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GOseqGOseq is a method for GO analysis of RNA-seq data that takes into account the length bias inherent in RNA-seq
Abstract
We present GOseq, an application for performing Gene Ontology (GO) analysis on RNA-seq data. GO analysis is widely 

used to reduce complexity and highlight biological processes in genome-wide expression studies, but standard 

methods give biased results on RNA-seq data due to over-detection of differential expression for long and highly 

expressed transcripts. Application of GOseq to a prostate cancer data set shows that GOseq dramatically changes the 

results, highlighting categories more consistent with the known biology.

Background
Next generation sequencing of RNA (RNA-seq) gives

unprecedented detail about the transcriptional landscape

of an organism. Not only is it possible to accurately mea-

sure expression levels of transcripts in a sample [1], but

this new technology promises to deliver a range of addi-

tional benefits, such as the investigation of alternative

splicing [2], allele specific expression [3] and RNA editing

[4]. However, in order to accurately make use of the data,

it is vital that analysis techniques are developed to take

into account the technical features of RNA-seq output.

As many of the specific technical properties of RNA-seq

data are not present in previous technologies such as

microarrays, naive application of the same analysis meth-

odologies, developed for these older technologies, may

lead to bias in the results.

In RNA-seq experiments the expression level of a tran-

script is estimated from the number of reads that map to

that transcript. In many applications, the expected read

count for a transcript is proportional to the gene's expres-

sion level multiplied by its transcript length. Therefore,

even when two transcripts are expressed at the same

level, differences in length will yield differing numbers of

total reads. One consequence of this is that longer tran-

scripts give more statistical power for detecting differen-

tial expression between samples [5]. Similarly, more

highly expressed transcripts have a greater number of

reads and greater power to detect differential expression.

Hence, long or highly expressed transcripts are more

likely to be detected as differentially expressed compared

with their short and/or lowly expressed counterparts.

The fact that statistical power increases with the number

of reads is an unavoidable property of count data, which

cannot be removed by normalization or re-scaling. Con-

sequently, it is unsurprising that this selection bias has

been shown to exist in a range of different experiments

performed using different analysis methods, experimen-

tal designs and sequencing platforms [5]. When perform-

ing systems biology analyses, failure to account for this

effect will lead to biased results.

One simple, but extremely widely used, systems biology

technique for highlighting biological processes is gene

category over-representation analysis. In order to per-

form this analysis, genes are grouped into categories by

some common biological property and then tested to find

categories that are over represented amongst the differ-

entially expressed genes. Gene Ontology (GO) categories

are commonly used in this technique and there are many

tools available for performing GO analysis - for example,

EasyGO [6], GOminer [7], GOstat [8], GOToolBox [9],

topGO [10], GSEA [11], DAVID [12] (see supplementary

data 1 in Huang da et al. [12] for a more complete list).

Although these tools have some differences in methodol-

ogy [12], they all rely on similar underlying assumptions

about the distribution of differentially expressed (DE)

genes. Specifically, it is assumed that all genes are inde-

pendent and equally likely to be selected as DE, under the

null hypothesis. It is this assumption that makes the stan-

dard GO analysis methods unsuitable for RNA-seq data

due to the bias in detecting differential expression for
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genes with a high number of reads. It follows then that

when using a standard analysis, any category containing a

preponderance of long genes will be more likely to show

up as over-represented than a category with genes of

average length. Similarly, categories with highly

expressed genes are also more likely to be found as over-

represented than categories of lowly expressed genes.

Having identified this issue, it is possible to compensate

for the effect of selection bias in the statistical test of a

category's enrichment among differentially expressed

genes.

This paper will be concerned with developing a statisti-

cal methodology that enables the application of GO anal-

ysis to RNA-seq data by properly incorporating the effect

of selection bias. Using published RNA-seq data, we will

show that accounting for this effect leads to significantly

different results, which agree much better with previous

microarray studies and the known biology than the

results of an uncorrected analysis.

Results
Because it is so widely used, we choose to focus our cate-

gory testing on GO analysis. The techniques developed

here apply more generally, however, to any analysis that

looks for over-representation of some category of interest

amongst differentially expressed genes. For example,

alternative analyses might look for over-representation of

KEGG (Kyoto Encyclopedia of Genes and Genomes)

pathways, gene sets in the Molecular Signatures Database

[11], or gene lists derived from earlier microarray experi-

ments.

