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Gene prioritization through genomic
data fusion
Stein Aerts1,4,5, Diether Lambrechts2,5, Sunit Maity2,5, Peter Van Loo3–5, Bert Coessens4,5, Frederik De Smet2,
Leon-Charles Tranchevent4, Bart De Moor4, Peter Marynen3, Bassem Hassan1, Peter Carmeliet2 & Yves Moreau4

The identification of genes involved in health and disease 
remains a challenge. We describe a bioinformatics approach, 
together with a freely accessible, interactive and flexible 
software termed Endeavour, to prioritize candidate genes 
underlying biological processes or diseases, based on their 
similarity to known genes involved in these phenomena. Unlike 
previous approaches, ours generates distinct prioritizations 
for multiple heterogeneous data sources, which are then 
integrated, or fused, into a global ranking using order statistics. 
In addition, it offers the flexibility of including additional data 
sources. Validation of our approach revealed it was able to 
efficiently prioritize 627 genes in disease data sets and 76 
genes in biological pathway sets, identify candidates of 16 
mono- or polygenic diseases, and discover regulatory genes of 
myeloid differentiation. Furthermore, the approach identified 
a novel gene involved in craniofacial development from a 2-Mb 
chromosomal region, deleted in some patients with DiGeorge-
like birth defects. The approach described here offers an 
alternative integrative method for gene discovery.

With the advent of ’omics, identifying key candidates among the thou-
sands of genes in a genome that play a role in a disease phenotype or a 
complex biological process has paradoxically become one of the main 
hurdles in the field. Indeed, contrary to some early concerns in the 
community that a lack of sufficient global data would still be a limit-
ing factor1, it is precisely the opposite, a bounty of information that 
now poses a challenge to scientists. This has translated into a need for 
sophisticated tools to mine, integrate and prioritize massive amounts 
of information2,3.

Several gene prioritization methods have been developed4–10. Most 
of them determine, either directly or indirectly, the similarity between 
candidate genes and genes known to play a role in defined biological pro-
cesses or diseases. These methods offer several advantages but also pose 

a number of challenges. Indeed, even though multiple data sources are 
available, such as Gene Ontology (GO) annotations4–6,10, protein domain 
databases6,10, the published literature5,7, gene expression data5,7,10 and 
sequence information8–10, most of the available programs access only 
one or two of these databases, which each have their limitations. For 
instance, functional data sources (GO and literature) are incompletely 
annotated and biased toward better-studied genes8, whereas sequence 
databases have thus far been used only to produce general disease prob-
abilities8,9. Some of the existing tools access more than two databases, but 
do not provide an overall ranking that integrates the separate searches5,10. 
Several tools rank disease genes but only one of them prioritizes genes 
involved in biological pathways10, and none offers the combination of 
both. Thus far, only two prioritization tools5,10 are publicly available. 
Thus, there is still a need for improvement of gene prioritization.

Here, we report the development and characterization of a new gene 
prioritization method, and offer its freely accessible, interactive and flex-
ible software1. Compared to existing methods, ours provides additional 
opportunities for candidate gene prioritization: it accesses substantially 
more data sources and offers the flexibility to include new databases; it 
provides the user control over the selection of training genes and thereby 
takes advantage of the expertise of the user; it prioritizes both known 
and unknown genes, ranks genes involved in human diseases and bio-
logical processes, and it uses rigorous statistical methods to fuse all the 
individual rankings into an overall rank and probability.

