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Abstract

Background: The identification and study of proteins from metagenomic datasets can shed light

on the roles and interactions of the source organisms in their communities. However,

metagenomic datasets are characterized by the presence of organisms with varying GC

composition, codon usage biases etc., and consequently gene identification is challenging. The vast

amount of sequence data also requires faster protein family classification tools.

Results: We present a computational improvement to a sequence clustering approach that we

developed previously to identify and classify protein coding genes in large microbial metagenomic

datasets. The clustering approach can be used to identify protein coding genes in prokaryotes,

viruses, and intron-less eukaryotes. The computational improvement is based on an incremental

clustering method that does not require the expensive all-against-all compute that was required by

the original approach, while still preserving the remote homology detection capabilities. We

present evaluations of the clustering approach in protein-coding gene identification and

classification, and also present the results of updating the protein clusters from our previous work

with recent genomic and metagenomic sequences. The clustering results are available via CAMERA,

(http://camera.calit2.net).

Conclusion: The clustering paradigm is shown to be a very useful tool in the analysis of microbial

metagenomic data. The incremental clustering method is shown to be much faster than the original

approach in identifying genes, grouping sequences into existing protein families, and also identifying

novel families that have multiple members in a metagenomic dataset. These clusters provide a basis

for further studies of protein families.

Background
Biological sequence databases have continued to see an
expansion in their size due to the large number of genome
sequencing projects in the past few years. A large fraction
of protein predictions submitted to databases are from
microbial sequencing projects. Whole genome sequenc-
ing of bacteria, archaea, and viruses from various environ-

ments has provided clues to their adaptability and
evolution. To-date, there are over 500 completed prokary-
otic genomes, with an additional 800+ in various stages of
completion [1]. However, the microbes that we have thus
far been able to cultivate, study in the laboratory, and
sequence, constitute only a small fraction (estimated to be
<1%) of the microbes that exist in nature. This bottleneck
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is being addressed by the rapidly emerging area of metage-
nomics (or community genomics), where cultivation
independent techniques are used to study the genomic
sequences of organisms in a community [2]. In a typical
metagenomic study, the DNA is extracted from a sample
(collected from an environment of interest) and directly
sequenced (for instance, using shotgun sequencing) [3,4].
Data from various metagenomic studies (for instance, [4-
7]) have provided clues to the roles and interactions the
constituent microbes play in their communities, and also
have pointed to an incredible diversity of these organisms
both at the genomic level and at the protein level. The
recent Global Ocean Sampling (GOS) metagenomic study
[8,9] to explore microbial diversity in the world's oceans,
alone contributed more than 6 million protein predic-
tions to the existing protein databases, thereby more than
doubling the number of the then known proteins; in addi-
tion, these predictions were also shown to be a valuable
resource for protein family studies by virtue of their diver-
sity and novelty.

While metagenomic data are proving to be very useful in
addressing evolutionary and ecological questions relating
to microbial communities, they are also quite challenging
to deal with [2,3,10,11]. Due to the current techniques
used, the source organism of a metagenomic sequence is
not known (unless there is an informative phylogenetic
marker on the sequence). Furthermore, assemblies of
metagenomic sequence data are typically fragmented. Sev-
eral factors influence the assembly quality of a metagen-
omic sample, including the amount of sampling of the
community, sequence coverage of individual organisms,
and strain or sub-ribotype variation in the community
[8,12]. Consequently, a large fraction of the protein
sequences predicted in these data are fragmentary. Fur-
thermore, gene-finding is also made challenging due to
the presence of organisms that have varied GC composi-
tions, codon biases etc. [10]. Several recent works have
addressed these various challenges, including assembly
[8], binning [13], gene identification [14,15], and protein
classification [16].

The classification of proteins into families (usually based
on their sequence similarity) serves the basis for further
analyses of these families, including their structure and
function [17,18]. Proteins are grouped together either on
the basis of their domains [19,20] or on their full
sequences [9,21].

In this paper, we present a computational improvement
to a sequence clustering method that we introduced previ-
ously to analyze large microbial metagenomic datasets,
and that was used in the GOS study [9]. This method
could be used both to identify protein-coding genes in
metagenomic data containing prokaryotic, viral and

intron-less eukaryotic genomes, and to group related
sequences into families (based on matches to the full
sequence). However, this method requires the availability
of similarities for all sequence pairs. This was computed in
[9] using a BLASTP search [22], which becomes prohibi-
tively expensive with the ever increasing amount of
metagenomic sequence data that are being generated; in
fact the all-against-all BLASTP searches of the 28.6 million
sequences analyzed in the GOS study [9] required over 0.5
million CPU hours (on 3.06 GHz processors). In this
paper, we present an incremental clustering approach that
is much faster than the original approach. It does not use
the all-against-all approach, but at the same time, pre-
serves the homology detection capabilities of the earlier
method. The method described here is currently used in
CAMERA [23].

