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Gene knockout of Zmym3 in mice arrests
spermatogenesis at meiotic metaphase with defects in
spindle assembly checkpoint

Xiangjing Hu1,2,5, Bin Shen3,5, Shangying Liao1,5, Yan Ning1,2, Longfei Ma1,2, Jian Chen1,3, Xiwen Lin1, Daoqin Zhang1,2, Zhen Li1,2,

Chunwei Zheng1,2, Yanmin Feng1,3, Xingxu Huang*,4 and Chunsheng Han*,1

ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor

complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in

somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system

resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI).

ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or

H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that

are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of

meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during

mouse spermatogenesis by regulating the expression of diverse families of genes.
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Mammalian spermatogenesis is a unique cellular develop-

mental process that is intricately regulated by extrinsic and

intrinsic factors. Spermatogonial stem cells (SSCs) at the very

beginning of spermatogenesis have to make decisions either

to undergo self-renewal or to initiate differentiation, which

eventually leads to meiosis and sperm production. The

mechanism by which such a decision is made remains poorly

understood despite that several key factors have been

identified. For example, glial cell-derived neurotrophic factor

(GDNF) promotes SSC self-renewal and inhibits their differ-

entiation, whereas retinoic acid (RA) acts in an opposite

manner.1,2 The lengthy differentiation of spermatogonia,

tightly coupled with active mitotic divisions, results in drastic

amplification of spermatogenic population and an orderly

gene expression change that is essential for meiosis aswell as

post-meiotic development. Abnormal gene expression during

spermatogonial differentiation leads to either a spermatogenic

arrest at a pre-meiotic stage or a precocious entry of

meiosis.3,4

Oatley et al.5 identified GDNF-regulated genes using

microarray analysis on cultured mouse SSCs and showed

that several such genes were essential for SSC self-renewal.

Among their down-regulated gene list, we identified a gene

named Zmym3. An early study reported that Zmym3 mRNA

was most abundant in adult testis and brain among eight

examined organs and was alternatively spliced in a develop-

ment- and tissue-specific manner and that protein sequences

of Zmym3 are evolutionarily conserved from the arthropods to

humans with several highly conserved protein motifs.6

ZMYM3 and one of its paralog ZMYM2 each contain nine

similar zinc fingers. In humans, chromosome translocations

near these two genes have been linked to myeloproliferative

syndromes and X-linked mental retardation, respectively.7,8

Therefore, the zinc fingers in these two proteins are named

MYM (myeloproliferative and mental retardation)-type zinc

fingers. Based on the current NCBI HomoloGene database,

the human and mouse genomes encode six MYM-type ZFPs,

which are ZMYM1, ZMYM2, ZMYM3, ZMYM4, ZMYM5, and

ZMYM6. The other motifs of ZMYM3, which are potentially

important for its function, include nuclear localization signal,

SH3-binding motif and tyrosine phosphorylation sites, sug-

gesting that the function of this protein is highly regulated.

Interestingly, both ZMYM3 and ZMYM2 were identified in a

LSD1-containing complex isolated from Hela cells.9 LSD1 is

the first identified histone demethylase,10 and has since been

shown to have essential roles in many biological processes.11

Specific deletion of Lsd1 in mouse oocytes results in female

infertility due to precocious meiotic resumption, spindle and

chromosomal abnormalities, and disrupted gene expression

during oogenesis.12 Similarly, conditional deletion of Lsd1 in

mouse spermatogonia leads to male infertility as a result of

abnormal histone modification and gene expression in

spermatogonia followed by a complete loss of germ cells in

adult males.13 The function of ZMYM proteins has not been

well understood except for that ZMYM2 is known to stabilize
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the LSD1–CoREST–HDAC1 transcriptional co-repressor

complex on chromatin through its MYM-type zinc fingers.14

In this study, we report that mouse Zmym3 in cultured SSCs

is regulated by GDNFand RA in opposite ways and expresses

two major protein isoforms. During spermatogenesis, ZMYM3

is present in germ cells until pachytene spermatocytes

(pacSC). Zmym3 gene KO in mice by using the CRISPR-

Cas9 system results in infertility in adult male mice.