To illustrate the methodology, the GOseq technique

was applied to an experiment examining the effects of

androgen stimulation on a human prostate cancer cell

line, LNCaP [13]. This published data set includes more

than 17 million short cDNA reads obtained for both the

treated and untreated cell line and sequenced on Illu-

mina's 1G genome analyzer. These reads were re-mapped

back to the reference genome and the number of reads

per gene was recorded (see Additional file 1 for details).

Examples of the methodology throughout the paper are

made using this data set and we show that the GOseq

method makes a substantial difference to the results of

the GO analysis, which are more consistent with prior

knowledge of the system.

GO analysis

Standard methods for testing over-representation of a

GO category assume that, under the null hypothesis, each

gene has equal probability of being detected as DE. Under

this assumption, the number of genes associated with a

category that overlap with the set of DE genes follows a

hypergeometric distribution. Hence the GO test can be

conducted using Fisher's exact test, which uses the hyper-

geometric distribution, or Pearson's chi-square test,

which is a computationally convenient approximation

[12]. Because of the existence of selection bias, genes with

more reads are more likely to be detected as DE, violating

the assumption behind the hypergeometric distribution.

Therefore, these standard test distributions should not be

used for GO analysis with RNA-seq data. Instead, we

need a new test that corrects for selection bias.

Selection bias

Transcript length bias will affect GO analysis if the sets of

genes associated with GO categories contain a non-ran-

dom set of genes, with either a preponderance of short or

long genes. To test individual categories for a length dis-

tribution bias, we assessed the length of genes within

7,873 unique GO categories associated with human genes

in the GO consortium database [14]. The length distribu-

tion of the genes in these categories varied widely, with

some categories containing an over-representation of

long genes and some with relatively short genes (Figure

1a). A Mann-Whitney U test (also known as a Wilcoxon

rank-sum test) was performed on each category to test

whether the median length of genes in that GO category

differed from the global median length across all catego-

ries. Figure 1b shows a histogram of the Mann-Whitney

P-values. The clear excess of low P-values indicates the

existence of GO categories with many long or short

genes. Therefore, we expect that a standard analysis of

GO category enrichment among DE genes, which ignores

transcript length, to be significantly affected by the tran-

script length bias inherent to RNA-seq.

The GOseq method

In order to correct for selection bias in category testing,

we propose the following three-step methodology. First,

the genes that are significantly DE between conditions are

identified. The GOseq method works with any procedure

for identifying DE genes. Second, the likelihood of DE as

a function of transcript length is quantified. This is

obtained by fitting a monotonic function to DE versus

transcript length data. Finally, the DE versus length func-

tion is incorporated into the statistical test of each cate-

gory's significance. This final step takes into account the

lengths of the genes that make up each category.

The first step in the GOseq procedure is to determine

which genes are differentially expressed. For the prostate

cancer data set, a P-value for differential expression

between the treated and untreated cells was obtained for

each gene using a Poisson exact test, equivalent to

Fisher's exact test [15-17]. These P-values were then cor-

rected for multiple testing [18] and the false discovery

rate was set at 10-4. Figure 2a shows a plot of the propor-

tion of DE genes as a function of length. A strong trend

towards a higher rate of differential expression for genes
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with longer transcripts is evident. Figure 2b shows a simi-

lar trend towards more differential expression for genes

with a higher total number of reads. As expected, the

trend is stronger for total read count compared to tran-

script length. Other statistical methods for determining

differential expression between samples show a similar

trend of increasing proportion of DE genes with gene

length, even when working with data normalized by

dividing by transcript length, such as RPKM transformed

data [19] (Figure S1b,c in Additional file 1). Non-statisti-

cal methods for determining DE, such as using a fold-

change cutoff, can show a decreasing trend in the propor-

tion of DE as a function of gene length (Figure S1a in

Additional file 1). Any trend observed in the data is mod-

eled by the second step of the GOseq procedure.

In the second step, a probability weighting function

(PWF) is estimated from the data. The PWF quantifies

how the probability of a gene selected as DE changes as a

function of its transcript length. To estimate this trend

function, each gene is assigned a binary value (zero or

one), according to whether or not the gene is found to be

DE. A monotonic spline with 6 knots is then fitted to this

binary data series using the transcript length of each gene

as predictor (see Materials and methods). Monotonicity

is imposed as the power to detect DE using statistical

tests increases monotonically with an increasing number

of reads. Figure 2 also shows the resulting probability

weighting function for the prostate cancer data set. The

PWF then forms the null hypothesis for our enrichment

test.

