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RESEARCH ARTICLE Open Access

Gene networks associated with conditional fear
in mice identified using a systems genetics
approach
Christopher C Park1†, Greg D Gale1†, Simone de Jong2, Anatole Ghazalpour3, Brian J Bennett4, Charles R Farber3,7,

Peter Langfelder4, Andy Lin1, Arshad H Khan1, Eleazar Eskin4,5, Steve Horvath4, Aldons J Lusis3,4, Roel A Ophoff2,4,6,

Desmond J Smith1*

Abstract

Background: Our understanding of the genetic basis of learning and memory remains shrouded in mystery. To

explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to

analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution.

Results: A total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By

integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype

information, two gene co-expression networks correlated with context-dependent immobility were identified. We

prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural

equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33,

suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture

of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and

striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among

the individual genes whose transcript abundance were strongly associated with fear phenotypes.

Conclusion: Application of our multi-faceted mapping strategy permits an increasingly detailed characterization of

the genetic networks underlying behavior.

Background

Advances in both genetic and behavioral techniques are

providing unprecedented opportunities for dissecting

the gene networks governing behavior. Through a vari-

ety of approaches, promising candidate genes have been

identified for a wide collection of clinically relevant

traits such as anxiety, conditional fear and spatial mem-

ory [1-3]. Intercrosses and backcrosses have been widely

used to identify behavior quantitative trait loci (QTLs)

in mice, but suffer from poor mapping resolution. More

recently, the use of outbred mice has allowed fine map-

ping of a range of biological [3] and expression traits

[4,5]. However, outbred mice are a fleeting resource and

must be regenotyped and re-phenotyped for each study.

In spite of many successes, the recent wave of gen-

ome-wide association studies paints an increasingly

complex picture of genes underlying behavioral traits.

The genetic architecture of most behaviors is widely dis-

tributed, with collections of independent loci making

relatively small contributions to overall trait variability

[6,7]. The largely undefined and likely complex contri-

bution of environmental factors to both the etiology and

maintenance of behavior represents another formidable

obstacle to reliable QTL mapping.

Recent work has achieved superior resolution using

panels of inbred mouse lines [8]. Power can be further

improved by incorporating recombinant inbred (RI)

strains formed by crossing classical inbred strains fol-

lowed by repeated sibling mating. One such resource

is the hybrid mouse diversity panel (HMDP) which
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combines inbred and RI lines to create a panel of 100

strains with great resolution and statistical power [9].

The HMDP consists of 29 classical inbred strains sup-

plemented with 71 RI strains derived from C57BL/6J

crossed with either DBA/2J, A/J or C3H/HeJ. In addi-

tion to enhanced resolution, there are other significant

advantages to using the HMDP for genetic mapping.

Each strain has been genotyped extensively [10], and

multiple individuals can be phenotyped for the same

trait, reducing measurement variability. Furthermore,

the panel is a renewable resource, since each strain can

be propagated indefinitely [11]. Phenotype data can be

pooled and shared in an ongoing fashion, while the

effects of environmental variables are easily studied.

To leverage these emerging resources, we employed

an integrative systems approach to explore the genetics

of conditional fear. Figure 1 illustrates the sources of

data we collect and how we investigate relationships to

identify genetic pathways implicated in the predisposi-

tion to fear. Mice were phenotyped on a fear condition-

ing assay, and the quantitative data combined with

single nucleotide polymorphism (SNP) genotypes to

map behavioral quantitative trait loci (QTLs). We cor-

rected for the confounding effects of relatedness and

population structure between strains using efficient

mixed model association (EMMA) [12]. By combining

genome-wide expression QTL (eQTL) maps for hippo-

campus and striatum, weighted gene correlation net-

work analysis (WGCNA) [13,14], and structural

equation modeling, we identified single genes and path-

ways with relationships to fear-driven behavioral

phenotypes.

Results

To identify regions of the genome associated with fear-

related behavior, mice from the HMDP were subjected

to a fear conditioning procedure and characterized on

48 unique behavioral phenotypes drawn from different

test phases. Using these phenotypes as quantitative

traits, we performed a genome-wide association study

(GWAS) to identify loci associated with each of the

behavioral traits.
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Figure 1 A systems biology approach to dissecting fear biology. Data from behavioral phenotype analysis was integrated with SNP

genotypes to map behavioral QTLs. Behavioral phenotypes were also compared to gene co-expression modules created from hippocampus and

striatum microarray datasets. Gene expression data and SNP genotypes were used together to map expression QTLs. All three datasets were

merged to prioritize mapped genes using Network Edge Orienting. This approach identifies gene networks associated with behavioral

phenotypes.
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Cued and context fear phenotyping

Mice were tested for cued and contextual fear acquired

through a Pavlovian conditioning procedure. Such fear

memories manifest across a variety of behavioral dimen-

sions and can be collectively quantified through the use

of automated tracking and analysis [15].

Immobility (freezing) is a classical measure of fear

triggered by an environmental threat. This species-speci-

fic defense response can be reliably acquired in a single

conditioning trial, making it a widely used model for

fear expression and learning and memory. We also

monitored other measures of fear including velocity,

thigmotaxis (wall-preference), path shape, and habitua-

tion. The fear conditioning assay is depicted schemati-

cally in Figure 2A. On day one, a mouse is placed in a

cage where an auditory conditional stimulus (CS) tone

is played for fifteen seconds followed by a brief foot

shock. Training consisted of three tone-shock pairings.