Spermatogenesis of the KO mice exhibits a major arrest at

themetaphase ofmeiosis I (MI). The longer protein isoform but

not the short one interacts with LSD1. However, the Zmym3

gene KO has no effect on the LSD1 protein level and on total

abundances of H3K4me1/2 or H3K9me2. The spindle body

formation is normal but more apoptotic and BUB3+MI cells are

observed in KO mice. RNA sequencing analysis of cultured

SSCs and isolated spermatocytes shows that many genes are

expressed aberrantly. These results shows that ZMYM3, a

highly conserved ZMYM-type LSD1 interacting protein, has an

essential role in spermatogenesis in an organ-specific

manner.

Results

Zmym3 is down-regulated by GDNF, up-regulated by RA,

and expressed in germ cells until pacSC. Based on a

microarray data set reported by Oatley et al.,5 we found that

Zmym3 mRNAs were down-regulated by GDNF, which was

consistently supported by results from three different probe

sets on the microarray. Taking advantage of their experiment

design, we confirmed this observation by using our own

cultured SSCs and quantitative RT-PCR (qRT-PCR) assays

(Figure 1a). The presence of ZMYM3 protein in cultured

SSCs was detected by immunostaining using a commercially

available polyclonal antibody (Figure 1b, Supplementary

Figure S1 and S2a). The identity of the ZMYM3+ SSCs was

confirmed by the expression of GDNF receptor subunit

GFRα1 (Figure 1b). Interestingly, we noticed that the signals

of ZMYM3 and GFRα1 were negatively correlated. As GFRα1

expression is higher in actual stem cells than in potential

stem cells that have undergone slight differentiation,15 we

suspected that the expression of Zmym3 might also be

regulated by RA. Indeed, Zmym3 expression was up-

regulated by RA at both the mRNA and protein levels in a

time-dependent manner (Figure 1c–e).

On Western blots, we saw two ZMYM3 bands (~200 and

95 kDa), which represent isoforms probably translated from

alternatively spliced mRNAs as many verified and predicted

alternatively spliced mRNAs were reported by a previous

study and the NCBI Gene database.6 Because the sizes of

both bands on Western blots are larger than the predicted

masses of the corresponding isoforms (Supplementary

Figure S2b), they are most likely post-translationally modified.

We further examined the subcellular localization of the two

isoforms using cytoplasmic and nuclear extracts from SSCs

and found that the larger form was predominantly localized to

the nucleus, whereas the smaller one was detected in both the

cytoplasm and the nucleus (Figure 1f).

We next investigated Zmym3mRNA and protein expression

in testicular cells and other organs of adult mice. All results of

RNA sequencing (RNA-seq),16 qRT-PCR and Western

blotting showed that ZMYM3 was ubiquitously expressed in

multiple organs, and was the most abundant in gonads and

brain (Supplementary Figure S2c–g). In the testis, ZMYM3

was expressed in both germ cells and somatic cells such as

Sertoli cells and interstitial cells, and among germ cells,

ZMYM3 was expressed in spermatogonia and early sperma-

tocytes such as preleptotene, leptotene, and zygotene

spermatocytes (plpSC, lepSC, and zygSC) but not in late

spermatocytes such as pacSC or spermatids (Figure 1g),

consistent with the RNA-seq17 and qRT-PCR results

(Supplementary Figure S2c–d). Whole-mount co-

immunostaining of ZMYM3 with GFRα1, PLZF (markers for

undifferentiated spermatogonia), and c-KIT (a marker for

differentiating spermatogonia and plpSC) on the seminiferous

tubules showed that ZMYM3 was expressed in all stage

spermatogonia with a higher level in c-KIT+ differentiating

spermatogonia and probably the plpSC (Figure 1h–j).