Unlike GO analysis for microarray data, the null proba-

bility distribution does not conform to a standard distri-

bution, precluding an analytical solution for determining

the probability of a category being over-represented

among DE genes. However, the P-value for each category

can be computed using a resampling strategy. For the

final step of the GOseq method, resampling was per-

formed by randomly selecting a set of genes, the same

size as the set of DE genes, and counting the number of

genes associated with the GO category of interest. This

random selection weights the chance of choosing a gene

by its length or read count, from the previously fitted

probability weighting function. The resampling is

repeated many times and the resulting distribution of GO

category membership is taken to approximate the shape

of the true probability distribution. This sampling distri-

bution allows calculation of a P-value for each GO cate-

gory being over-represented in the set of DE genes while

taking selection bias into account.

Length distribution of genes in Gene Ontology categories

Figure 1 Length distribution of genes in Gene Ontology categories. (a) The distribution of average gene lengths in GO categories on a log10 

scale. The GO category gene length is given by the median length of the genes within the category. (b) P-values for the two-sided Mann-Whitney U 

test comparing the median length of genes in a GO category with the overall distribution of genes for 7,873 GO categories. The excess of low P-values 

shows that there are many GO categories that contain a set of significantly long or short genes.
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The Wallenius approximation

Although accurate, random sampling is very computa-

tionally intensive, particularly when a fine granularity in

P-value is needed to distinguish between large numbers

of categories. In order to make the calculation in the final

step of the GOseq procedure computationally manage-

able, we implemented an alternative approximation tech-

nique, based on an extension of the hypergeometric

Differential expression as a function of gene length and read count

Figure 2 Differential expression as a function of gene length and read count. (a) The proportion of DE genes is plotted as a function of the tran-

script length. Each point represents the percentage of genes called DE in a bin of 300 genes plotted against the median gene length for the bin. The 

green line is the probability weighting function obtained by fitting a monotonic cubic spline with 6 knots to the binary data. A clear trend towards 

more detected differential expression at longer gene lengths can be seen. (b) The same, except instead of transcript length, the total number of reads 

for each gene was used. Again, a trend towards more DE for genes with more reads can be seen. Note the greater range of probabilities compared to 

(a).
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Table 1: Gene Ontology categories ranked in the top 25 in the standard method but not in length bias adjusted GOseq

GOID Term Ontology Rank standard Rank GOseq Average gene 

length in 

category

GO:0005622 Intracellular CC 9 38 2,710

GO:0005524 ATP binding MF 12 113 3,133

GO:0008270 Zinc ion binding MF 13 145 2,817

GO:0016020 Membrane CC 16 702 2,571

GO:0046872 Metal ion binding MF 17 255 2,734

GO:0006355 Regulation of 

transcription, 

DNA-dependent

BP 19 266 2,752

GO:0000139 Golgi membrane CC 22 28 2,855

GO:0016740 Transferase 

activity

MF 25 116 2,721

The median gene length of all categories are significantly longer than average using a Mann-Whitney test. BP, biological process; CC, cellular 

component; MF, molecular function.
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distribution known as the Wallenius non-central hyper-

geometric distribution [20]. This distribution extends the

hypergeometric distribution to the case where the proba-

bility of success and failure differ. The GOseq implemen-

tation of the approximation assumes that all genes within

a category have the same probability of being chosen, but

this probability is different from the probability of choos-

ing genes outside this category. The mean of the probabil-

ity weightings for each gene within/outside the category

is defined as the common probability of choosing a gene

within/outside that category. While the Wallenius

approximation is obviously a simplification, it is signifi-

cantly closer to the true distribution than the standard

hypergeometric distribution.

Although the accuracy lost by using the Wallenius

approximation is not negligible, the gain in computa-

tional efficiency is dramatic. Furthermore, the ability to

differentiate the most highly over-represented categories

from one another (Additional file 1) makes the Wallenius

approximation an attractive alternative, particularly when

the range of the probability weighting function is moder-

ate.