The next day, the mouse returned to the same chamber

and contextual fear is indexed through a collection of

behavioral endpoints including immobility. On the third

day, the mouse is placed in a novel chamber and given

a series of CS presentations with no foot shock. Cued

fear is quantified across the same behavioral endpoints

used to assess contextual fear.

Variability in freezing across the panel is shown in

Figure 2B. Further testing details for each of the beha-

vioral phenotypes (labeled from B1 to B48) are provided

in Additional file 1 (Supplementary methods and Table

S1). A cluster dendrogram depicting the similarity

between the quantitative behavioral phenotypes across

the HMDP is shown in Additional file 1 Figure S1. Sur-

prisingly, context and cue immobility measures clustered

closely together although they index different types of

learning.

Mapping of conditional fear QTLs

We mapped loci for behavioral phenotypes using EMMA

and 101,629 SNPs ([12], METHODS). Across 48 mea-

sured behavioral phenotypes, QTL analysis revealed 27

Day 1: Fear conditioning 

Day 2: Context fear test

Day 3: Cued fear test
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Figure 2 Fear conditioning in the HMDP. A) Behavioral procedure for cued fear conditioning. Mice were subjected to a three-phase

procedure. On day 1, mice received 3 auditory conditional stimuli (CS) co-terminating with 0.75 mA foot shock. On day 2, mice were returned

to the conditioning chamber for an 8 minute extinction test. On day 3, mice were placed in a novel chamber and given a series of 10 CS

presentations (inter-trial interval 1 minute). Green horizontal lines show time periods when fear endpoints were measured. B) Behavioral

distributions for selected endpoints across HMDP, corresponding to panels in A. Percent immobility calculated for three separate test phases.
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loci with a P value < 4.48 × 10-6, corresponding to a gen-

ome-wide false discovery rate (FDR) of 5%. This threshold

value is comparable to that from another study using the

same panel [9], which employed permutation testing to

calculate a genome-wide significance threshold of P = 4.1

× 10-6 or a family-wise error rate of 0.05. QTL plots for

the entire battery of behavioral endpoints are in Additional

file 1 Figure S2. The significant loci and corresponding

closest genes are summarized in Table 1.

We mapped a highly significant QTL on chromosome

7 for cued immobility (P = 4.40 × 10-9). There are two

peak markers for this locus, located ~102 kb apart and

residing in different linkage disequilibrium blocks (Addi-

tional file 1 Figure S3). One peak marker is located

within the Tyrosinase (Tyr) gene. Since the HMDP is

composed of inbred mouse strains, a number are homo-

zygous for a recessive mutation in Tyr leading to an

albino coat color (26 of 94 strains phenotyped).

One study looked directly at the effects of Tyr on cue

dependent freezing behavior [16] using both B6 mice with

a mutant Tyr allele and an AJ congenic strain with the

wildtype B6 allele substituted for the albino Tyr allele. Tyr

had only a small influence on fear learning with only

minor (if any) learning deficits due to reduced visual acuity

[17-19] and was one of likely many alleles influencing this

phenotype. Interestingly, the second peak has the same P

value as the first and lies in the glutamate receptor gene

metabotropic 5 (Grm5), which is involved in glutamatergic

neurotransmission. Homozygous null mice for Grm5 have

been shown to have reduced hippocampal long term

potentiation (LTP) [20] and impaired spatial learning [21].

These mice also have a behavioral phenotype associated

with a rodent model of schizophrenia [22]. Polymorphism

at this locus may contribute to a variance in motor activity

as a conditioned response to a tone.