RESULTS
Principles of prioritization used by Endeavour
Genes involved in the same disease or pathway often share annotations 
and other characteristics in multiple databases. Indeed, genes involved 
in the same disease share up to 80% of their annotations in the GO 
and InterPro databases6, whereas genes involved in a similar biological 
pathway often share a high degree of sequence similarity with other 
pathway members11. It is therefore reasonable to assume that this simi-
larity among genes is not restricted to their annotation or sequence 
alone, but is also true for their regulation and expression. We reasoned 
that a bioinformatics framework capable of comparing and integrat-
ing all available gene characteristics might be a powerful tool to rank 
unknown candidate ‘test’ genes according to their similarity with known 
‘training’ genes, and based on this notion, we developed Endeavour. 
Prioritization of genes using this algorithm involves three steps (Fig. 1). 
To validate its performance, we used several complementary strategies 
discussed below.
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Validation of Endeavour when accessing individual data sources
For each individual data source, we assessed whether our approach is 
capable of prioritizing genes known to be involved in specific diseases 
or receptor signaling pathways. To this end, we performed a large-scale 
leave-one-out cross-validation. In each validation run, one gene, termed 
the ‘defector’ gene, was deleted from a set of training genes and added 
to 99 randomly selected test genes. The software then determined the 
ranking of this defector gene for every data source separately. We used 
627 training genes, ordered in 29 training sets of particular diseases 

automatically selected from the Online Mendelian Inheritance In Man 
(OMIM) database (see Supplementary Notes online for selection pro-
cedure). For pathway genes, we compiled three sets of training genes 
involved in the WNT (43 genes), NOTCH (18 genes) and epidermal 
growth factor (15 genes) pathways. As a negative control for training 
genes, we assembled 10 sets of 20 randomly selected genes.

Thus, a total of 903 prioritizations (627 for the disease genes, 76 for 
the pathway genes and 200 for the random sets) were performed for 
each data source. From these, we calculated sensitivity and specificity 
values. Sensitivity refers to the frequency (% of all prioritizations) of 
defector genes that are ranked above a particular threshold position. 
Specificity refers to the percentage of genes ranked below this threshold. 
For instance, a sensitivity/specificity value of 70/90 would indicate that 
the correct disease gene was ranked among the best-scoring 10% of 
genes in 70% of the prioritizations. To allow comparison between data 
sources we plotted rank receiver operating characteristic (ROC) curves, 
from which sensitivity/specificity values can be easily deduced. The area 
under this curve (AUC) is a standard measure of the performance of 
this algorithm. For instance, an AUC-value of 100% indicates that every 
defector gene ranked first, whereas a value of 50% means that the defec-
tor genes ranked randomly.

For every single data source, Endeavour reached a higher AUC score 
for disease and pathway genes than for randomly selected genes, indi-
cating that it was sensitive and specific in ranking the defector gene, 
regardless of the type of data source consulted (Fig. 2). Not surprisingly, 
the data sources differed in their usefulness and suitability to rank genes 
(Supplementary Notes).