Comparisons of GOseq with the standard GO analysis

To compare the results from the GOseq procedure to the

standard GO analysis used on microarray data, we

applied both methods to the prostate cancer data set. For

each method a list of GO categories ordered by signifi-

cance was generated. Figure 3 compares the ranks of the

GO categories between the GOseq method and hyper-

geometric method as a function of gene length (Figure

3a) or total read count (Figure 3b) within categories. As

expected, categories with shorter than average length

move up in rank (become more significant) when length

bias has been taken into account with the GOseq method.

Similarly, categories with longer than average genes are

ranked lower by GOseq than the standard method. Fur-

thermore, when accounting for gene length bias, of the 25

categories most significantly over-represented using

GOseq and the standard method, 8 are discrepant

between the methods (Tables 1 and 2). This highlights the

fact that accounting for biases in detecting DE makes a

significant difference to the biology identified from the

results.

The standard GOseq analysis was also compared to

both the random sampling strategy and the more compu-

tationally efficient Wallenius approximation. P-values for

Table 2: Gene Ontology categories ranked in the top 25 in length bias adjusted GOseq but not in the standard method

GOID Term Ontology Rank standard Rank GOseq Average gene 

length in 

category

GO:0006414 Translational 

elongation

BP 92 8 708*

GO:0000786 Nucleosome CC 64 14 1,345*

GO:0006334 nucleosome 

assembly

BP 70 17 1,362*

GO:0043687 Post-translational 

protein 

modification

BP 50 20 1,830

GO:0019787 Small conjugating 

protein ligase 

activity

MF 65 25 1,928

GO:0016192 Vesicle-mediated 

transport

BP 28 22 2,765

GO:0006412 Translation BP 104 23 1,472

GO:0051246 Regulation of 

protein metabolic 

process

BP 66 24 1,609

Three of these categories (marked with asterisks) have genes significantly shorter than average length (Mann-Whitney P-value < 0.05). BP, 

biological process; CC, cellular component; MF, molecular function.
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over-representation of DE genes for each GO category

were generated using random sampling with a high num-

ber of repetitions (200,000). These P-values were then

compared to P-values calculated using the standard

hypergeometric test and GOseq utilizing the Wallenius

approximation. Comparison of the categories' P-values

demonstrate a large discrepancy between the GOseq

method and the hypergeometric method, as well as very

little difference between GOseq using sampling or Walle-

nius (Figure 4a; Figure S3 in Additional file 1). Further-

more, we compared the top ranked lists of enriched GO

categories between two methods by plotting the number

of discrepancies between the methods for a given list size

(Figure 4b). This plot shows that for the prostate cancer

data set, approximately 20% of GO categories that appear

using the standard analysis are not present when GOseq

is used and vice versa. The high number of discrepancies

for short lists shows that failure to account for length bias

impairs analysis, even if we are only interested in a small

number of categories. Reassuringly, the Wallenius

approximation closely approximates GOseq using high

repetition sampling with very few changes in P-values or

rankings of categories. Similar results are seen for other

RNA-seq datasets (data not shown).

Measuring GOseq's accuracy by comparison with 

microarray data

The GOseq method clearly makes a substantial difference

to the categories selected when performing a GO analy-

sis. In order to demonstrate that accounting for length

bias produces more reliable results, we compared the

results of GOseq and the standard test to the GO analysis

from a microarray experiment that does not show any

gene length bias [5]. For the comparison of RNA-seq and

microarrays, a data set was used that compares the exact

same liver and kidney samples on the two platforms [21]

(see Materials and methods). Figure 5 plots the fraction of

microarray GO categories recovered from the RNA-seq

data using the hypergeometric and GOseq methods, as a

function of the number of GO categories considered. It

can be seen that GOseq gives categories more consistent

with the microarray platform (P = 0.067), indicating that

accounting for length bias gives a GO analysis with better

performance.

Transcript length bias versus read count bias

As transcript length bias is a technical effect, it is always

necessary to correct for it when performing category test-

ing on RNA-seq data. However, the bias in power to

detect DE in longer genes arises from an increase in the

total number of reads for each gene, where the number of

Change in Gene Ontology category rank between the standard and GOseq methodologies

Figure 3 Change in Gene Ontology category rank between the standard and GOseq methodologies. (a) Change in rank of GO categories go-

ing from the hypergeometric method to GOseq correcting for length bias plotted against the log of the average gene length of the category. (b) 