eQTL mapping in hippocampus and striatum

Using gene expression measures of 25,697 transcripts as

quantitative traits from tissue from both the hippocam-

pus (98 strains, n = 1) and striatum (96 strains, n = 1),

Table 1 Behavioral QTLs with FDR < 0.05

Quantitative Behavioral Phenotype Chromosome Base Position Nearest gene P value

B3 pre training thigmotaxis mean distance to point 9 61,060,175 Tle3 1.14 × 10-6

B6 post training velocity mean 15 5,887,595 Dab2 2.92 × 10-6

B11 pre training immobility mean 2 6,186,281 Echdc3 1.77 × 10-6

B11 pre training immobility mean 7 126,370,751 Gpr139 1.31 × 10-6

B12 post training immobility mean 8 68,297,006 March1 4.41 × 10-6

B24 precue immobility mean 7 94,641,553 Tyr 5.58 × 10-9

B24 precue immobility mean 7 94,744,373 Grm5 5.58 × 10-9

B24 precue immobility mean 7 107,177,259 Chrdl2 5.14 × 10-8

B25 cue immobility mean 3 103,364,188 Syt6 1.56 × 10-6

B25 cue immobility mean 3 130,123,970 Col25a1 3.44 × 10-6

B25 cue immobility mean 4 6,678,672 Tox 2.58 × 10-6

B25 cue immobility mean 7 94,641,553 Tyr 4.40 × 10-9

B25 cue immobility mean 7 94,744,373 Grm5 4.40 × 10-9

B25 cue immobility mean 7 104,540,350 Alg8 7.06 × 10-9

B25 cue immobility mean 15 37,521,578 Ncald 1.76 × 10-6

B25 cue immobility mean 19 26,658,546 Smarca2 3.80 × 10-6

B27 precue mobility mean 7 94,641,553 Tyr 1.37 × 10-6

B27 precue mobility mean 7 94,744,373 Grm5 1.37 × 10-6

B30 precue thigmotaxis mean distance to point 1 163,397,742 Tnfsf18 3.17 × 10-6

B31 cue thigmotaxis mean distance to point 11 48,065,799 Gnb2l1 1.24 × 10-8

B33 precue thigmotaxis mean 2 151,612,920 Psmf1 3.36 × 10-6

B33 precue thigmotaxis mean 11 52,523,068 Fstl4 2.20 × 10-6

B33 precue thigmotaxis mean 13 72,750,827 D430050G20 3.73 × 10-6

B38 context thigmotaxis mean distance to point 1 172,955,973 Fcgr4 1.22 × 10-6

B38 context thigmotaxis mean distance to point 8 53,062,087 Aga 3.62 × 10-6

B38 context thigmotaxis mean distance to point 9 61,070,635 Tle3 2.16 × 10-6

B42 context meander mean 2 129,472,283 Sirpa 3.65 × 10-6

B44 context immobility mean 2 128,198,673 Gm14005 3.32 × 10-6

B44 context immobility mean 6 71,209,634 Smyd1 5.22 × 10-8

B47 context mobility extinction 11 70,800,475 Dhx33 4.27 × 10-6
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we mapped expression quantitative trait loci (eQTLs)

and their corresponding expression SNPs (eSNPs) using

EMMA ([12], see METHODS). For each tissue, we cal-

culated an independent genome-wide significance

threshold corresponding to a false discovery rate (FDR

or Q value) < 5% [23]. In hippocampus, this threshold

was P < 9.21 × 10-6 while in striatum the corresponding

threshold was P < 1.19 × 10-5. We separated the eSNPs

from each tissue into two separate categories: markers

within 2 Mb of the probe start position (termed cis or

local) and markers more than 2 Mb away (termed trans

or distant).

In hippocampus, we mapped 2,128 cis eQTLs, while in

striatum we mapped 2,528. There was strong overlap in

the cis eQTLs of the two tissues with 1,641 in common

(c2 = 11,831, df = 1, P < 10-300) indicating that tran-

scription regulation due to polymorphism is strongly

preserved between tissues. Interestingly, the set of cis

eQTLs unique to hippocampus was enriched in genes

from the gene ontology (GO) category [24] involved in

the “positive regulation of behavior” (Q = 1.8 × 10-3).

The top 100 cis eQTLs in each tissue along with loca-

tions of their corresponding peak markers and mini-

mum P values are provided in Additional file 1 (Tables

S2 and S3).

The presence of a SNP within the 50mer probe

sequence of the transcripts interrogated by the microar-

ray might produce spurious false positive cis eQTLs due

to a change in binding avidity. To investigate this possi-

bility, we downloaded a list of 8,265,759 known SNPs

from the Perlegen SNP Database http://mouse.cs.ucla.

edu/mousehapmap and searched for each of these SNPs

in the 25,697 probes on the Illumina microarray. Of the

SNPs in this list, 3,841 probes contained at least one

SNP. In the hippocampus, we observed 535 eQTLs with

SNPs while 317 were expected proportionally (c2 = 22.0,

df = 1, P < 2.7 × 10-6). The striatum also showed slight

enrichment with 602 cis eQTLs exhibiting SNPs in

probes with 372 expected (c2 = 3.0, df = 1, P = 0.08).

Although probe SNPs did increase the number of

observed cis eQTLs, the proportion was <15%, suggest-

ing that >85% of cis eQTLs do not have evidence of

being artifacts due to polymorphism. Of course, other

naturally occurring polymorphisms likely exist that are

not contained in the Perlegen SNP database and could

also lead to false positive associations.

In the hippocampus, we mapped 481,099 trans eSNPs

regulating a total of 5,325 unique probes, while in the

striatum, we mapped trans 619,418 eSNPs regulating a

total of 15,348 unique probes. Using a counting algorithm

(METHODS), we estimated these numbers corresponded

to a total of 19,876 trans eQTLs in the hippocampus and

60,150 trans eQTLs in the striatum. Genome-wide

probe/marker plots for each significant eSNP are

provided in the Supplementary materials (Additional file

1 Figures S4 and S5). Selected cis and trans eQTLs from

each tissue are shown in Figure 3A - 3D.

Comparison of our data with a recent eQTL survey in

the hippocampus using heterogeneous stock mice [25]

showed significant preservation of cis eQTLs (c2 =

1,171, df = 1, P = 1.1 × 10-256), while trans eQTLs did

not show significant overlap. This discrepancy could be

due to weaker effect sizes for trans eQTLs in general

compared to cis or due to differing thresholds for signif-

icance. Previous studies also found that trans eQTLs

replicated less frequently than cis [26,27]. A recent

study of liver using the HMDP [9] found 2,691 cis

eQTLs and 3,174 probes with at least one trans eQTL

with P < 4.1 × 10-6. We detected similar numbers of cis

eQTLs but more trans loci, even though the same sig-

nificance threshold was employed for both types of

eQTL. This discrepancy suggests differences in the regu-

latory networks of hepatic versus neural tissue and may

reflect greater transcriptional complexity in the brain.

