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ABSTRACT

In this paper, we present a framework for inferring gene reg-
ulatory networks from gene expression time series. A model-
based approach is adopted, according to which the quality of
a candidate architecture is evaluated by assessing the ability
of the corresponding trained model to reproduce the avail-
able dynamics. Candidate architectures are generated in the
context of the ant colony optimization (ACO) meta-heuristic
and model training is performed using particle swarm opti-
mization (PSO). We propose a novel solution construction
heuristic for artificial ants, based on growth and preferential
attachment, in order to generate candidate structures that
adhere to well-known gene network properties. Preliminary
results using an artificial network demonstrate the potential
of the framework to infer the underlying network architec-
ture to a promising degree of success.
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1. INTRODUCTION

Gene expression is the process by which a gene’s DNA
sequence is converted through a series of steps into a func-
tional product: the protein. This cellular process constitutes
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the central dogma of molecular biology, i.e. that genes code
for proteins. Certain genes code for special proteins called
transcription factors, which are responsible for regulating
the expression of other genes (targets). Transcription fac-
tors bind a cis-regulatory site in the promoter region of the
target gene, thus inducing a change in the target’s rate of
transcription. The nature of change specifies this effect as
either activatory, in case of an increase in the target’s rate of
transcription, or repressive (inhibitory) in case of a decrease.

A gene regulatory network (GRN) is a complex network of
causal relationships between genes, where connections repre-
sent regulatory interactions between activators or repressors
and targets.

In this paper, we extend an integrated framework for the
reconstruction of gene networks from gene expression time
series [7], by proposing a novel approach to restricting the
structure search space. This approach exploits certain well-
known gene network characteristics and incorporates them
to the candidate structure generation procedure.

The rest of the paper is organized as follows. In section
2, we provide a brief overview of relevant methods and chal-
lenges that have to be addressed. The components of the
proposed framework are outlined and discussed in section 3.
In section 4, we provide some preliminary results in order
to showcase the validity of our approach. Directions for fur-
ther work are discussed in section 5, which also concludes
the paper.

2. BACKGROUND

The problem of reverse-engineering GRNs from gene ex-
pression data is a major issue in systems biology [8]. One
of the main challenges is the relative insufficiency of obser-
vations (typically tens or a few hundreds) compared to the
number of genes measured (in the order of thousands or a
few tens of thousands), the so-called curse of dimensionality.

Additionally, the common practice of validating the bio-
logical plausibility of inferred causal relationships by con-
sulting the relevant literature, albeit unavoidable, is contro-
versial because, in the absence of such experimental evidence
for a putative connection, there is no apparent method of
classifying it either as a previously unknown interaction or
as just a spurious edge [4].

In this context, the need for artificial data that have been
generated by synthetic gene networks, whose structure is
known beforehand, is imperative in order to objectively as-
sess and analyze the degree of success of a reverse-engineering
algorithm. This rigorous benchmarking approach is sup-
ported by the development of artificial network and data



generators, such as AGN [12], SynTReN [15], Gene Net
Weaver [11] and others.

A variety of mathematical formalisms have also been pro-
posed for modeling causal relationships between genes and
the system’s dynamical behaviour, including ordinary and
partial differential equations, Boolean networks, Bayesian
networks and S-systems among others [3].

An often used representation of causal relationships be-
tween genes is a weight matrix W, where the value of each
entry w;; captures the strength and nature of the relation-
ship between gene ¢ (regulator) and gene j (target) [18]. A
positive value indicates an activatory effect, a negative value
indicates a repressive effect, whereas a value of zero indicates
the absence of a relationship.

This way, the influence of one or more regulators on a
target gene can be modelled as a sigmoid function of the
weighted sum of inputs and, in this case, model training
consists of optimizing the model’s weight matrix and any
additional parameters associated with the chosen model, so
as to minimize the error between actual and predicted data
[17, 6, 19, 10].