Implementation
Previous approach

We first provide a summary of our original clustering
approach and the data sets used [9] so as to provide con-
text to the method described in this paper. The original
approach was intended to analyze the GOS microbial
metagenomic data in the context of a comprehensive set
of known proteins. Thus, data from other sources,
namely, National Center for Biotechnology Information
(NCBI)'s non-redundant amino acid database [24],
NCBI's Prokaryotic Genome sequencing projects (PG)
[24], Ensembl [25], and TIGR Gene Indices (TGI-EST)
[26], were also included in the study. The input to the
clustering consisted of full length and partial length
amino acid sequences from these various data sources. For
the nucleotide sequence sets GOS, PG, and TGI-EST, the
corresponding amino acid sequence sets consisted of six
frame translations, also known as Open Reading Frames
(ORFs), identified on the nucleotide sequences. Only
ORFs of length 60 amino acids or more were used in the
study. To accommodate partial nucleotide sequences (in
GOS and TGI-EST), the standard ORF definition was
extended so that an ORF is bracketed by either a start
codon or the start of the nucleotide sequence, and by
either a stop codon or the end of the nucleotide sequence.

An all-against-all BLASTP compute was used to identify
the pairwise sequence similarity used for the clustering.
Given the size of the combined dataset (28.6 million
amino acid sequences), for efficiency purposes, the clus-
tering proceeded in a series of steps. First, a non-redun-
dant set of sequences was identified from the combined
data set. This step used pairwise matches with 90% iden-
tity (or 98% similarity) covering at least 95% of the
shorter sequence length. In the second step, pairwise
matches covering at least 80% of the longer sequence
length were used to construct a graph of non-redundant
sequences, and dense subgraphs were identified in this
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graph. Each dense subgraph is referred to as a core cluster,
and corresponds to a sub-family of similar sequences. PSI-
BLAST profiles [27] and FFAS profiles [28] were con-
structed for core clusters containing at least twenty
sequences (using the longest core cluster sequence as
query). The PSI-BLAST profiles were used to recruit single-
tons to core clusters, and the FFAS profiles were used to
compare and merge related core clusters into final clus-
ters.

Two filters were applied to the resulting final clusters to
separate clusters of protein coding sequences from clusters
of spurious sequences. The first filter (referred to here as
the shadow ORF filter) identified shadow ORFs, that is,
spurious ORFs that overlap with protein coding ORFs. The
second filter (referred to here as the Ka/Ks filter) identified
clusters of conserved but non-coding ORFs. These
sequences show a lack of selection at the codon level and
can be identified using their nonsynonymous to synony-
mous substitution ratios (Ka/Ks test) [14,29,30]. The two
filters are also used in the incremental clustering method
and will be described in more detail later.

Input and strategy

The incremental clustering method has two inputs, a set C
of (previously computed) protein clusters and a set S of
amino acid sequences. S is a set of amino acid sequences
from some protein resource, or in the case of metagen-
omic or genomic data analysis, S is the set of ORFs (length
≥60 amino acids is used here) identified from the nucle-
otide sequences (reads or contigs or scaffolds or chromo-
somes) as described earlier. Our method identifies and
groups protein coding sequences into the existing protein
clusters. In addition, it identifies novel protein families
that have multiple members in S.

The incremental clustering method does not compare all
sequences against each other. It does however incorporate
varying homology detection capabilities. We use existing
tools cd-hit (and its variant cd-hit-2d) [31-33], PSI-BLAST
[27], and FFAS [28] to perform sequence-sequence, pro-
file-sequence, and profile-profile comparisons respec-
tively. Cd-hit is a fast sequence clustering algorithm that
uses shared word counts as a filter to group highly similar
sequences. Each cd-hit cluster is summarized by a cd-hit
representative sequence, which, by construction, is also the
longest sequence in the cluster. Cd-hit-2d, a variant of cd-
hit, uses the same approach to identify sequences in a
given set that are within a user-specified threshold to
sequences in another set.

In the first stage of our incremental clustering method, cd-
hit-2d is used to identify and recruit sequences in S that
have high similarity (60% identity is used here) to
sequences in C. In the second stage, the remaining

sequences in S are clustered using cd-hit (at 60% identity).
For both cd-hit-2d (Stage 1) and cd-hit (Stage 2), the 60%
identity clustering is achieved in multiple steps rather
than a single step – a high threshold 90% identity cluster-
ing step followed by a lower threshold 75% identity clus-
tering step, and a final 60% identity clustering step. This is
done for two reasons (efficiency and quality). Firstly, cd-
hit and cd-hit-2d run much faster at a higher threshold
(such as 90%) than at a lower threshold (60%). If S con-
tains many sequences that have high identity to those in
C, the initial faster high identity threshold clustering can
recruit many of these sequences, thereby reducing the size
of following slower runs. Secondly, in the current imple-
mentation of cd-hit, there are two modes for assigning a
sequence to a cluster – assigning to the first cluster that
meets the threshold (but which is not necessarily the best
matching cluster for the sequence), and assigning to the
best matching cluster. The current parallel version of cd-
hit does not have the later option (which is the preferred
option) implemented yet. In its absence, the multi-step
approach provides a way to approximate the desired qual-
ity.