To survey whether trans gene regulation in hippocam-

pus was similar to that found in the striatum, we com-

pared the probes regulated by each marker across the

two tissues. Using a 2 × 2 contingency table, we deter-

mined if a probe was regulated by each marker in the

hippocampus or not (surpassing a global FDR of 5%)

and regulated by the same marker in the striatum or

not. There was a significant overlap in the genes regu-

lated by each marker across the tissues (Fisher’s Exact

Test, df = 1, median omnibus -log10(Q) = 4.1), suggest-

ing strong similarities in the regulatory networks of the

two tissues. A genome-wide plot of the -log10(Q) of the

degree of overlap between tissues for genes regulated by

each marker between tissues is shown in Figure 3E.

Some markers clearly show better preservation of regu-

lated probes than others. For instance a SNP on chro-

mosome 7 at 104.063430 Mb regulates 33 unique genes

in the hippocampus and 36 genes in the striatum, with

29 of the genes in common. These hubs may have

strong control of expression across different tissues.

Despite the significant overlap, differences in regulation

are likely important in delineating the cellular disparity

between hippocampus and striatum.

Weighted gene correlation network analysis (WGCNA)

We looked at the large scale organization of gene co-

expression networks in the hippocampus and striatum

microarray datasets. Weighted gene co-expression net-

work analysis is a data reduction method that groups

genes into modules in an unsupervised manner based

on self-organizing properties of complex systems. These

co-expression networks are based on topological overlap

between genes while considering the correlation

genes have with each other and the degree of shared
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A

B

C

Cathepsin C (Ctsc)

chr7: 88.185676 Mbp

Usher syndrome 2A homolog (Ush2a)

chr1: 190.781342 Mbp

Leucine rich repeat containing 40 (Lrrc40)

chr3: 157.731200 Mbp

Similar to Ube2j2 protein (LOC545056)

chr14: 54.964400 Mbp
D

E

Figure 3 Examples of cis and trans eQTLs in hippocampus and striatum. A) Hippocampus cis eQTL. B) Striatum cis eQTL. C) Hippocampus

trans eQTL. D) Striatum trans eQTL. Red horizontal line represents genome wide significance threshold of FDR < 5% for each tissue. Blue vertical

line represents gene position. E) Degree of overlap between tissues for probes regulated by each marker between tissues at FDR < 5%.

Significance shown as - log10(Q).
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connections within the network. This method has been

used in several recent systems genetics studies to reveal

functional gene networks [28,29].

We identified 30 modules in hippocampus containing

39 to 8,445 genes and 25 modules in the striatum con-

taining 34 to 14,582 genes (Additional file 1 Table S4).

The largest module in each tissue is the grey module

which is reserved for genes that do not separate into any

other modules (noise genes). The hippocampus expres-

sion data organized into five more modules than the

striatum. This finding could reflect a greater cellular het-

erogeneity of the hippocampus compared to the striatum,

as module construction can tease apart patterns of differ-

ential expression in mixtures of cell types [30]. There

were other differences in co-expression networks between

the two tissues. For instance the sienna3 module in the

hippocampus was not preserved in striatum. This module

was significantly enriched in neuropeptide hormone activ-

ity (Q = 6.25 × 10-6) and oxygen binding (Q = 3.68 × 10-

4) indicating that these molecular classes may play impor-

tant roles in hippocampal function.

To evaluate the degree of module conservation across

the hippocampus and striatum, we calculated Z scores

for preservation of each module using the hippocampus

as a reference. The Zsummary statistic encapsulates evi-

dence that a network module is preserved between a

reference and a test network based on aspects of within-

module network density and connectivity patterns [31].

Lower Z.summary.pres scores imply module differences

while larger ones indicate preservation. Figure 4 demon-

strates that most gene co-expression modules showed

some degree of preservation across hippocampus and

striatum, with larger modules showing better preserva-

tion than smaller ones.

The gene expression properties of each of these mod-

ules can be condensed into module eigengenes (MEs)

which represent the first principal component of each

module [32,33]. By correlating these MEs to behavioral

phenotypes, we were able to identify groups of genes

with relationships with aspects of conditional fear. Fig-

ure 5 shows the correlation of each ME in the hippo-

campus with the behavioral phenotypes of cued and

context immobility (B25 and B44). We focused on hip-

pocampus, as this tissue has been previously implicated

in learning, memory, and fear [34].

The context immobility phenotype (B44) showed the

strongest correlations with two MEs in the hippocam-

pus: brown (r = -0.43, P = 0.002, Q = 0.07) and darkgrey

(r = 0.4, P = 0.005, Q = 0.08). We focus on these two

modules for further analysis and annotate them context

fear module 1 (CF1) and context fear module 2 (CF2)

respectively. Notably, no MEs showed significant corre-

lations with cued immobility (B25) even though cue and

context immobility phenotypes clustered together (Addi-

tional file 1 Figure S1). This observation is consistent

with the biology of cued immobility which relies on the

amygdala but is hippocampal dependent [35].

We looked for functional enrichment of specific gene

ontologies (GO) in the two selected context fear mod-

ules using the program GOEAST, which provides an

FDR corrected Q value [36] score for enrichment in

each category. The most highly represented ontologies

are shown in Additional file 1 Tables S5 and S6. Genes

in the intracellular portion of the cell were enriched in

both modules (CF1: Q = 1.54 × 10-16, CF2: Q = 2.33 ×

10-8), as were those involved in the mitochondrion

(CF1: Q = 4.38 × 10-6, Q = 2.1 × 10-3). By contrast,

classes of genes involved in metabolic processes and

gene expression were specific to CF1. Genes involved in

protein targeting and the rough endoplasmic reticulum

were prominent in CF2 but not in CF1. Results of corre-

lations between MEs and all quantified behavioral traits

for the hippocampus and striatum are provided in Addi-

tional file 1 (Figures S6 and S7).