The observed sparseness of gene networks [16] implies that
most of the weight matrix entries will be zero. Additionally,
studies on the structural properties of gene networks have
revealed organizational features that are common to other
complex networks as well [1], such as power law or exponen-
tial degree distributions [5, 9].

3. FRAMEWORK

The proposed framework for network inference adopts an
approach that separates between structure selection and mo-
del training. The stochastic search process in the structure
space yields candidate architectures, whose quality is as-
sessed by the success of the corresponding trained models in
reproducing the available dynamics.

Moreover, the vast structure search space can indeed be
significantly restricted by exploiting knowledge regarding
aforementioned gene network properties that have been re-
ported in the literature.

In section 3.1, we present the model used to express a
gene network’s dynamical behaviour. Section 3.2 discusses
the suggested solution construction heuristic, while section
3.3 outlines the model training process. Section 3.4 presents
the ACO inference algorithm by joining the presented frame-
work components together.

3.1 Network Modelling

In general, the structure of a gene network can be repre-
sented as a directed graph G = (V, E), where a vertex v;
represents gene ¢ and an edge e;; represents the influence of
gene ¢ to gene j.

The dynamics of such a representation can be formalized
using a recurrent neural network (RNN) model, where the
output z; of each node i, at time point ¢t + At is calculated
by:

At

zi(t+ At) = %f(z wjizi(t) + bi) + (1 - f)%(t) 1)

where each synaptic weight w;; expresses the influence of
node j to node i, b; and T; are the bias term and time
constant for node ¢ respectively, and f is a nonlinear transfer

function, in this case the logistic function f =
c=1.

3.2 Generating Candidate Structures

A model to generate directed graphs, based on the prin-
ciples of growth and preferential attachment has been pro-
posed in [2] and is capable of producing directed graphs
whose in- and out- degree distributions are either exponen-
tial or power laws, depending on the model’s parameter val-
ues. This model specifies a stochastic process according to
which a graph grows by adding a single, directed edge at
each discrete time step. At each such step, a vertex may
also be added to the graph.

We extend this model by considering preferential attach-
ment based not only on node degrees but on edge fitness
as well, exploiting the concept that certain edges are more
likely or “fit” to be included in the graph than others.

In particular, let din(v) and dout(v) be the in-degree and
out-degree of node v respectively, di, and o+ non-negative
real numbers and 7;; the fitness value of edge e;;. At each
step of the generative process, either one of three rules is
applied:

1
Tre—cz> where

A/ with probability «, a link is established from a new node
v; selected according to 7;;,Vj to an existing node v;
selected according to din (v;) + din and 7

B/ with probability 3, a link is established from an existing
node v; selected according to dout (Vi) + dour and 745, Vg
to an existing node v; selected according to din(v;) +
51'” and Tij

C/ with probability v, a link is established from an existing
node v; selected according to dowt (Vi) + dour and 745, Vj
to a new node v; selected according to 7y

with o+ 8+7v=1.

The described generative process essentially constitutes
the solution construction heuristic that will be used in the
context of ACO for navigating the structure search space.

3.3 Modd Training

Having obtained a candidate structure, the next step is
to assess its quality by considering the corresponding RNN
model and optimizing its parameters to fit the model to the
available data.

Model parameters are trained using PSO on a per-node
basis. In particular, for each node v; (considered as the
target), the parameters that need to be optimized are the
bias term b;, the time constant 7;, as well as the weight
values wj; that correspond to its incoming links. Weights
corresponding to edges that are not part of the candidate
structure are not optimized; their values are set to 0.

The training objective is to minimize the mean squared
error of the actual target output profile and the predicted
target output profile, as in:

L=, + i
6 = 7 > (al — i) @)

where T is the number of time points in the time series,
x! is the actual value of node %, at time point ¢ and &} its
predicted value. One-step-ahead prediction is performed,
according to which the actual system state X (¢) is used to
calculate the predicted output value &;(t+ 1) for each of the

network nodes.