In the final stage, PSI-BLAST profiles for clusters in C and
S are used to recruit sequences to these clusters. In addi-
tion, FFAS cluster profiles are used to merge groups of
related clusters. As clusters get larger and more diverse
with the addition of new data, cluster profiles provide bet-
ter homology detection ability (compared to picking clus-
ter representative sequences), and this is the rationale for
using PSI-BLAST and FFAS profiles in the final stage of the
incremental clustering. As in the original method, we also
detect and remove clusters containing spurious
sequences.

Cluster organization and definitions

We define a sequence s to be redundant if it has a match
with ≥90% identity to a longer sequence and this match
covers ≥95% of the length of s; otherwise s is non-redun-
dant. Following our previous work, every sequence is asso-
ciated with a core cluster and a final cluster. One or more
core clusters are grouped into a final cluster based on their
FFAS profile matches. In the discussions below, a core
cluster is labeled big if has ≥20 non-redundant sequences.
Each big core cluster has a PSI-BLAST profile and an FFAS
profile associated with it; currently, both profiles are com-
puted using the longest sequence as query.

We assume that each cluster in C is made of one or more
core clusters. We use C-X to denote the set of all cd-hit rep-
resentatives computed from core clusters in C at the X%
identity level. For cd-hit computes at the 90% identity
described below, it is assumed that the matches are rela-
tive to the length of the shorter sequence, where as for
lower thresholds (like 75% and 60% identities), it is
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assumed that the matches cover at least 80% length of the
longer sequence.

Incremental clustering method

The incremental clustering method is shown in Fig. 1. It
has three main stages.

Stage 1: (Fast recruitment of S to C)

In this stage, sequences in S that are quite similar to
sequences in C-90 are identified. For reasons discussed
earlier, this is carried out in three steps. Sequences in S are
first recruited to sequences in C-90 using cd-hit-2d at 90%
identity. Subsequently, as yet unrecruited sequences in S
are recruited to C-90 at 75% identity and then at 60%
identity using cd-hit-2d. The sequences from S that are
recruited in the previous two steps are then clustered again
at 90% identity to identify the redundant sequences
within them. After the recruitment step, PSI-BLAST and
FFAS profiles are constructed for newly formed big core
clusters in C. Also, profiles for those existing big core clus-
ters that recruited sequences in S are refined. Finally, the
shadow ORF filter is applied to S to identify and remove
those unrecruited sequences in S that overlap (on the
source read or contig or scaffold or chromosome) with the
recruited sequences.

Stage 2: (Clustering remaining sequences)

The purpose of this stage is to identify (core) clusters of
similar sequences that remain in S after stage 1. Unre-
cruited sequences in S from the previous step are clustered
successively at 90%, 75%, and 60% identities using cd-hit
to produce core clusters. If S is a set of ORFs, then the
shadow ORF filter and the Ka/Ks filter are used to identify
clusters of spurious sequences. Finally, PSI-BLAST and
FFAS profiles are computed for all newly formed big core
clusters that are not labeled as spurious.

Stage 3: (FFAS merging and PSI-BLAST recruitment)

Big core clusters are compared using their FFAS profiles.
The comparisons are used to group these core clusters into
final clusters. This is done by constructing a graph with
nodes representing big core clusters. An edge exists
between two nodes if the corresponding core clusters have
a profile-profile match meeting a certain FFAS score
threshold. We set the score thresholds as a function of the
profile length, with profile lengths ≤500 set a threshold of
-15, lengths >2000 set a threshold of -35, and lengths in
between having thresholds between the two values. Each
connected component in the constructed graph corre-
sponds to a final cluster. Finally, PSI-BLAST profiles are
used to recruit smaller clusters (including singletons) to
big core clusters. A sequence is recruited to a big core clus-
ter if the profile-sequence match has E-value ≤ 1e-8
(assuming database size of 1e9) and covers ≥75% of the
sequence. A small cluster is recruited to a big core cluster

if a majority of its sequences are recruited via PSI-BLAST
to this big core cluster.

Shadow ORF filter

In Stage 1, each unrecruited ORF in S that overlaps (on the
source read or contig or scaffold or chromosome) with a
recruited ORF is labeled as shadow and removed. Two
ORFs on the same strand are considered overlapping if
their intervals overlap by at least 60 bps. Two ORFs that
are on the opposite strands are considered overlapping
either if their intervals overlap by at least 50 bps and their
3' ends are within each others intervals, or if their intervals
overlap by at least 120 bps and the 5' end of one is in the
interval of the other. In Stage 2, a cluster is labeled as con-
taining shadow ORFs if at least a third of its sequences
overlap (with the same ORF overlapping criteria as
before) with sequences in a bigger cluster.