Genes within each module are prioritized according to

their intramodular connectivity (the sum of connection

strengths with other genes within the network). Those

with a high degree of connectivity are considered hubs

and can be viewed as important players in molecular

pathways. There was a high correlation between the

intramodular connectivity measures of each gene across

the hippocampus and striatum (r = 0.53, P < 2.2 × 10-16)

indicating strong similarities in the transcriptional net-

works of these neural tissues.

The gene mitogen-activated protein kinase 1

(Map2k1) was one of the most highly connected genes

in CF1 and has been previously implicated in long-term

synaptic plasticity and memory [37]. The gene protea-

some (prosome, macropain) 26 S subunit, non-ATPase,

6 (Psmd6) acted as another hub in CF1, while in CF2,

the genes ubiquitin-conjugating enzyme E2A (Ube2a),

nuclear factor I/B (Nfib), and ubiquitin specific pepti-

dase 33 (Usp33) had the strongest intramodular connec-

tivity and served as hubs for this module. These results

suggest a role for targeted protein degradation in path-

ways associated with context dependent fear, consistent

with a recent study that showed that synaptic protein

degradation through polyubiquitination underlies the

destabilization of retrieved fear memory [38]. Other co-

expressed genes identified in these modules may also

play critical roles in the molecular mechanisms govern-

ing learning and memory. Complete details for the gene

co-expression network analysis for each tissue and the

corresponding measures of intramodular connectivity

for each gene can be found in Supplementary materials

(Additional file 2).
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MEs as quantitative traits

Each module eigengene can be considered a quantitative

trait, allowing for mapping of SNPs associated with var-

iation in groups of co-expressed genes. This strategy

reveals loci that perturb the expression of gene modules

with hopes of uncovering key drivers for traits of phy-

siological relevance [39]. Mapping results that survive a

Bonferroni correction for all 101,629 markers are sum-

marized in Table 2. Loci regulating six MEs in the hip-

pocampus were mapped, of which four were preserved

in the striatum and two were specific to hippocampus.

The first hippocampal specific locus regulated the dar-

kolivegreen module and mapped to a SNP on chromo-

some 7 within the intron for the gene TEA domain

family member 1 (Tead1), a gene known to be asso-

ciated with transcription factor complexes. This module

was enriched in the cellular component flotillin complex

(Q = 4.90 × 10-6) and the molecular function calmodu-

lin-dependent protein kinase activity (Q = 4.77 × 10-5).

The second hippocampal specific locus regulated the

white module and mapped to a SNP on chromosome 1

at 173.121821 Mb. This module consisted of genes

involved in the positive regulation of the acute inflam-

matory response to antigenic stimulus (Q = 4.54 × 10-5).

The module with the strongest association to physio-

logically relevant GO categories that also possessed reg-

ulatory loci for both tissues was the yellowgreen module

in the hippocampus (saddlebrown in striatum). This

module was enriched in antigen processing and presen-

tation (Q = 1.61 x10-21) and MHC protein complex (Q

= 3.10 × 10-19). This module may play a role in synaptic

remodeling, as neuronal MHC class I molecules were

recently found to regulate synapses in the central ner-

vous system in response to activity [40]. Interestingly,

Figure 4 Gene co-expression module preservation across hippocampus and striatum. Modules were constructed separately for each tissue

and preservation assessed by Zsummary score using hippocampus modules as reference set. Larger modules tended to be better preserved

across tissues.
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Figure 5 Correlation of module eigengenes with cued and context immobility phenotypes in the hippocampus. Columns represent

cued and context immobility phenotypes and the rows represent MEs. Correlations between MEs and phenotype represented by colors ranging

from red (high positive correlation) to green (high negative correlation). Correlation coefficient shown for each comparison with corresponding P

value in parentheses. Two highlighted modules shown in boldface.

Table 2 Loci regulating module eigengenes and significance

Hippocampus module Striatum module Chromosome Base Position Hippocampus P valve Striatum P valve

darkmagenta paleturquoise 17 24,843,527 9.38 × 10-28 1.75 × 10-22

yellowgreen saddlebrown 17 33,901,252 2.31 × 10-26 3.34 × 10-32

skyblue3 skyblue 8 125,688,170 1.93 × 10-18 3.52 × 10-15

Orange steelblue 14 50,200,200 1.87 × 10-31 9.56 × 10-42

darkolivegreen - 7 108,611,544 2.28 × 10-29 -

White - 1 173,121,821 1.18 × 10-21 -
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the regulatory locus for this module was identical for

hippocampus and striatum. A potential candidate for

this locus was flotillin 1 (Flot1), a gene with a cis eQTL

in both hippocampus and striatum ~24 kb away from

this peak marker. This gene product has been found to

accumulate in tangle-bearing neurons of Alzheimer’s

disease [41] and may play a role in learning. In addition,

the flotillin complex featured in the darkolivegreen

module regulated by a hippocampal locus (above).

Other genes in these identified modules should be

examined as potential players in the molecular pathways

for fear conditioning.