Change in rank of GO categories going from the hypergeometric method to GOseq correcting for total read count plotted against the log of the av-

erage number of counts of each gene in the category. A trend for the standard method to underestimate significance for GO categories containing 

short (or highly expressed) genes and overestimate significance for GO categories containing long (or underexpressed) genes can be clearly seen.
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reads is given by transcript length multiplied by expres-

sion level. Therefore, there may be circumstances where

it is desirable to correct for the effect of expression level

on power to detect DE, in addition to the contribution

from transcript length, that is, total read count bias (for

further discussion see Additional file 1). The GOseq

method is capable of handling both types of bias. We have

mainly focused on transcript length bias as it will always

need to be accounted for and because the decision to

account for expression level or not ultimately depends on

the questions the user wishes to answer.

To assess the impact of total read count bias, GOseq

was used to analyze the prostate cancer data set account-

ing for read count bias. As expected, correcting for read

count bias results in even greater differences compared to

the standard hypergeometric method than just correcting

for length bias alone. When read count bias is corrected

for in the prostate cancer data set, more than 50% of sig-

nificant GO categories are different from the list of signif-

icant GO categories obtained using the standard

hypergeometric method (Figure 6). This is true even for

the very top GO categories - there is only one GO cate-

gory that appears in the top ten in both the standard and

read count adjusted lists (Tables 3 and 4).

Discussion
Biological relevance of selected categories

To determine the effect of GOseq on the ability to draw

biologically meaningful conclusions, the top ten GO cate-

gories using the standard hypergeometric method and

the read count adjusted GOseq method were compared

in the prostate cancer data set (Tables 3 and 4). We found

that categories identified by GOseq are more consistent

with previous studies looking at the relationship of

androgens with prostate cancer. The role of androgens in

prostate cancer is well supported, with androgen required

in rodent prostate cancer induction models, and castra-

tion prior to puberty being protective against prostate

cancer. Androgen is thought to be responsible for promo-

tion of prostate cancer progression through enhancing

the androgen regulated processes of growth and cellular

activity. In normal prostate, androgen supports the secre-

tary epithelial, which turns over at a rate of 1 to 2% of

cells per day, and most prostate cancers are derived from

these cells [22]. Based on this biological knowledge the

prior expectation is that there will be an increase in cellu-

lar activity, proliferation and secretion in LNCaP cells in

response to androgen. Previous microarray experiments

have shown that LNCaP cells retain androgen responsive-

ness and that most genes upregulated are involved in the

production of seminal fluid [23].

In the standard analysis, the top ten GO categories

indicate a change in intracellular genes, including nuclear

and DNA binding genes (Table 3). The top ten categories

using GOseq with total read count adjustment indicate

significant changes at membranes and extracellular space,

transcriptional upregulation, and in cell cycle genes

(Table 4). The categories identified as most significant by

GOseq therefore better match the known biology of

androgen response in prostate cancer. The genes that are

significant only with the length bias adjustment (Table 2)

include four categories consistent with increased transla-

tion and protein production, vesical mediated transport

consistent with secretion, and two categories related to

Table 3: Top ten Gene Ontology categories using the standard method

GOID Term Ontology Rank standard Rank GOseq Median read 

count of genes in 

category

GO:0005515 Protein binding MF 1 11 206

GO:0005737 Cytoplasm CC 2 111 238

GO:0005634 Nucleus CC 3 4,303 228

GO:0000166 Nucleotide 

binding

MF 4 2,546 252

GO:0005829 Cytosol CC 5 1,192 349

GO:0005783 Endoplasmic 

reticulum

CC 6 6 197

GO:0003677 DNA binding MF 7 2,109 189

GO:0005794 Golgi apparatus CC 8 26 213

GO:0005622 Intracellular CC 9 3,592 187

GO:0016874 Ligase activity MF 10 88 353

BP, biological process; CC, cellular component; MF, molecular function.
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nucleosomes consistent with increased replication. The

category of small conjugating protein ligase activity is

supported by the previously reported up-regulation of

ubiquitin ligases UBE2C and HSPC150 [23].

Possibility of true biological trends in gene length

A key assumption of GOseq is that longer genes are not

of biologically greater interest than shorter genes, per se.

This assumption is supported by microarray data, where

no systematic trend between gene length and differential

expression has been observed [5]. The authors find it

hard to imagine that any genuine biological process could

induce a trend in differential expression versus gene

length comparable in magnitude to the technical trend

that is removed by GOseq. Nevertheless, users should be

aware that any biological trend in DE versus gene length

will be adjusted for by GOseq.