3.4 Gene Network Inference

The ACO meta-heuristic serves as the mechanism to con-
nect the structure generation heuristic with model training,
in a way so as to guide the search in structure space towards
solutions that succeed in reproducing actual gene profile dy-
namics.

At each ACO iteration, each artificial ant generates a
candidate network architecture by supplying the colony’s
pheromone matrix to the generative process that was de-
scribed in section 3.2, as the edge fitness matrix. The model
that corresponds to the generated structure is trained using
PSO as detailed in section 3.3. The result of model training
is a vector of mean squared errors for each of the network
nodes (targets).

At the end of each ACO iteration, all candidate solutions
are structurally decomposed to determine which combina-
tion of regulators achieved the lowest prediction error for
each target gene. Decomposition results in a local best so-
lution (set of edges) L, for the current iteration. Following
a typical pheromone evaporation procedure, the pheromone
matrix entries that correspond to the best performing com-
bination of regulators for each target are updated according
to:

V(i,j) € L ®3)

Tij <—nj+—1+€j,

Local search is also applied to the local best solution, by
pruning the edges e;,;, for which the corresponding trained
RNN weights |w;,j| < Owmaz, where 8 € [0,1] and wWas is
the maximum allowed weight value.

After the specified number of ACO iterations has been
completed, the best solution is a network structure consist-
ing of those combinations of regulators that achieved the
minimum prediction error for each node (target) in the net-
work.

4. PRELIMINARY RESULTS

An empirical estimation of the framework’s inferential power

was attempted, by applying it to a 10-node network (shown
in figure 1), that was generated using the process outlined
in section 3.2. Three time series with 10 time points each
were generated using the corresponding RNN instances with
randomly initialized parameters.

Figure 1: The network that was used for testing the
proposed framework. Normal arrow heads denote
activation and diamond-shaped arrow heads denote
repression.
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Figure 2: True positive and false positive rates of
the best solution during 30 ACO iterations, averaged
over 30 independent trials.

A family of N inferred structures was assembled by run-
ning N = 30 independent ACO trials and recording the best
solution achieved at the end of each trial. A simple voting
scheme was applied, according to which the score for each
edge is calculated as

vig = 4)

where f;; is the frequency of appearance of edge e;; in the
family of inferred structures. Figure 3 presents the scores
vi; of all regulatory relationships for the tested network.
The average true positive rate of the best solutions across
all trials was TPR = 0.91, while the corresponding false
positive rate was FFPR = 0.02. The progression of average
TPRs and FPRs over 30 ACO iterations is shown in figure
2.

For each of 30 independent ACO trials, a population of
5 artificial ants was allowed to build solutions for 30 ACO
iterations, with a pheromone evaporation parameter p = 0.1
and a local search edge pruning parameter § = 0.05. For
each candidate structure, PSO was allowed to run for 300
steps for the optimization of each target’s parameters.

The difficulty in predicting the activatory synergistic in-
fluence of nodes 0 and 1 to node 6 is perhaps worth pointing
out. As is evident from figure 3, edge eg ¢ is always inferred
whereas edge e1,6 is not, in which case the predicted RNN
weight wo,¢ is approximately twice its actual value, in order
to account for the missing edge e 6.

5. FURTHER WORK

The proposed network reconstruction framework, incor-
porating a novel solution construction heuristic, produced
promising initial results and demonstrated a potential for
further improvement of its inferential power.

More specifically, future work includes experimentation
with different GRN models such as S-systems, and publicly
available artificial data sets for which the underlying network
is known [14], so that comparisons can be drawn with other
reverse-engineering approaches.

The proposed solution construction heuristic can be fur-
ther improved by incorporating additional aspects of struc-
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Figure 3: Voting scores v;; for every putative regulatory relationship e;;, where ¢ denotes the regulator node
and j the target.

tural network properties besides degree distributions, for ex-
ample the presence of motifs [13]. Ongoing work also in-
cludes an investigation of ACO performance and the impact
of measures such as pheromone matrix (re-)initialization to
the search process.
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