Zmym3 KO in mice results in adult male infertility and

arrests spermatogenesis at MI. We next generated Zmym3

KO mice by injecting into fertilized eggs Cas9 mRNAs and

two sgRNAs targeting the second exon of the gene

(Figure 2a). Four female founder mice were generated with

small deletions in the expected genomic region, resulting in

premature termination of translation owing to frame shifts

(Supplementary Figure S3a). We next identified the most

probable off-target sites for each gRNA by bioinformatic

predictions, and found no mutations on these sites by

sequencing. Adult KO males older than 6 months did not

show any apparent abnormal appearance or behavior and

mated with females normally as vaginal plugs were regularly

seen. However, the KO testes and epididymides were

significantly smaller than the WT ones (Figure 2c and d).

Western blotting and immunohistochemical results both

confirmed the complete KO of ZMYM3 in the KO testis

(Figure 2e and f). The KO males started to reduce their testis

sizes, sperm counts, and fertilities from 2 months after birth

(Supplementary Figure S3b). Interestingly, the smaller

number of spermatids produced in young animals differen-

tiated to spermatozoa normally, and showed no obvious

apoptosis during their postmeiotic development (Supple-

mentary Figure S3c). Moreover, spermatozoa produced from

the KO mice were also morphologically normal (Supple-

mentary Figure S3d). The KO mice became infertile when

tested at 6 months after birth (Figure 2g and h). A close look

at the PAS-stained testis sections of the KO mice showed that

their spermatogenesis was mainly arrested at MI (Figure 2i).

The numbers of round spermatids, elongating spermatids, as

well as sperms were all significantly reduced (Figure 2j,

Supplementary Figure S4).

Zmym3 KO mice undergo spermatogenesis normally

until MI. As ZMYM3 is also expressed in Sertoli cells, we

first examined the immunostaining of the Sertoli cell marker

Wilms Tumor 1 (WT1),18 but found no difference between WT

and KO mice in terms of its localization and the number of

WT1+ cells. Similarly, no difference was found for GFRα1,

PLZF, and c-KIT. These results indicate that the development

and probably the function of both somatic cells and
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pre-meiotic germ cells are not changed by Zmym3 KO

(Figure 3a–d). When meiosis is initiated in lepSC, these cells

undergo DNA double-strand breaks (DSBs) and chromoso-

mal synapsis, and the progression of these two processes

can be monitored by the immunostaining patterns of proteins

such as γH2AX, SYCP3, SYCP1, and CREST. In pacSC of

both WT and KO mice, the DSBs had all been repaired and

autosomes fully synapsed as shown by localization of γH2AX

signals to the partially synapsed sex chromosomes and by

the noodle-like bright smooth staining of SYCP3 and SYCP1

(Figure 3e–g, Supplementary Figure S5). Together, these

data suggest that the mitosis and meiosis phases before MI

in Zmym3 KO mice are normal.

Zmym3 KO does not change the in vitro proliferation and

meiosis initiation of SSCs. Several SSC lines developed

from the F2 KO mice and their WT littermates were

successfully established, indicating that Zmym3 KO might

not impair the in vitro proliferation of SSCs (Figure 4a). The

KO of Zmym3 in these cultured SSCs was confirmed by

Western blot (Figure 4b). The proliferation rate of these KO

cells was quantitatively compared with that of WT SSCs and

no significant difference was found (Figure 4c). We next

cultured WTand KO SSCs on Sertoli cells and induced them

by RA to initiate meiosis.19 Five days after RA treatment,

SYCP3+ cells were observed. The weakly and strongly

stained cells represented plpSC and lepSC/zygSC, and were

named W-cells and S-cells, respectively, for convenience

(Figure 4d). Again, no difference was observed for the

percentages of either W-cells or S-cells between KO and WT

SSCs (Figure 4e). Taken together, these results indicated that

neither the proliferation nor the meiosis initiation of cultured

SSCs was damaged by Zmym3 KO, and the in vitro results

were consistent with the in vivo observations.

Zmym3 KO has no effect on the protein levels of LSD1,

H3K4me1/2, and H3K9me2. A previous study showed that

LSD1 was expressed at a much higher level in mouse testis

than in other organs, such as brain, lung, liver, heart, and was

detected in all types of spermatogenic cells.20 Using whole-

mount immunostaining, we found that LSD1, similar to

ZMYM3, was more abundantly expressed in c-KIT+ cells

than in GFRα1+ cells (Figure 5a and b). LSD1 also exhibit a

similar expression pattern as ZMYM3 in cultured SSCs as

indicated by its co-immunostaining with GFRα1 (Figure 5c).