Overall prioritization by fusing multiple data sources
Although in most cases the defector gene ranked high in the prioritiza-
tion list, this was not always the case (Supplementary Fig. 1 online). 
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Figure 1  Concept of prioritization by Endeavour. Candidate test genes 
are ranked with Endeavour based on their similarity with a set of known 
training genes in a three-step analysis. In the first step (upper panel), 
information about a disease or pathway is gathered from a set of known 
training genes by consulting various data sources. Training genes can be 
loaded automatically (based on a Gene Ontology term, a KEGG pathway ID 
or an OMIM disease name) or manually. The latter allows the incorporation 
of expert knowledge. The following data sources are used: A, literature 
(abstracts in EntrezGene); B, functional annotation (Gene Ontology);
C, microarray expression (Atlas gene expression); D, EST expression
(EST data from Ensembl); E, protein domains (InterPro); F, protein-protein 
interactions (Biomolecular Interaction Network Database or BIND);
G, pathway membership (Kyoto Encyclopedia of Genes and Genomes or 
KEGG); H, cis-regulatory modules (TOUCAN); I, transcriptional motifs 
(TRANSFAC); J, sequence similarity (BLAST); K, additional data sources, 
which can be added (e.g., disease probabilities). In the second step (middle 
panel), a set of test genes is loaded (again, either manually or automatically 
by querying for a chromosomal region or for markers). These test genes are 
then ranked based on their similarity with the training properties obtained 
in the first step, which results in one prioritized list for each data source. 
Vector-based data are scored by the Pearson correlation between a test 
profile and the training average, whereas attribute-based data are scored 
by a Fisher’s omnibus analysis on statistically overrepresented training 
attributes. Finally, in the third step (lower panel), Endeavour fuses each 
of these rankings from the separate data sources into a single ranking and 
provides an overall prioritization for each test gene. As such, Endeavour 
prioritizes genes through genomic data fusion—a term, borrowed from 
engineering to reflect the merging of distinct heterogeneous data sources, 
even when they differ in their conceptual, contextual and typographical 
representations.
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Figure 2  Cross-validation results. The AUC values obtained for all individual 
data sources are shown for disease prioritizations (black), pathway 
prioritizations (dark gray) and random prioritizations (light gray). The AUC 
values from the overall prioritization obtained after fusing all individual 
prioritizations are also shown.
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To minimize this variability and to increase the performance of rank-
ing, we integrated all individual prioritizations into a single overall 
rank by implementing an algorithm based on order statistics. With this
algorithm, the probability of finding a gene at all the observed posi-
tions is calculated and a single overall rank is obtained by ranking genes 
according to these probabilities. To evaluate the performance of this 
overall ranking, we calculated its AUC values, as described above for the 
individual data sources. The AUC scores were 86.6% and 89.9% for dis-
ease and pathway genes compared to 48.4% for randomly selected genes 
(Fig. 3a,b). The correct pathway gene ranked among the top 50% of test 
genes in 95% of the cases, or among the top 10% in 74% of the cases. 
The variability of the overall prioritization was substantially smaller 
than that of individual data sources (Supplementary Fig. 1), and each 

of the data sources contributed to the overall ranking (Supplementary 
Fig. 2 online). Our validation experiment thus results in biologically 
meaningful prioritizations.

Almost every data source but especially functionally annotated data-
bases are incompletely annotated. For instance, only 63% of the genes are 
currently annotated in the GO database. Consequently, existing methods 
using these data sources introduce an undesired bias toward better-studied
genes. Our approach should suffer less from these shortcomings as it also 
uses sequence-based sources containing information about known and 
unknown genes. In support of this, we found that the overall ranking of 
defector genes was not substantially influenced by the number of data 
sources if at least three sources with data annotations were available 
(Supplementary Fig. 3a online). In fact, even unknown genes lacking a 
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Figure 3  Cross-validation results. (a) Rank ROC curves obtained for the disease validation. (b) Rank ROC curves obtained for the pathway validation. In both 
figures, the control ROC curve (red line) was obtained after prioritization with randomly constructed training sets and by using all data sources. For all other 
ROC curves, disease or pathway-specific training sets were generated. The data sources used to construct every ROC curve are indicated on the figure.

Table 1  Prioritizations of recently identified monogenic disease genes
Rank position using the indicated data sources

Disease Gene Ensembl ID Publication date All Literature

Arrhythmia CACNA1C ENSG00000151067 October 2004 (ref. 34) 4 3

Congenital heart disease CRELD1 ENSG00000163703 April 2003 (ref. 35) 3 1

Cardiomyopathy 1 CAV3 ENSG00000182533 January 2004 (ref. 36) 2 1

Parkinson disease LRRK2 ENSG00000188906 November 2004 (ref. 37) 50 *

Charcot-Marie-Tooth disease DNM2 ENSG00000079805 March 2005 (ref. 38) 14 100

Amyotrophic lateral
sclerosis

DCTN1 ENSG00000135406 August 2004 (ref. 39) 27 97

Klippel-Trenaunay
disease

AGGF1
(also known as VG5Q)