Ka/Ks filter

We use the Ka/Ks filter as described in [9]. For most pro-
teins, Ka/Ks << 1, and for proteins that are under strong
positive selection, Ka/Ks >> 1. A Ka/Ks value close to 1 is
an indication that sequences are under no selective pres-
sure and hence unlikely to code for proteins [29,34].
Weakly selected but legitimate coding sequences can have
a Ka/Ks value close to 1. These are identified by using a
model in which different partitions of the codons experi-
ence different levels of selective pressure. A cluster is
rejected only if no partition is found to be under purifying
selection at the amino acid level. The Ka/Ks filter is imple-
mented as follows. Sequences in the cluster are first
aligned with MUSCLE [35] and a strongly-aligning subset
of sequences is selected for the Ka/Ks analysis. The codeml
program from PAML [30,36] is run using model M0, to
calculate an overall (i.e. branch- and position-independ-
ent) Ka/Ks value for the cluster. If Ka/Ks ≤0.5, the cluster
is considered as passing the Ka/Ks filter (i.e. very likely
coding). If not, the cluster is further examined by running
codeml with model M3. This partitions the positions of
the alignment into three classes that may be evolving dif-
ferently (typically, a few positions may be under positive
selection while the remainder of the sequence is con-
served). A likelihood ratio test is applied to check if M3
explains the data significantly better than M0 [36]. If one
of the resulting partitions has Ka/Ks ≤ 0.5 and comprises
at least 10% of the sequence, then the cluster is considered
as passing the Ka/Ks filter. If not, it is labeled as containing
spurious ORFs.

Clustering output

Final clusters that contain at least two non-redundant
sequences and are not labeled as spurious (by one of the
filters) are referred to as good clusters, and only sequences
in these clusters are labeled as predicted proteins. Final
clusters that contain only one non-redundant sequence
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Flow chart of the incremental clustering methodFigure 1
Flow chart of the incremental clustering method.
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but are not labeled as spurious, while not considered in
the final statistics on predicted proteins, are kept around
for future clustering.

Results and Discussion
The sequences and clustering results from our previous
study [9] that included NCBI-nr, Ensembl, TGI-EST, PG,
and GOS, are used here as the starting point. Only those
clusters (including those containing only one non-redun-
dant sequence) that were not labeled as spurious are con-
sidered here. These clusters constitute the set C. We will
refer to C as CAMERA clusters since this is currently avail-
able via the CAMERA effort [37]. This data set was
updated using the incremental clustering method with all
sequences that were submitted to various public protein
databases since the data freeze used for [9]. The new
sequences were collected via the Protein and Nucleotide
Data Archive (PANDA) effort [38]. There were 2,955,580
amino acid sequences (with length ≥10 amino acids) in
the release we used. In addition, the published data from
the Hawaii Ocean Time series station ALOHA (HOT/
ALOHA) metagenomic study [7] was also used. This study
generated 65,674 sequencing reads from seven different
ocean depths. We called 377,570 ORFs (length ≥60 amino
acids) on these reads and this was also made available as
input to our incremental clustering method. Thus the set
S consisted of 3,333,150 amino acid sequences.

The hardware infrastructure consisted of a compute grid
with 24 nodes, each with dual Xeon(TM) CPU 3.20 GHz,
4GB RAM; a total of 40 processors were available, with a
varying number of them being used in the different stages
of the incremental clustering.

Since the various steps of the incremental clustering proc-
ess have different run time complexities, the actual total
time (and also the individual component times) taken in
an incremental update is dependent on the input data and
their recruitment to the existing cluster data. An update of
the CAMERA clusters with the nearly 3.3 million PANDA
and HOT/ALOHA sequences took a total of 36.5 CPU
days (or 877 CPU hours). For this dataset, the majority of
the time was spent in the PSI-BLAST recruitment step (16
CPU days), followed by the cd-hit computations (13.9
CPU days) and the FFAS profile comparisons (6.5 CPU
days). In contrast, an all pair sequence similarity compu-
tation of the 3.3 million sequences alone, via an all-
against-all BLASTP search, on the same hardware is esti-
mated to take 1,500 CPU days (or 36,000 CPU hours).