Using the Wallenius approximation

The reduction in computation afforded by the Wallenius

approximation is predicated on the assumption that the

variance in the probability weighting within categories is

low. Hence, the approximation will perform better for a

probability weighting function with a low range of proba-

bilities. When the range in probabilities as a function of

gene length or read count is large, random sampling per-

forms better than the Wallenius approximation, even at a

relatively small number of replicates. The probability

weighting function for read count bias has a larger range

in probabilities compared to the PWF for length bias in

the prostate cancer data set (Figure 2) and so random

sampling may be more appropriate when accounting for

total read count bias.

GOseq and other technologies

GOseq with total read count adjustment is relevant for

other tag-based next generation expression profiling

Table 4: Top ten Gene Ontology categories using GOseq adjusted for total read count bias

GOID Term Ontology Rank standard Rank GOseq Median read 

count of genes in 

category

GO:0016020 Membrane CC 16 1 91

GO:0005886 Plasma 

membrane

CC 96 2 50

GO:0005887 Integral to plasma 

membrane

CC 313 3 36

GO:0005576 Extracellular 

region

CC 4,310 4 18

GO:0015020 Glucuronosyl 

transferase 

activity

MF 388 5 10

GO:0005783 Endoplasmic 

reticulum

CC 6 6 197

GO:0016021 Integral to 

membrane

CC 179 7 68

GO:0006470 Protein amino 

acid 

dephosphorylatio

n

BP 31 8 224

GO:0045944 Positive 

regulation of 

transcription from 

RNA polymerase II 

promoter

BP 39 9 133

GO:0007049 Cell cycle BP 14 10 202

BP, biological process; CC, cellular component; MF, molecular function.
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technologies, such as SAGE or CAGE, which have no

transcript length bias [24]. Even without length bias, sta-

tistical power to detect differential expression still

depends on the expression level of each transcript and

correcting for this bias will generally be desirable in this

context.

GO analysis of microarray expression data has so far

ignored the possibility of selection bias, but such bias

clearly does exist. It is well known that fold changes are

more precisely estimated for microarray probes at higher

intensity levels, so selection bias is likely to exist as a

function of intensity. Furthermore, most microarray plat-

forms have multiple probes for some genes. Genes with

more probes will have a great chance of being selected as

DE, assuming the analysis is conducted probe-wise. The

methodology developed here for RNA-seq could easily be

adapted to GO analysis of microarray data, and would

likely yield benefits in terms of biological relevance.

GOseq software

In order to implement the GOseq method, we developed

a set of freely available R functions, which includes func-

tions for calculating the significance of over-representa-

tion of each GO category amongst DE genes. These

functions give the user the option of selecting which type

of bias they wish to compensate for (transcript length

bias or total read count bias). The option of using random

sampling or the Wallenius approximation is also avail-

able. The ability of the user to supply their own categories

for unbiased testing is also included. The software is

freely available and can be downloaded from our website

[25].

Conclusions
Here we have developed a statistical framework for GO

analysis for use with RNA-seq data. It is mathematically

indisputable that all commonly used criteria for judging

DE interact with gene length and read count. This pro-

vides a well understood causal model of why length bias

exists and why it needs to be accounted for. The GOseq

method is able to account for such biases when perform-

ing GO analysis. We find that the new method makes a

substantial difference to the categories identified as the

most significant. We show that the GOseq method is able

to recover well established microarray results more read-

ily than existing methods of GO analysis of RNA-seq

data. Furthermore, using an androgen treated prostate

cancer data set we find that the most significant catego-

ries identified using GOseq match the known biology

better than existing methods.

Materials and methods
All the statistical analyses were performed in R [26]. The

methods are described in detail in Additional file 1 and

outlined briefly here.