We showed that Lsd1 KO using an inducible Cas9-SSC line,

which was established in our lab recently,21 reduced the

proliferation of SSCs significantly (Figure 5d), consistent with

its essential role in spermatogenesis.13 Co-immunoprecipi-

tation assay showed that an LSD1 polyclonal antibody pulled

down both LSD1 and the larger but not the smaller form of

ZMYM3 (Figure 5e). Despite the interaction of ZMYM3 and

LSD1 in SSCs, we found that LSD1 was expressed in

cultured WT and KO SSCs at similar levels based on the

Western blot results (Figure 5f–g). Moreover, the global levels

of H3K4me1/2 and H3K9me2 were not changed by Zmym3

KO (Figure 5h–i). No apparent difference was also observed

for H3K4me2 and H3K9me2 immunostainings in pacSC

isolated from WT and KO mice (Figure 5j). These results

showed that ZMYM3 KO had no apparent effect on the global

levels of LSD1 and the examined histone modifications both

in vitro and in vivo.

Zmym3 KO causes MI arrest in a SAC-dependent

manner. For both mitosis and meiosis, cells use spindle

assembly checkpoint (SAC) to ensure the fidelity of chromo-

some segregation.22 Proteins involved in SAC include BUB1,

BUBR1, BUB3, and MAD2.23 As Zmym3 knockout (KO)

caused an accumulation of MI spermatocytes, we examined

whether any of these proteins was abnormally localized in

meiotic cells of the KO mice. Zmym3 KO did not affect spindle

assembly as revealed by the α-TUBULIN staining (Figure 6a).

However, the number of BUB3+ MI spermatocytes in Zmym3

KO mice was about two-fold more than that in WT mice

(Figure 6b and c). Moreover, TUNEL assays indicated that

significantly more MI spermatocytes in KO mice underwent

apoptosis than in WT mice (Figure 6d and e). These results

showed that Zmym3 might regulate metaphase–anaphase

transition through a SAC-dependent pathway.

Zmym3 KO disrupts mRNA expression of genes involved

in meiosis and post-meiotic development of germ cells.

To elucidate the molecular bases for the infertile phenotype of

Zmym3 KO mice at the mRNA expression level, we first

carried out RNA-seq analysis on cultured SSCs and c-KIT+

pre-meiotic cells induced from SSCs by RA treatment for both

WT and KO mice (Supplementary Table S1). To acquire

c-KIT+ cells, feeder-free SSC cultures were induced by

100 nM RA for 36 h and 90% of the cells became c-KIT+

(Figure 7a). We first found 1744 and 2581 genes to be either

up- or down-regulated by RA in WT SSCs (Figure 7b).

Interestingly, 467 novel RA-upregulated genes (set Rn-u in

Figure 7b) were identified after Zmym3 was knocked out, and

this gene set was found to be significantly enriched with zinc

finger family transcription factors (Table 1). Moreover, we

found that many genes involved in meiotic cell cycle and

spermatogenesis such as Sycp1, Sycp2, Mov10l1, Rnf17,

Stag1, and Smc were precociously expressed when Zmym3-

was knocked out (set Ru-n in Figure 7b, sets Ku-n, Ku-u, Kn-u in

Figure 7c). The up-regulation of some of these in KO SSCs

was confirmed with qRT-PCR using independent samples

(Figure 7f).

We found that smaller numbers of genes changed their

expression in response to Zmym3 KO in SSCs and c-KIT+

cells compared with RA-regulated genes. Some genes

involved in the proliferation regulation of SSCs and undiffer-

entiated spermatogonia such as Lin28,Sall4,Oct4,Cdh1, and

Gfrα1 were also in the KO-down set, and their expression

changes caused by Zmym3 KO were also confirmed by qRT-

PCR (Figure 7f). These observations suggest that Zmym3 KO

enhances the expression of genes involved in spermatogonia

differentiation and meiosis while suppresses genes that

maintain the undifferentiated states of spermatogonia.