Network edge orienting: prioritizing directed trait

networks

To look for relationships between genetic variation, dif-

ferences in gene expression, and behavioral phenotypes,

we employed the Network Edge Orienting (NEO) [42]

algorithm. Using SNP markers as causal anchors, NEO

assigns directionality to trait networks and provides a

way to prioritize genes with expression profiles that are

coincident with quantitative behavioral phenotypes (Fig-

ure 6A).

We performed a NEO single marker analysis on mar-

kers with an FDR < 10% in the behavioral QTL map-

ping. The software uses structural equation modeling to

fit five models: causal, reactive, independent, and two

confounded models. NEO compares the best fitting

model relative to the next best fitting model, yielding a

log10 likelihood ratio, LEO.NB.AtoB, for each significant

SNP for each of the behavioral endpoints. Values greater

than 0.3 for this score indicate that the causal model fits

the input data twice as well as the next best model; a

score of 1 indicates a ten-fold better fit. The measure

RMSEA.AtoB is an index of model fit, with values <

0.05 representing a good fit.

Figure 6B shows the results of NEO analysis in the

hippocampus. The results indicate that two SNP mar-

kers located on chromosome 7 regulate the expression

of two nearby genes on chromosome 7 (630503K22RIK

and Rps15a) which in turn influence the immobility of

the animals before training (B11: Pre training immobility

mean).

Genetic variation at a SNP on chromosome 11 at

51.279205 was also shown to influence the expression of

the nearby gene kinesin-like protein 3A (Kif3a) which

then contributed to variation in thigmotaxis (B33: Pre

cue thigmotaxis mean). Kif3a is a kinesin gene involved

in moving axon cargo [43] and has been implicated in

amyotrophic lateral sclerosis, a disease involving degen-

eration of motor neurons [44].

Variation at a SNP on chromosome 2 resulted in a

change in expression of the gene START domain-con-

taining 7 (Stard7) which then influenced immobility

induced by a novel context (B44 Context immobility).

The genes 6330503K22RIK and Kif3a also appear as

strong candidates for fear related behavior in the NEO

analysis for the striatum (Additional file 1 Figure S8),

underscoring the similarity of transcriptional regulation

in the two tissues.

Discussion

Fear conditioning provides an opportunity to survey a

range of clinically relevant processes including short and

long-term memory, context generalization, and memory

extinction, making it an efficient tool with which to

probe the genetics of fear dependent behavior. To map

fear related QTLs, we subjected a population of inbred

mouse strains to a standard fear conditioning procedure

and follow-up memory tests. We then combined beha-

vioral phenotype data with SNP genotypes and tissue

specific gene expression to search for candidate genes

and related networks associated with fear phenotypes.

Across 48 behavioral endpoints, we mapped a total of

27 QTLs, highlighting the complexity of behavioral reg-

ulation and showcasing the value of HMDP for mapping

fear loci.

The inbred strains of the HMDP were not randomly

selected, but were, in fact, carefully chosen to avoid,

insofar as possible, high correlation of non-linked gen-

ome segments. Nevertheless, there are some shared seg-

ments across the genome due to bottlenecks in the

breeding and the history of the strains. EMMA endea-

vors to correct for these artifacts in the association ana-

lysis. However, some caution should be applied to the

interpretation of the mapping results, since bias may

remain which cannot be overcome by the analysis of the

data.

The strongest behavioral QTL in our investigation was

for the phenotype cue immobility and had two peak

markers on chromosome 7. These markers were located

in the adjacent genes Tyr and Grm5 and had identical P

values of 4.4 × 10-9, yet there were recombination

breakpoints between them. Many HMDP strains have

mutations in Tyr and are albino, resulting in possibly

learning and memory deficits due to decreased visual

acuity. However, a study that examined this allele speci-

fically showed that it plays only a minor role in cue

immobility and that additional loci are likely to influ-

ence fear conditioning [16]. Grm5 is an attractive candi-

date gene for this locus, since it has previously been

shown to be involved in hippocampal LTP.

We surveyed the architecture of transcriptional regula-

tion across two brain regions. We found a smaller num-

ber of cis and trans eQTLs in the hippocampus than in

the striatum. This diminution may be caused by signal

dilution due to the heterogeneous cellular nature of the

hippocampus. However we found that the cis and trans
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eQTLs in the two tissues overlapped significantly, indi-

cating that DNA polymorphism has a robust effect in

modulating gene expression across tissues.

By simplifying the gene expression data into modules,

we identified groups of genes that are related to fear

related behavior. Two such modules in the hippocampus

(CF1 and CF2) showed strong correlations with context-

dependent fear measures, allowing identification of net-

works of genes whose co-expression co-varied with fear

phenotypes across the HMDP. We assigned priorities to

genes within each module based on their level of intra-

modular connectivity and mapped loci responsible for

regulating MEs in both hippocampus and striatum.

Cued and context immobility were phenotypically simi-

lar as they clustered together in the behavioral dendro-

gram. However, the two identified modules did not

show strong correlations with cued fear, confirming sug-

gesting that the two different types of fear are expressed

through different neural and/or molecular pathways.

A hub gene in CF1 (Psmd6) and two of the most

highly connected genes in CF2 (Ube2a and Usp33) have

been shown to play roles in ubiquitination. Interestingly,

others have shown that ubiquitin-mediated proteolysis is

involved in initiating long-term stable memory, as both

specific removal of specific inhibitory proteins and gene

induction are likely to be critical players in fear condi-

tioning [45]. Other components in these modules may

be implicated by association in these genetic pathways

and provide attractive targets for further investigation.