We used simulated data to evaluate the gene identification
capability of the clustering approach on unassembled
read sequences (with lengths corresponding to those of
sequences generated by the Sanger method [39]). An eval-
uation of a homology-based gene identification method
(such as ours) in a metagenomic setting has the additional
complexity of accurately modeling the population struc-
ture of the microbial community. This is relevant in the
context of identifying novel protein families that may be
specific to a particular taxonomic group represented in the
metagenomic sample. Microbial population structures
vary from environment to environment, and even over
time in a given environment. For the current evaluation,
we chose to avoid the population modeling issue and
directly address gene identification on fragmentary
sequences. Sequence reads were generated from seventeen
recent genome projects (Table 1). Data from these

Table 1: Sensitivity and Specificity of gene identification using the incremental clustering method.

Genome Kingdom %GC %Sn %Sp

Acaryochloris marina MBIC11017 B 47.2 70 96.4

Acidobacteria bacterium Ellin345 B 58.3 68.3 95.9

Acidiphilium cryptum JF-5 B 67.9 80.9 84

Acinetobacter baumannii ATCC 17978 B 38.9 80.6 95.5

Alcanivorax borkumensis SK2 B 54.7 84.7 97.7

Bacteroides vulgatus ATCC 8482 B 42.2 73.3 97

Burkholderia thailandensis E264 B 67.2 81.1 87.5

Caldivirga maquilingensis IC-167 A 43 67.3 97.8

Candidatus Methanoregula boonei 6A8 A 54.5 67.1 95.6

Candidatus Pelagibacter ubique HTCC1062 B 29.6 98.1 98

Fervidobacterium nodosum Rt17-B1 B 34.9 76.3 97.1

Francisella tularensis subsp. Holarctica B 32.1 83.2 87.7

Hyperthermus butylicus DSM 5456 A 53.7 61.3 94

Lactobacillus salivarius UCC118 B 32.9 78.4 93

Methanococcus aeolicus Nankai-3 A 30 73.8 97.8

Staphylothermus marinus F1 A 35.7 63.8 96.7

Thermofilum pendens Hrk 5 A 57.6 63.9 97.4

Average 74.8 94.7

A-Archaea, B-Bacteria, Sn-Sensitivity, Sp-Specificity.
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genome projects were not available at the time of con-
struction of the CAMERA clusters [9]. The list in Table 1,
however, includes both closely related and distantly
related organisms to those that contributed to the CAM-
ERA clusters. Sequence reads of length 800 bp were ran-
domly generated from each genomic sequence; a 2×
coverage (rather than 1× coverage) was assumed in the
generation so as to sample a larger number of genes in the
genome. ORFs (i.e. six frame translations) were generated
from these reads using translation table 11; only ORFs of
length ≥60 aa were considered. This resulted in a total of
513,267 ORFs from the seventeen genome projects. Out
of these, 160,731 ORFs overlapped (in the same reading
frame) with a gene; we refer to this set as the reference set.
The 513,267 ORFs constituted the input S to the incre-
mental clustering method (with C being the CAMERA
clusters). Our method labeled 127,256 ORFs as protein
coding, of which 119,864 were in the reference set. A total
of 2,829 ORFs (1.7%) from the reference set were incor-
rectly labeled as spurious by the filters.

Our method has an average specificity of 94.7% and an
average sensitivity of 74.8% on these genomes (Table 1).
The evaluation highlights several aspects of the method.
First, our method, by design, has high specificity. This is a
result of the conservative constraint that we use to label an
ORF as a predicted protein (namely, that it must belong to
a cluster that contains at least two non-redundant
sequences and that is not labeled as spurious by the fil-
ters). Second, the sensitivity of our homology-based
method in detecting a new organism's genes is dependent
on the representation in the existing protein clusters C
(and in the set S) of this organism's taxonomic neigh-
bours. For instance, our method has very high sensitivity
(98.1%) on Candidatus Pelagibacter ubique HTCC106 [40],
an alphaproteobacteria that is present in ocean surface
waters and is well represented in the GOS data (even
though an assembly of this organism's genome could not
be inferred from the GOS data due to various reasons
including the tremendous sub-ribotype variation) [8]. On
the other hand, our method has a much lower sensitivity
(68.3%) on a soil bacterium Acidobacteria bacterium
Ellin345 [41], which belongs to the class acidobacteria;
this class is not well represented in C. The sensitivity num-
bers of our method on these genomes also have to be
placed in the context of the number of ORFans [42] seen
in newly sequenced genomes. ORFans are protein predic-
tions that have no homology to known proteins. They
have been seen to account for 25–30% of protein predic-
tions in newly sequenced prokaryotic genomes [43]. Our
method will not label ORFan sequences as proteins since
they will fall into singleton clusters. The number of
ORFans will no doubt decrease as more related genomes
from similar environments are sequenced. Our approach
retains these sequences for future clustering. Finally, Table

1 also shows lower sensitivity numbers for archaea
(66.2%) compared to bacteria (79.5%). This is a conse-
quence of a much sparser sampling (i.e. genomes
sequenced) of archaea compared to bacteria, and there-
fore a relatively smaller representation of archaea in the
existing protein clusters C.