We next conducted RNA-seq analysis on spermatocytes

directly isolated from mouse testes by sorting out tetraploid

cells, which were mainly SYCP3 and γH2AX double positive

(Figure 7d). We found 97 up-regulated and 73 down-regulated

genes in spermatocytes of both 5- and 7-months (Figure 7e).

We checked the expression of 24 genes involved in SAC but

found they were not dysregulated by Zmym3 (Supplementary
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Figure S6b). The down-regulated set was enriched with

several GO terms such as ‘spermatogenesis’, which included

genes such as Prm1, Prm2, Prm3, Klhl10, Odf1, Chd5, Sun5,

Ccdc63, Oaz3, Spata20, Galntl5, Atp1a4, Acsbg2, which

either have essential roles or are highly/specifically expressed

in spermatids, the expression of which were also confirmed by

qRT-PCR (Figure 7g). These results indicated that Zmym3 KO

disrupted the expression of some key genes involved in

postmeiotic development of spermatogenesis.

Discussion

We report in this study that Zmym3, a gene that initially came

to people’s attention for its potential roles in X-linked mental
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retardation and epigenetic regulation, has an essential role in

mouse spermatogenesis. Zmym3 KO mice have no other

apparent abnormalities including mating behavior despite that

the gene is highly expressed in the brain, but arrests

spermatogenesis at MI through a SAC-dependent pathway.

Therefore, we have identified an evolutionarily conserved

gene that has a specific role in promoting meiosis progression

during spermatogenesis. The female KO mice seemed to be
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fertile as they gave birth to mutant offspring, but this question

remains open until the fertility of homozygous female KOmice

is carefully evaluated in the future.

Given that ZMYM3 is expressed in both somatic cells and

germ cells, we are not sure whether ZMYM3 in somatic cells

has a role in spermatogenesis based on the results in the

present study. Despite that the function of Sertoli cells and the

androgen-producing Leydig cells both seem to be normal

based on the immunostaining of WT1 and the normal mating

behavior of the KO mice, that the KO mice do not loss their

fertility completely until 6 months after birth suggests that this

phenotype may also be related to the senescence of somatic

cells. This question can be addressed in the future by

transplanting WT SSCs into the testes of infertile KO

mice and checking whether spermatogenesis can be

re-established.

Given that ZMYM3 is expressed in all spermatogenic cells

before meiosis initiation, it is surprising that no apparent

defects are observed earlier than in MI spermatocytes. One

explanation is that subtle defects do occur in these cells but

cannot be easily detected, and they accumulate to a point of

no-return whereby spermatogenesis arrests at MI. This is

supported by the RNA-seq results, which show that many

genes express abnormally in cultured KO cells. Particularly,

some genes that are involved in meiotic processes such as

synapsis are up-regulated in KO SSCs, suggesting that the

KO spermatogonia might initiate meiosis precociously. Alter-

natively, these cells are indeed normal because the lost

function of ZMYM3 in KO germ cells is compensated by other

similar proteins. This explanation is supported by the

observation that quite a few zinc finger protein genes were

up-regulated by RA in germ cells only when Zmym3 is
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knocked out. It is more surprising that no recognizable genes

involved in meiosis are dysregulated in the KO spermatocytes.

Such a discrepancy between Zmym3 expression pattern and

the time point when its function was clearly revealed by gene

KO suggests the presence of a complex functional regulatory

pathway, which may consist of multi-step protein–protein

interactions. Indeed, we have identified many ZMYM3-

interacting partners including some transcription co-factors

and a protein involved in sumoylation using yeast-two-hybrid

methods (data not shown). The detection of up-regulated

expression of haploid genes in KO spermatocytes should be

cautioned. Despite that the isolation of spermatocytes was

carried out based on both their tetraploid feature and their

large size, minor contamination of secondary spermatocytes

is still possible. As the genes such as Prm1/2/3 are highly

expressed, its expression can be readily detected even if the

contamination is minor, and the difference in their expression

between WT and KO mice can also be detected as the KO

testes lack secondary spermatocytes.