ENSG00000164252 February 2004 (ref. 40) 3 39

Cardiomyopathy 2 ABCC9 ENSG00000069431 April 2004 (ref. 41) 1 51

Distal hereditary motor
neuropathy

BSCL2 ENSG00000168000 March 2004 (ref. 42) 15 62

Cornelia de Lange syndrome NIPBL ENSG00000164190 June 2004 (refs. 43,44) 9 75

Average rank 13 ± 5 48 ± 13

For all genes, a mutation was inherited in a mendelian fashion (or was shown to cause the disease phenotype). The name of the disease and disease-causing gene, the Ensembl 
ID and the publication date of the article reporting the gene mutation (month-year) are shown, together with the rank (out of 200 test genes) at which they were prioritized by 
Endeavour, using all data sources or using the pre-publication date literature source alone. The average rank (mean ± s.e.m.) for each prioritization is indicated. For LRRK2, no 
literature information was available. This has been indicated in the table by an asterisk (*).
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HUGO name and with very little information available could be ranked 
highly (Supplementary Fig. 3b). Thus, our method takes into account 
data sources with relevant information, while disregarding noninforma-
tive ones. This may be particularly advantageous for the prioritization 
of disease genes, as unknown genes are not readily considered as disease 
candidates when selected manually.

Endeavour does not rely on literature-derived data alone
For each OMIM gene used in the disease validation, a mutation causing 
the disease had previously been reported in a landmark study. Because 
the inclusion of these publications may artificially increase the relative 
contribution of the literature data source in the overall performance of 
this algorithm, we excluded, as a test, the entire literature database from 
the disease validation protocol. For the same reason, the GO, KEGG 
and literature data sources were excluded from the pathway validation. 
Even under such unrealistic conditions where entire data sources were 
not used, the overall performance of the algorithm was only negligibly 
affected: the performance dropped by only 6.1% for disease genes (from 
86.6% to 80.5%; Fig. 3a) and by only 2.3% for pathway genes (from 

89.9% to 87.6%; Fig. 3b). Thus, the diversity of data sources used in 
our approach enables meaningful prioritizations, even without the use 
of literature information.

Clearly, this caution is only of importance in the context of a valida-
tion. In a more realistic situation, when the precise function of a disease 
gene is not known yet, the literature could still provide valuable indirect 
information about other properties of a gene. In a study of ten mono-
genic diseases (see below), we mimicked this situation by using only 
‘rolled-back’ literature information, available one year before the land-
mark publication. Even then Endeavour provided a high rank for three 
genes (position 1, 1 and 3 out of 200 test genes, Table 1), illustrating that 
the literature contributes to the prioritization of yet undiscovered dis-
ease genes. For the seven other genes, use of the literature as the only data 
source was not very efficient, but inclusion of all the other data sources 
yielded a high rank (Table 1). Overall, even though the literature may 
provide valuable information, our method does not rely on literature as 
the only critical data source. But also, its performance is not restricted 
by the lack of available literature data, because of its ability to access and 
integrate multiple other data sources.

Table 2  Prioritizations of recently identified polygenic disease genes
Disease Gene Ensembl ID Publication date Rank

Atherosclerosis 1 TNFSF4 ENSG00000117586 April 2005 (ref. 45) 54

Crohn disease SLC22A4, SLC22A5 ENSG00000197208 May 2004 (ref. 46) 71

Parkinson disease GBA ENSG00000188906 November 2004 (47) 23

Rheumatoid arthritis PTPN22 ENSG00000134242 August 2004 (ref. 48) 11

Atherosclerosis 2 ALOX5AP ENSG00000132965 February 2004 (ref. 49) 29

Alzheimer disease UBQLN1 ENSG00000135018 March 2005 (ref. 50) 54

Average rank 40 ± 10

The nature of the genetic variation in these genes was in each case a polymorphism, which typically was inherited as a risk factor for the respective disease. The name of 
the complex disease in which these genes were identified, their gene name, Ensembl ID and the publication date when the disease gene was reported as a susceptibility 
gene are given, together with the rank (out of 200 test genes) at which they have been prioritized by all data sources with rolled-back literature. The relative contribution 
of these genetic variations as risk factors for disease susceptibility will become clearer once replication studies are performed. The average rank (mean ± s.e.m.) for each 
prioritization is indicated.