We also compared the performance of our clustering
approach to that of a non-homology based genefinder
(MetaGene [15]) using two metagenomic datasets,
namely, the GOS data and the HOT/ALOHA data. From
the input 17,422,766 GOS ORFs [9], our clustering
approach identifies 6,121,630 ORFs as protein coding
whereas MetaGene (run on the GOS assemblies that
served as the source of the ORF set) produces predictions
that can be mapped (i.e. overlaps with and is in the same
reading frame) to 6,424,656 GOS ORFs. The two sets have
5,647,789 predictions in common (that is, 92% of cluster
predictions and 88% of MetaGene predictions). We ana-
lyzed how many of the predictions unique to each
method had matches to models in the Pfam database
[19], since this database is widely used for functional
annotation. Of the 776,867 MetaGene-only predictions,
32,004 (4%) have matches (with trusted cutoffs and E-
value ≤ 1e-3) to Pfam models, whereas of the 473,841
clustering-only predictions, 100,914 (21%) have matches
to Pfam models. On the HOT/ALOHA data, 57,333 of the
input 377,570 ORFs are labeled as protein coding by our
clustering. MetaGene (run on the read set that served as
the source of the ORF set) produces predictions that can
be mapped to 71,599 ORFs. There are 46,691 predictions
in common to the two sets (that is, 81% of cluster predic-
tions and 65% of MetaGene predictions). Of the 24,908
MetaGene-only predictions, 1387 (6%) of the sequences
have matches to Pfam models, whereas of the 10,642 clus-
tering-only predictions, 3311 (31%) have matches to
Pfam models.

Comparisons to MetaGene on the two datasets reveal
common patterns. While both approaches agree on a large
fraction of their predictions, MetaGene makes more pre-
dictions than our clustering approach, and this can be
explained as follows. While it is possible for MetaGene to
identify novel families even if only a single member is
present, our conservative approach requires that multiple
(and non-redundant) members of a novel family are
present. Thus, we do not make protein predictions for
these sequences that fall into singleton clusters. As previ-
ously stated, we do, however, retain these ORF sequences
for future clusterings and resolution. A comparison of pre-
dictions unique to each method using Pfam models
reveals that a larger fraction of predictions unique to our
approach (compared to Metagene's) have Pfam matches.
This is a consequence of using a homology-based
approach.
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We evaluated our clustering methodology in its ability to
classify sequences into protein families. The lack of avail-
ability of an exhaustive data set that can be used as a gold
standard to evaluate large scale computational protein
classification (based on full length sequences), presents its
own challenges. For our evaluations we used the domain
architecture based approach [9], which is an attempt to
get at the full length matches using the Pfam domain
matches. We used the Pfam results from [9] together with
Pfam results on the HOT/ALOHA set, and restricted our
analysis to those clusters that contain sequences with
Pfam matches. Briefly, the domain architecture for a
sequence is defined to be the set of all Pfams that have
(trusted) matches to it. Two sequences are defined to be
unrelated if their domain architectures each have at least
one Pfam that is not present in the other's domain archi-
tecture. We also consider here a strict version, where two
sequences are considered unrelated if either their domain
architectures have no Pfams in common, or when they do,
then they each have at least one Pfam that is not present
in the other's domain architecture. Using these defini-
tions, we plotted the cumulative fraction of (final) clusters
against the percentage of unrelated pairs they contain (Fig.
2). These curves show that our clustering is quite consist-
ent, that is, the clusters have a low fraction of unrelated
sequence pairs; 98% of all clusters have no unrelated pairs

(this number drops to 94% if only those clusters with at
least five Pfam-match containing sequences are consid-
ered). For the strict version, 91% of all clusters have no
unrelated pairs (this number drops to 79% if those only
clusters with at least five Pfam-match containing
sequences are considered). We also evaluated how often
domain architectures are split across (final) clusters (Fig.
3) and found that over 80% of the domain architectures
appear in three or fewer clusters.

From the input sequence set, 2,464,046 PANDA
sequences (83%) and, as mentioned previously, 57,333
HOT/ALOHA sequences (15%) are labeled as predicted
proteins. The incremental clustering update resulted in
284,297 good clusters; see Table 2 for cluster size distribu-
tion. These final clusters contained a total of 12,725,982
sequences, with nearly 88% of the sequences in 17,164
clusters that contain at least twenty non-redundant
sequences. Fig. 4 shows the Log-Log plot of final cluster
size distribution to be consistent with a power law. As
noted in previous studies [9,44], the observed curve has
an inflection point showing differing power laws govern-
ing the size distribution of very large clusters compared to
the rest.