ZMYM3 has been reported to be associated with epigenetic

modifying enzymes such as LSD1, HDAC1/2 by several

studies. Two isoforms of ZMYM3 are present in SSCs and the

larger form but not the short one co-immunoprecipitates with

LSD1. Interestingly, Zmym3 KO does not change the expres-

sion level of LSD1, H3K4me1/2, and H3K9me2. However,

this does not exclude the possibility that epigenetic modifica-

tions on certain genomic regions are disrupted but not

detected by Western blotting or immunocytochemical assays.

It is important to observe that Zmym3 KO results in MI

arrest related to SAC, which has been well studied in

oogenesis.24 MI-arrested spermatocytes triggered by SAC

were eliminated through apoptosis, a male-specific event.25 A

Y chromosome-located gene named Zfy2, which also

encodes a zinc finger protein, has been reported to be

essential and sufficient for removing the apoptotic MI-arrested

spermatocytes.26 Therefore, ZMYM3 might represent a novel

sex-specific player in this pathway if the female KO mice are

indeed fertile.

d

WT:RA-up

(1744)

KO:RA-up

(1833)

Ru-n

(378)

Ru-u

(1366)
Rn-u

(467)

WT:RA-down

(2581)

KO:RA-down

(2431)

Rd-n

(523)

Rd-d

(2058)

Rn-d

(373)

SSCs:KO-up

(279)

c-KIT+:KO-up

(185)

Ku-n

(153)

Ku-u

(126)

Kn-u

(59)

SSCs:KO-down

(420)

c-KIT+:KO-down

(269)

Kd-n

(234)

Kd-d

(186)

Kn-d

(83)

5m-SC:KO-up

(178)

7m-SC:KO-up

(405)

SC:KO-up

(97)

5m-SC:KO-down

(334)

7m-SC:KO-down

(171)

SC:KO-

down

(73)

D
A

P
I+

K
IT

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti

v
e

 t
ra

n
s

c
ri

p
t 

le
v
e

l WT

KO

*
* *

*
** *

*

0

0.5

1

1.5

2

2.5

R
e

la
ti

v
e

 t
ra

n
s

c
ri

p
t 

le
v
e

l

WT

KO
*

*
* *

*
*

*
* * *

*

D
A

P
I+

S
Y

C
P

3
+

γ
H

2
A

X

Figure 7 RNA-Seq analysis of the effect of Zmym3 KO on gene expression in cultured SSCs and isolated spermatocytes. (a) c-KIT+ cells were induced from both WTand KO
SSCs by 100 nM RA 36 h after RA treatment. Only result for WT SSCs is shown. (b) Gene sets up- or down-regulated by RA in WTand KO SSCs. (c) Gene sets up- or down-
regulated by Zmym3 KO in SSCs and induced c-KIT+ cells. (d) Immunostaining of SYPC3 and γH2AX on spermatocytes isolated from WTor KO mice to show that higher than
80% of the cells were double positively stained. Only the result for WT mice is shown. (e) Gene sets up- or down-regulated by Zmym3 in isolated spermatocytes from 5- and
7-month mice. (f–g) qRT-PCR evaluation of the expression of genes identified by RNA-seq analysis

ZMYM3 is essential for meiosis
X Hu et al

9

Cell Death and Disease



A recent study showed that ZMYM3 inHEK293T cells had an

essential role in DNA damage repair through the homologous

recombination pathway by interacting with both histone and

DNA components of the nucleosome.27 Moreover, another

study reported that SACwas amajor gatekeeper preventing the

progression of oocytes harboring DNA damage.28 Based on

these studies, it is tempting to propose that ZYMY3 is also

involved in DSB repair during meiosis of spermatocytes, the

failure of which activates SAC and causes apoptotic elimination

of damaged cells. However, we were unable to acquire

evidences for this hypothesis. The originally observed immu-

nostaining signal in sex body was most likely nonspecific

because it was also detected in KO testes; the immunostaining

patterns of γH2AX in pacSC of bothWTand KO testeswere not

different and indicated DSBswere repaired normally. Despite of

these observations, we still cannot reject this hypothesis

confidently as subtle DNA damages may exist but escape from

detection owing to the low resolution of the methods used in the

present study. In the future, we will continue to test this

hypothesis by using more sensitive techniques to detect

regional epigenetic modifications as well as DNA damages.