Structural equation modeling allowed us to identify

single markers that influenced the expression of single

genes which in turn influence fear related phenotypes.

We identified five genes with causal relationships for

fear-related phenotypes in the hippocampus and stria-

tum including 6330503K22RIK, Rps15a, Kif3a, Stard7,

and Plvap.

Conclusion

In summary, looking at expression patterns in genes and

groups of genes in various neural tissues has helped to

elucidate the complex molecular networks contributing

to fear dependent behavior. While the current approach

6330503K22RIK Rps15a Stard7Kif3a
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Figure 6 Selected causative genes in the hippocampus found using network edge orienting. A) Model fitted by NEO software implicates

a marker (DNA) as causal for a phenotypic trait through expression of a gene (RNA) B) Thresholds for FDR < 5% shown as red horizontal lines.

Vertical black lines indicate the start position of the gene. 6330503K22RIK, Rps15a, Kif3a, and Stard7 are genes with local markers that perturb

gene expression levels, which in turn contribute to fear phenotypes.
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yielded several potential loci and candidate genes, addi-

tional inbred strains would provide increased power for

more comprehensive mapping. Next generation sequen-

cing technologies and proteomics should afford

even deeper views of genetic polymorphism and expres-

sion as we continue to refine gene networks of fear

neurobiology.

Methods

Mouse population

Male mice from the Mouse Diversity Panel (HMDP)

were used for all behavioral analyses. This panel of mice

consists of 100 inbred strains comprised of 29 classical

inbred strains paired with three sets of RI strains

selected for diversity [9]. All mice (n = 700) were

obtained through Jackson Laboratory at approximately

55 days old then housed for a 14-day acclimation period

prior to testing. Mice were housed in groups (3-4 per

cage) under a 12hr/12hr day/night cycle with ad lib

access to food and water. All behavioral testing was con-

ducted during the day portion of the cycle, between the

hours of 10 AM and 4 PM. Protocols conformed to

NIH Care and Use Guidelines and were approved

through the UCLA Animal Research Committee. Mice

were housed in their covered home cages and placed in

an adjacent holding room. Auditory background stimu-

lus in the form of white noise (80db) was delivered

through overhead speakers. Previous unpublished obser-

vation showed no evidence of orienting response, or any

behavioral responses to stimulus presentation while in

the holding room [15].

Fear Conditioning

All HMDP strains were exposed to a fear conditioning

procedure followed by two independent memory tests.

Parameters and procedures were identical to those pre-

viously described [15]. On each test day, mice were

wheeled to a holding room for a 30 min acclimation

period prior to testing. Each mouse was tested individu-

ally and then transferred to a holding cage. On day 1,

mice were placed in a 25 cm × 20 cm conditioning

chamber with grid floors and white plexiglass. Following

a 3 minute exploration period, mice received three audi-

tory conditional stimuli (CS; 2000Hz, 15 seconds, 80

dB) co-terminating with footshock unconditional stimu-

lus (US; 0.75 mA, 1 second), delivered with an inter-trial

interval (ITI) of 1 minute. Mice were removed 2 min-

utes following the final US. On day 2, contextual fear

was assessed. Mice were then returned to the condition-

ing chamber under conditions identical to day 1.

Neither the CS nor US was presented during an 8 min-

ute test. On day 3, cued fear was assessed following a

contextual shift. Mice were placed in a novel, rectangu-

lar activity chamber (50 cm × 25 cm), given a 3 minute

exploration period followed by a series of ten CS pre-

sentations (ITI 1 min), then removed from the chamber

1 minute following the final CS. No US were presented

during this test. This apparatus was cleaned with 70%

ethanol between tests.

Behavioral Data Analysis

Behavior was recorded digitally from a camera mounted

above each test chamber, then digitized at 15 frames per

second with the EthoVision Pro tracking system (Noldus

Information Technology). For each mouse a total of 48

unique endpoints were quantified automatically with

EthoVision software (Additional file 1 Table S1). Vary-

ing numbers of biological replicates were obtained for

each strain (ranging from n = 3 to n = 16, mean = 7.3).

These measures were designed to characterize multiple

dimensions of defensive behavior. The methodology and

rationale behind these measures has been discussed pre-

viously [15].

Mean performance for each endpoint was determined

by either collapsing across the entire test session for

context fear endpoints or across specific test phases for

fear conditioning (pre-US, post-US) and cued fear test

(pre-CS, CS) endpoints. The pre-US period consisted of

the 3 minutes prior to the initial CS presentation, while

the post-US period encompassed the 4.25 minute inter-

val between the first US presentation and removal from

the chamber. Likewise, the pre-CS period spanned the 3

minutes prior to CS presentation, and the CS period

covered the 12.5 minute period between the first CS

presentation and removal from the chamber. Measures

reflecting rate changes were quantified by analyzing

time course data within individual test phases.

For the context test, endpoint rate changes were calcu-

lated as the percent change from the initial 2 minute

epoch to the final 2 minute epoch. For multi-phase tests

(training, cued fear test), rate changes were calculated as

suppression ratios based on mean values from the relevant

test phases (pre/(pre+post)). Strain means were calculated

and served as the behavioral phenotypes for downstream

analysis. Velocity is the mean rate of movement in any

given interval (e.g. cm/s), while mobility is the time spent

mobile, expressed as a percentage of total time.