The PANDA sequences that are labeled as predicted pro-
teins (i.e. belonging to good clusters) have a great deal of
redundancy. Of these 2,464,046 sequences, 1,528,382
(62%) are marked as redundant, with 1,353,885 (55%)

Number of clusters that domain architectures appear inFigure 3
Number of clusters that domain architectures 
appear in. For the bottom curve (labeled All), all domain 
architectures were considered whereas for the top curve a 
domain architecture is considered as appearing in a cluster 
only if it has at least five instances in that cluster. In both 
cases, nearly 61% of domain architectures appear in a single 
cluster, and over 80% of domain architectures appear in at 
most 3 clusters.
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sequences were considered. For the later curve, it is seen 
that 94% of the reported clusters have no unrelated pairs. 
The bottom two curves show the trends for the "strict" ver-
sion of unrelatedness.
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being marked as redundant by existing cd-hit representa-
tives in the CAMERA clusters and the remaining being
marked as redundant by other PANDA sequences. An
examination of those PANDA sequences that are not
labeled as predicted proteins by our clustering reveals that
379,021 (77%) have a hypothetical or unknown in their
sequence headers; these sequences may be organism spe-
cific proteins, which our current method will not identify,
or they may be spurious protein predictions submitted to
the public databases. The good clusters containing the
largest number of PANDA sequences include reverse tran-
scriptases, cytochromes, ABC transporters, and dehydro-
genases (see Table 3).

Compared to the PANDA set, the HOT/ALOHA predicted
protein sequences show a lesser amount of redundancy.
7,958 sequences (14%) are marked as redundant, with
6901 (12%) being marked as redundant by existing cd-hit
representatives from the CAMERA clusters. A breakdown
of the predicted proteins by their sample depths reveals
differential abundances of many protein families. Pro-
teins involved in bioluminescence and families of trans-
posases and integrases are more abundant with depth
whereas proteorhodopsins and photolyases are more
abundant in the surface and near surface water samples.
These differences are a reflection of the environmental fac-
tors that shape microbial communities and have been
noted previously [7]. Table 4 lists the clusters containing
the largest number of HOT/ALOHA sequences.

In [9], we reported on novel protein clusters (the so called
Group II clusters) from the GOS data that could not be
linked to any of the then known families (via any of the
remote homology methods used). We explored these clus-
ters in the context of the current incremental data set. The
PANDA set included protein predictions from recently
sequenced microbes, including several marine prokaryo-
tes that were sequenced by the Gordon and Betty Moore
Foundation sponsored projects [45]. 552 of the originally
labeled Group II clusters had at least one PANDA or HOT/
ALOHA sequence, with 35 containing ≥10 of them. Table
5 lists the genome projects present in the PANDA set that
have the largest number of sequences in these clusters.
This table shows that most of them are Moore sponsored
projects. It may not be surprising that most of the recruit-
ment to the GOS-only clusters is from new microbial
sequences from the marine environment. Nevertheless,
these recently sequenced genomes can provide useful
anchors to carry out further analyses of these protein fam-
ilies that could eventually provide clues to their functions
and evolution.

Table 2: Cluster size distribution and the distribution of sequences in these clusters

Cluster size #clusters #sequences #non-redundant sequences

2–4 208,096 794,592 521,898

5–9 43,453 428,469 273,694

10–19 15,584 346,415 206,188

20–49 4,053 234,338 143,438

50–99 4,641 547,862 331,773

100–199 3,546 870,406 491,229

200–499 2,600 1,381,135 806,560

500–999 961 1,133,749 669,420

1,000–1,999 698 1,768,532 1,002,815

≥2,000 665 5,220,484 2,909,845

Total 284,297 12,725,982 7,356,860

The size of a cluster is defined as the number of non-redundant sequences in it.

Log-Log Plot of Cluster Size DistributionFigure 4
Log-Log Plot of Cluster Size Distribution. The x-axis is 
the logarithm of the cluster size C and the y-axis is the loga-
rithm of the number of clusters of size ≥C. Logarithms are in 
base 10. The blue curve is the observed data, which is con-
sistent with a power law. There is an inflection point around 
C = 2500 (a value of 3.4 on the x-axis). The two red lines are 
the least square fit to C ≤ 2500 and C > 2500, respectively. 
The former line is y = -0.733*x + 5.517, with R2 = 0.995, and 
the later line is y = -1.686*x + 8.813, with R2 = 0.992.
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The incremental clustering data is available for download
from the Publications and Data section at CAMERA [37].

Conclusion
We presented an incremental clustering method that is a
computational improvement to an earlier method to
identify and classify proteins in large microbial metagen-
omic datasets. The resulting clusters can serve as the basis
for further analyses including functional annotation and
evolutionary studies of different protein families.