Materials and Methods
Mice. All animal protocols were approved by the Animal Care and Use Committee
of the Model Animal Research Center, the host for the National Resource Center for
Mutant Mice in China, Nanjing University and the Animal Care and Use Committee

of the Institute of Zoology, Chinese Academy of Science. In vitro transcription of
Cas9 mRNAs from pST1374-Cas9-N-NLS-flag-linker and sgRNAs from pUC57-

sgRNA expression vectors was performed as described previously.29 The
sequences of sgRNA oligos are listed in Supplementary Table S2. Cas9 mRNA/
sgRNA injection to zygotes obtained by mating of CBA males with superovulated
C57BL/6J females was also performed as described previously.30 Female mice with
a frame shift and premature termination at an out-of-frame stop codon were chosen
as founder animals. Pregnancies were established when female Zmym3+/− mice

were mated to wild-type males.

Culture, differentiation, and gene KO of mouse SSCs. Mouse SSCs
were obtained from the testes of pup (5–7 dpp) or adult mice by following

procedures previously reported.31 The induction of c-KIT+ cells from SSCs were
conducted by following our protocol recently pulished.19 The KO of Lsd1 in SSCs
was performed using an inducible Cas9-SSC line (iCas9-SSC) established
recently.21 Sequences for sgRNAs targeting Lsd1 were included in Supplementary
Table S2.

RNA extraction, qRT-PCR, and RNA sequencing. The isolation of
spermatocytes was carried out by first sorting out tetraploid cells from total testicular
cells and then selecting spermatocytes based on their forward scatter and side
scatter features in FACS analysis (Supplementary Figure S6a). The purity of
spermatocytes was higher than 80% as shown by the immunostainings of SYCP3

and γH2AX. Total RNA from mouse testis cells and mSSCs was extracted using
Trizol (Invitrogen, Carlsbad, CA, USA) according to the standard protocol. After
reverse transcription of purified RNA performed using Reverse Transcription System
(G3250, Promega, USA) according to the manufacturer’s protocols, qPCRs were
conducted with UltraSYBR Mixture (CW0956, CoWin Biotech, Beijing, China) by
following the manufacturer’s instructions on a LightCycler 480 platform (Roche

Table 1 Differentially expressed genes in cultured Zmym3 WTand KO SSCs and isolated spermatocytes by RNA-Seq analysis

Subset Enriched GO terms Genes

Rn-u (qo0.01) Regulation of transcription, DNA-templated ZFP12, ZFP40, MAF1, ZKSCAN3, ZFP788, ZFP786, MAP3K7, EPC1,
MDFIC, RNF38, ZFP687, ZFP503, ZFAT, ZFP882, INSR, NFX1,
ZFP518A, ZFP422, ZFP423, SATB2, KHDRBS3, RBL2, ZFX, ZHX1,
ZFP629, ZFP128, ZFP592, ZFP827, ZFP120, ZFP280C, IGSF1, NCOA5,
PRDM5, ZFP697, MAPK8, ZFPM1, ZFP516, ZFP229, ZFP511, ZFP369,
ZSCAN12, MEAF6, ZFP715, ERBB4, ZFP612, ZFP398, ZFP318,
ZFP113, ZFP319, AI987944, ZFP768, ZFP316, ARNT, ZFP317,
MED12L, MYCBP2, HIC2, ZFP956, RB1CC1, ZFP410, TRP53INP2,
NKX3-1, MLLT1, ZFP217, ZFP810, SLC30A9, CHD5, ZFP251, ZFP382,
TGFBR1, KLF11, KCTD1, ZBTB41, ZFP445, ZFP709, ZFP746, ZFP809,
SP3, ZFP282, ZFP488, HOXB6, ZFP800, ZFP536, HDAC8, KLF4

