . . . . . . . . 0 .0744 .0441 .0400 .0396 .1398 .0573 .0580

Schwendiseen (shwe) . . . . . . . . . . . . . . . 0 .1298 .0975 .0919 .2571 .1416 .1395

Pradaschier (prad) . . . . . . . . . . . . . . . . . . 0 .0617 .0629 .1370 .0572 .0592

Stelsersee (stls) . . . . . . . . . . . . . . . . . . . . . 0 .0482 .1507 .0676 .0695

Upper Gruensee (gruu) . . . . . . . . . . . . . . . . . . . . . . . . 0 .1672 .0698 .0693

Berninapass (bnnp) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .1226 .1319

Fluelapass (flue) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .0273

Muot Cotschen (mct1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

Note: Calculations were based on 1,827 single-nucleotide polymorphisms genotyped in 148 individual tadpoles. Locations and elevations of the populations are given in

table A1.
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Table A5: Matrix of pairwise FST values for the 15 Rana temporaria populations sampled in Fennoscandia

Sk.SF Sk.SL Upp.Gr Upp.K Upp.O Um.Gr Um.Ta Um.UT3 LT1 LT2 LT3 Kir.G Kir.L FIN

Skåne Horby 3 (Sk.Ho) .0445 .0251 .1549 .1307 .1400 .1708 .1594 .0919 .1677 .1365 .1642 .1537 .1595 .1845

Skåne SF (Sk.SF) 0 .0427 .1772 .1525 .1572 .1880 .1746 .0944 .1881 .1431 .1798 .1690 .1768 .2005

Skåne 1 (Sk.SL) . . . 0 .1389 .1224 .1241 .1561 .1483 .0601 .1556 .0969 .1405 .1430 .1505 .1607

Uppsala Granby (Upp.Gr) . . . . . . 0 .0861 .1070 .2104 .1946 .1164 .2474 .2093 .2397 .2040 .2213 .2759

Uppsala Jarlasa (Upp.K) . . . . . . . . . 0 .0665 .1834 .1707 .0979 .2186 .1689 .2083 .1796 .1979 .2509

Uppsala Osterby (Upp.O) . . . . . . . . . . . . 0 .1938 .1800 .1081 .2224 .1877 .2167 .1882 .2061 .2572

Umeå Gro (Um.Gr) . . . . . . . . . . . . . . . 0 .0526 .0241 .1389 .1113 .1314 .1229 .1369 .1775

Umeå Taftea (Um.Ta) . . . . . . . . . . . . . . . . . . 0 .0227 .1282 .1014 .1202 .1195 .1298 .1667

Umeå UT3 (Um.UT3) . . . . . . . . . . . . . . . . . . . . . 0 .0644 .1004 .0740 .0560 .0654 .1038

Luleå LT1 (LT1) . . . . . . . . . . . . . . . . . . . . . . . . 0 .0787 .0695 .1091 .1116 .1390

Luleå LT2 (LT2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .0822 .0821 .0900 .1331

Luleå LT3 (LT3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .0998 .1032 .1307

Kiruna Gällivare (Kir.G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .0675 .1237

Kiruna Leipojärvi 1 (Kir.L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 .1186

Kilpisjärvi Finland (FIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

Note: Calculations were based 2,081 single-nucleotide polymorphisms genotyped in 132 individuals. Locations of the populations are given in table A2.
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Table A6: Pearson correlation coefficients between pairs of environmental variables for 82 sites sampled on the elevational
gradient (above the diagonal) and 28 sites from the latitudinal gradient (below the diagonal)

Lat/elev Ovip GS GSsum 60dTemp

Latitude/elevation . . . .950 2.988 2.983 2.852

Oviposition date .968 . . . 2.937 2.932 2.750

Length of growing season 2.987 2.950 . . . .979 .900

Growing season temperature sum 2.965 2.932 .993 . . . .837

Sixty-day average temperature 2.229 2.182 .371 .455 . . .

Note: The first column/row in the table is elevation for the Swiss sites and latitude for the Fennoscandian sites.
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