Our method can be applied to metagenomic data sets that
contain prokaryotes, viruses, and intron-less eukaryotic
genomes. It has been applied to data generated by the
Sanger sequencing technology [39], where current read
lengths are ~800 bp. Innovations in sequencing technolo-
gies have resulted in several recent approaches that are
cheaper and produce more sequence data (per run) com-
pared to Sanger sequencing [46]. These next generation
sequencing (NGS) methods, including the pyrosequenc-
ing based technology of 454 Inc [47] that currently pro-
duces reads of length ~250 bp, have higher sequence read
error rates (as much as 3%). The high error rates can result
in insertions or deletions in the nucleotide sequence that
produce shifts in the reading frame, thereby adding to the
complexity of the gene identification process. The ORF

generation based method described in this paper cannot
be directly applied to these read data. They could, how-
ever, be applied to assembled contigs that have high cov-
erage, and subsequently much smaller error rates. We are
also currently developing an incremental clustering
approach that does not require explicit generation of six
frame translations to identify genes from these data. The
extent and accuracy of gene calling and protein classifica-
tion on data generated by other NGS methods that pro-
duce shorter reads (30–100 bp) also needs to be explored.

An evaluation of our clustering method in identifying
genes showed that the method has high specificity. The
sensitivity of the method can be increased by developing
ORF confidence measures (based on GC composition and
codon usage) [48] for sequences in singleton clusters. We
also compared the performance of our clustering method
to MetaGene in identifying genes in metagenomic data-
sets. While MetaGene makes more gene calls and is fast,
our method takes a more conservative approach to identi-
fying protein coding sequences (by requiring multiple evi-
dence) and at the same time, also groups related
sequences into families. Based on an evaluation using the
Pfam database, we also found that, compared to Meta-
Gene, our homology-based method tends to pick up a
larger fraction of sequences with matches to known pro-

Table 4: Clusters recruiting largest number of HOT/ALOHA sequences

Cluster ID # sequences Process, Protein Family

CAM_CL_49 562 Metabolism, short chain dehydrogenase

CAM_CL_399 368 Metabolism, Sulfatase

CAM_CL_26 338 electron transport, Acyl-CoA dehydrogenase

CAM_CL_1239 314 metabolism, AMP-binding enzyme

CAM_CL_2568 312 transport, ABC transporter

CAM_CL_1581 274 bioluminescence, methanogenesis, Luciferase-like monooxygenase

CAM_CL_4294 240 nucleotide-sugar metabolism, NAD dependent epimerase/dehydratase family

CAM_CL_1593 235 metabolism, CoA-transferase family III

CAM_CL_357 227 Tetratricopeptide repeat

CAM_CL_333 225 lignin biosynthesis, Zinc-binding dehydrogenase

Table 3: Clusters recruiting largest number of PANDA sequences

Cluster ID #sequences #non-redundant sequences Description

CAM_CL_2057 20,508 24 Reverse transcriptase (HIV)

CAM_CL_1132 18,882 1,406 Cytochrome c oxidase subunit I

CAM_CL_2568 15,405 6,091 ABC transporter

CAM_CL_4367 15,228 771 Cytochrome b

CAM_CL_49 14,751 7,389 Short-chain dehydrogenase

CAM_CL_3510 13,255 5,173 Immunoglobulin

CAM_CL_2630 13,140 3,297 Envelope glycoprotein

CAM_CL_160 13,054 3,897 Kinases

CAM_CL_4556 12,403 6,345 Response regulator

CAM_CL_481 12,078 5,477 Transcription regulator

Column 3 hints at the extent of redundancy in the PANDA set.
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tein families. Thus, a metagenomic annotation system
will benefit from making use of both types of approaches.

Future modifications to improve the specificity and sensi-
tivity of the clustering method will include alternate ways
of constructing PSI-BLAST and FFAS profiles (for instance,
using a centroid sequence as a query, rather than the cur-
rently used longest sequence, to construct profiles, and
possibly representing core clusters that begin to show a lot
of divergence, with multiple profiles), and also
approaches to detect and handle over- and under- cluster-
ing. Even though we have presented our approach as an
analysis tool for microbial metagenomic data, it is also
applicable to analyzing finished or nearly finished
prokaryotic genome projects. The clustering information
presented here will be periodically updated with data
from newer prokaryotic genome and metagenome
projects. Cluster annotation and linking to other already
existing valuable protein resources, is currently being
done, and will also be made available.

Availability and requirements
Cd-hit, PSI-BLAST, FFAS, MUSCLE, and PAML are impor-
tant components of our incremental clustering approach.
They are all published methods, and their availability and
requirements are described at their respective homepages:
Cd-hit http://www.bioinformatics.org/cd-hit/, PSI-BLAST
http://www.ncbi.nlm.nih.gov/, FFAS http://ffas.burn
ham.org/, MUSCLE http://www.drive5.com/muscle/ and
PAML http://abacus.gene.ucl.ac.uk/software/paml.html.
The shadow ORF filter code and the Ka/Ks filter code are

available for download from the Publications and Data
section at CAMERA http://camera.calit2.net. Operating
system: Linux; Programming languages: Perl and C;
License: GNU GPL.
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