Comparison of GOseq and the standard hypergeometric methods

Figure 4 Comparison of GOseq and the standard hypergeometric methods. (a) The P-values generated with GOseq using the Wallenius approx-

imation and the standard hypergeometric method are plotted against the P-values calculated with GOseq using random sampling (200k repeats). The 

Wallenius method (green crosses) shows good agreement with the high resolution (200,000 repeats) random sampling. A large discrepancy in P-val-

ues is seen between GOseq and the hypergeometric method. (a) The number of discrepancies between lists is shown for a given list size. The black 

line compares GOseq using high resolution sampling with the hypergeometric method. The red line compares GOseq using high resolution sampling 

with the Wallenius approximation. Again, GOseq using the Wallenius method shows little difference from GOseq using the random sampling method 

(with 200k repeats) while the hypergeometric method shows a large number (approximately 20%) of discrepancies.

lo
g
1
0
(p

-v
a
lu

e
 o

f 
a
lt
e
rn

a
ti
ve

 m
e
th

o
d
)

0
-1

-2
-3

-4
-5

-6
-7

-7 -6 -5 -4 -3 -2 -1 0

log10(p-value of random sampling (200k reps))

0 100 200 300 400

Length of lists

N
u
m

b
e
r 

o
f 
d
is

c
re

p
e
n
c
ie

s

0

20

40

60

80

(b)(a)

Hypergeometric
Wallenius

Line of no change

Hypergeometric
Wallenius



Young et al. Genome Biology 2010, 11:R14

http://genomebiology.com/2010/11/2/R14

Page 10 of 12

The prostate cancer data set

The LNCap cell line was treated with androgen. Mock

treated and treated cell lines were sequenced using the

Illumina GA 1 [13]. Raw 35-bp RNA-seq reads were pro-

vided and mapped to the human genome using Bowtie.

Each mapped read was associated with an ENSEMBL

gene. A Poisson exact test [15,16] was used to determine

differential expression between treated and mock-treated

LNCap cells.

The liver versus kidney data set

Genome-wide expression was measured in liver and kid-

ney using RNA-seq on the Illumina GA I and hybridiza-

tion of the same samples to Affymetrix HG-U133 Plus 2.0

arrays. The sample preparation and data analysis was

designed to maximize the similarity between the

microarray and RNA-seq experiments (see Marioni et al.

[21]). Differential expression between kidney and liver

was determined using an empirical Bayes modified t-sta-

tistic on the microarray platform and P-values for DE

were downloaded from their website. For the RNA-seq

experiment, the data were normalized using TMM nor-

malization [27] and a negative binomial exact test was

used to determine DE [16]. To test the GOseq method,

we used the genes called DE from the microarray experi-

ment to calculate the significance of over-representation

of each GO category using the standard GO analysis

methods. We also calculated P-values for each GO cate-

gory being over-represented among genes that were DE

in the RNA-seq data, using both the GOseq and hyper-

geometric methods. GOseq's ability to outperform the

hypergeometric method, as measured by its ability to

reproduce the results of the microarray GO analysis, was

quantified by calculating a P-value for the difference in

the two methods being due to chance. To do this, a NULL

was chosen under which both methods were equally

likely to correctly recover each microarray GO category,

with this likelihood given by a binomial distribution.

The probability weighting function

To calculate the PWF, a cubic spline with a montonicity

constraint is fitted to the binary data series where a value

of 1 refers to a DE gene and 0 refers to a non-DE gene.

This fit can be calculated against either the length of the

gene or the read counts of a gene. We used the R function

pcls in the mgcv package to generate the fit.

Calculating significance of categories

Random samples of genes are created by selecting a sub-

set of genes from the experiment, with each gene

weighted by the probability derived from the PWF. Each

random sample contains the same number of genes as the

set of DE genes. For each sample the number of genes

with a given GO category is calculated. Many samples are

generated in order to produce a null distribution from

A comparison of Gene Ontology analysis using RNA-seq and mi-

croarrays on the same samples

Figure 5 A comparison of Gene Ontology analysis using RNA-seq 

and microarrays on the same samples. The fraction of GO categories 

identified by RNA-seq data that overlap with the microarray GO analy-

sis are shown as a function of the number of categories selected. RNA-

seq data have been analyzed using GOseq and hypergeometric meth-

ods. The GOseq categories have a consistently higher overlap with the 

microarray GO categories than the standard method.
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which the P-value for the significance of a category can

be estimated.

To implement the Wallenius approximation, we used

the BiasedUrn package in R. The 'odds' parameter is

defined as the relative probability of genes within a cate-

gory to the genes outside the category. The 'odds' ratio is

calculated by taking the mean of the values from the PWF

for each gene in the set and dividing by the mean of the

values from the PWF for genes outside the set.

Additional material
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DE: differentially expressed; GO: Gene Ontology; PWF: probability weighting

function.
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