Ru-n (qo0.01) Cell cycle ARHGEF2, STOX1, SYCP2, MCM3, SYCP1, SMC2, LATS2, SPDYA,
RIF1, PMP22, UBE2S, HELLS, STAG1

KO-up (qo0.05) Spermatogenesis RNF17, MEI4, MYCBPAP, MOV10L1, SYCP1, CLOCK
Negative regulation of transcription from RNA
polymerase II promoter

EID1, HNF1B, HMGN2, E2F7, E2F8, SOX2, WWC1, MAEL, PAWR,
TCF7L2, GLI3, TGFB1, NR1H2, NIPBL, AES, ZKSCAN17, JUND,
NR2F6, POU3F3, BHLHE40, ETV6, SIK1, EGR1, ASXL2, EPAS1,
FOXJ1, ARID5B, RBL1, CDK6, PLK3, PHF19, HDAC1, HIPK1, BTG2,
ID1, JUN, DLX4, SIX1, HIST1H3C, PEG3, NFIB

Positive regulation of transcription from RNA
polymerase II promoter

HNF1B, E2F7, E2F8, JAG1, ZIC1, GLI3, TGFB1, WBP2, HSPH1,
TMEM173, NOBOX, IFRD1, TOP2A, AGAP2, EGR1, ARHGEF2, FOXJ1,
SOX12, GRHL3, SIX4, PRKD2, DCAF6, NME2, JUN, SIX1, KDM6B,
PEG3, SOX2, TCF7L2, ARID2, NR1H2, RGMA, NIPBL, JUND, POU3F3,
ETV6, ETV4, ASXL2, KAT2B, EPAS1, ATAD2, IGF2, CAPRIN2, MNAT1,
ATF4, HDAC1, BMP7, BMPR1A, NFIB

KO-down
(qo0.01)

Collagen fibril organization ADAMTS14, SFRP2, COL3A1, COL1A2, FOXC2, COL1A1, COL5A2,
COL5A1

Embryonic skeletal system morphogenesis HOXB4, HOXB2, HOXB7, HOXB8, HOXB5, SOX11, HOXB6, HSPG2,
FOXC2

Cell adhesion TLN2, TNC, PTPRS, COL28A1, CDH1, ITGA3, STAB2, COL16A1, SRC,
COL5A1, CASS4, COL7A1, LAMA5, ITGA5, COL6A5, COL6A4,
COL6A2, COL6A1, RELN, AATF, EMB, THBS1, THBS2, SPP1

Anterior/posterior pattern specification CTNNBIP1, HOXB4, HOXB2, HOXB7, LHX1, HOXB8, SFRP2, HOXB5,
HOXB6, HOXB9, TCF15

SC:KO-down
po0.05

Spermatogenesis Prm1, Prm2, Prm3, Klhl10, Odf1, Chd5, Sun5, Ccdc63, Oaz3, Spata20,
Galntl5, Atp1a4, Acsbg2
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Diagnostics, Basel, Switzerland). Data were acquired in biological triplicates.
Relative gene expression was calculated based on ΔΔCt method using β-Actin as
an internal control. All primer sequences of selected genes were listed in
Supplementary Table S2. Prior to sequencing, the total RNA was subject to DNase
treatment to eliminate genomic DNA contaminants. The quality of the RNA samples
was assessed by agarose gel electrophoresis and RT-PCR detection of the
expressions of selected genes. RNA samples were prepared for sequencing on the
Illumina HiSeq 2000 platform (Illumina, San Diego, CA, USA). Data analysis was
performed as previously described.17 Differentially expressed genes were identified
if their q-values reported by the Cuffdiff software were o0.01 unless otherwise
stated. GO term enrichment analyses were performed using the online DAVID
program. A GO term was considered to be significantly enriched if the enrichment
false discovery rate Bejamini is o0.05.

Data analysis and statistics. Statistical analyses were performed using
t-test. Results are presented as mean±S.D. In all figures, * and ** denote that
Po0.05 and 0.01, respectively. All experiments were independently repeated at
least three times.
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