Genotype analysis

The classical inbred and RI strains were genotyped pre-

viously [9] by the Broad Institute (classical) and the Well-

come Trust Center for Human Genetics (RI). The

genotypes of the RI lines at the Broad SNPs were

imputed from the Wellcome Trust genotypes. Only SNPs

with a minor allele frequency greater than or equal to

10% were used in the analysis to minimize false positives

due to small sample size. All genome coordinates are

based on NCBI build 35 (mm7) of the mouse genome.
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Behavioral QTL mapping

Using the collected behavioral phenotypes, we

performed a genome-wide association test using the

software package EMMA (Efficient Mixed-Model Asso-

ciation) [12]. This program calculates P values which

quantify the degree of association between each probe-

marker pair while correcting for confounding effects of

population structure and genetic relatedness between

strains in the panel. We used a genome-wide Q value

threshold of 5% [23] which corresponds to a P value

of 4.1 × 10-6 . To count the number of significant QTL,

the genome was divided into bins of 2Mb. If significant

markers were found in adjacent bins, markers were

combined and counted as a single QTL.

Tissue harvesting

Brains were removed from each animal after euthanasia.

Hippocampus and striatum were dissected out and flash

frozen in liquid nitrogen. RNA was extracted from each

sample using the Qiagen RNeasy kit.

Microarray data collection

Gene expression levels were quantified using Illumina

Mouse-Ref 8 v2.0 Expression BeadChip microarrays.

The data were normalized using the rank invariant

option in the software package BeadStudio (Illumina)

[46]. The microarray data are available at the Gene

Expression Omnibus (GEO) http://www.ncbi.nlm.nih.

gov/geo/ under accession number GSE26500.

Expression quantitative trait loci (eQTL) mapping

Using the marker genotype information from the

HMDP and RNA expression data from hippocampus

and striatum, we performed a genome-wide association

test for each of the 25,697 probes (genes) on the micro-

array compared to each of the 101,629 SNP markers

using the software package EMMA. Markers within 2

Mb of the probe position for each gene were considered

cis (local), while those greater than 2 Mb from the

probe position were considered trans (distant). Genome-

wide significance thresholds were determined by calcu-

lating the P value corresponding to a Benjamini and

Hochberg corrected FDR of 5% [23]. To count the num-

ber of significant trans loci, we divided the genome into

bins of 2 Mb in width and counted whether or not a

marker that surpassed an FDR of 5% was observed in

the bin or not. If adjacent bins contained at least one

significant marker, the bins were combined together and

counted as a single locus.

Gene ontology enrichment analysis

Groups of identified genes were checked for enrichment

in gene ontology categories using the package GOEAST

[24]. Significance was reported as Q values (P value cor-

rected false discovery rates [36]).

Identification of gene co-expression modules associated

with behavioral phenotypes

We used the R package WGCNA [47] to create gene co-

expression modules. The input data consisted of gene

expression data from the hippocampus (n = 94) and the

striatum (n = 94). This program created modules or clus-

ters of highly correlated genes in each tissue separately.

For each of the modules, the program produced a mod-

ule eigengene (ME) which enabled us to find relation-

ships of modules with behavioral phenotypes.

Module preservation

We used the modulePreservation function from the

WGCNA library to calculate module preservation statis-

tics [31]. The Zsummary is derived from seven underly-

ing statistics that measure preservation of various

aspects of within-module network density and connec-

tivity patterns. The underlying preservation statistics are

based on permutation tests and their values represent

evidence that a module is significantly better preserved

between the reference and test networks than a ran-

domly sampled group of genes of the same size. A

Zsummary < 2 indicates no evidence of module preser-

vation, 2 < Zsummary < 10 indicates weak to moderate

module preservation, and Zsummary > 10 indicates

strong preservation.

Network edge orienting

Markers surpassing a FDR threshold of 10% in the beha-

vioral QTL analysis along with gene expression data for

hippocampus and striatum were used as input to the

Network Edge Orienting (NEO) software package in R

[42]. We selected marker, gene, and phenotype combi-

nations that yielded a LEO, NB.AtoB score > 0.3 and

RMSEA.AtoB score < 0.05 for further analysis.

Additional material

Additional file 1: Supplementary Methods, Tables and Figures. The

Supplementary Methods describe further analyses of fear phenotypes in

the HMDP and gene regulation hotspots from the eQTL mapping.

Supplementary Tables are Table S1, Classification of quantified behavioral

phenotypes; Table S2, Top 100 cis eQTLs in hippocampus; Table S3, Top

100 cis eQTLs in striatum; Table S4, Gene co-expression modules; Table

S5, Functional classification for genes in context fear module 1; Table S6,

Functional classification for genes in context fear module 2.

Supplementary Figures are Figure S1, Cluster dendrogram by behavioral

phenotype across HMDP; Figure S2, Mapped locus for cue immobility on

chromosome 7; Figure S3, QTL plots for 48 tested behavioral phenotypes

after EMMA correction for population structure; Figure S4, Hippocampus

eQTLs; Figure S5, Striatum eQTLs; Figure S6, Hippocampus module-trait

correlations; Figure S7, Striatum module-trait correlations; Figure S8,

Striatum NEO results.
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Additional file 2: Gene connectivity and module information. Table

provides details of gene co-expression network analyses for each tissue

and corresponding measures of intramodular connectivity for each gene.
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