B
T

G
1

F
C

E
R

1G
C

D
38

E
G

R
2

N
F

K
B

IL
2

W
D

R
39

 (
al

so
 k

no
w

n 
as

 C
IA

O
1)

R
F

X
D

C
2 

(a
ls

o 
kn

ow
n 

as
 F

LJ
12

99
4)

A
P

C
S

 (
al

so
 k

no
w

n 
as

 P
IT

X
2)

M
A

P
2K

5
M

G
C

52
97

S
P

P
1

R
A

P
G

E
F

3
T

IP
A

R
P

G
LT

8D
1 

(a
ls

o 
kn

ow
n 

as
 A

D
-0

17
)

U
B

E
3A

N
K

D
1

Q
8N

7C
O

P
S

M
C

4

M
A

P
2K

5
A

C
IN

1
G

A
19

C
IA

O
1

P
E

T
11

2L
U

B
E

3A
S

P
P

1
B

C
L6

P
T

P
R

B
M

E
T

N
FA

T
5

T
N

F
R

S
F

6
P

T
P

R
J

E
V

I2
B

A
R

P
C

5
D

LA
T

Four training
genes

Before prioritization After prioritization

10

100

1,000

10,000

1

0.1

0.01

F
ol

d 
up

re
gu

la
tio

n

Figure 4  In vitro functional validation of 
Endeavour. Results of real-time quantitative 
PCR measurements in differentiated versus 
undifferentiated HL-60 cells. Expression 
profiles of 4 out of 18 training genes (left), 
which were tested as a positive control, and 
20 target genes predicted by the cis-regulatory 
module model (center) are shown. Expression 
levels of SPP1 and NGKBIL2 differed more 
than threefold between differentiated and 
undifferentiated cells; expression levels for six 
genes could not be measured. The expression 
profiles of the 20 highest-ranking target genes 
after prioritization by Endeavour (right) are 
also shown. Expression levels of eight genes 
(SPP1, BCL6, PTPRB, MET, TNFRSF6, 
NFAT5, PET112L and EVI2B) differed more 
than threefold between differentiated and 
undifferentiated cells; four genes could not 
be measured. The fold difference is depicted 
on a logarithmic scale; error bars represent 
the s.e.m. The line indicates the threshold 
(threefold up- or downregulation).
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Use of disease-specific data sources
An important asset of Endeavour is that its framework was designed to 
allow the inclusion of additional data sources, such as disease-related 
features, in the prioritization strategy. We illustrate this for the priori-
tization of disease genes. On the basis of a number of selection criteria 
(e.g., protein length, phylogenetic conservation), Lopez-Bigas and Adie 
determined for every gene a ‘general’ disease probability, or its probabil-
ity as a disease candidate gene8,9. When integrating the Lopez-Bigas or 
Adie criteria in Endeavour as an additional data source, we found that 
its performance improved further (AUC scores increased by up to 5% 
regardless of the inclusion of literature sources). Likewise, microarray 
data specific for the process or disease under study can be included. Our 
approach thus allows the user to add, in a flexible and modular man-
ner, additional data sources, such as appropriate disease-specific data 
sources, to enhance its overall performance.

Prioritization of genes causing monogenic diseases
In the large-scale validation, 627 genes were automatically selected from 
the OMIM database, without taking their mono- or polygenic nature 
into account. We therefore assessed whether our approach could be used 
to prioritize genes that cause monogenic diseases. As experimentalists 
often prefer to select their own sets of training genes, instead of rely-
ing on automatically derived genes or characteristics, we selected ten 
monogenic diseases and constructed sets of training genes together with 
a biological expert (Table 1 and Supplementary Table 1). To simulate the 
real life situation, we deliberately chose recently identified disease-caus-
ing genes, and used rolled-back literature together with all other data 
sources. The set of test genes included the gene causing the monogenic 
disease, and 199 genes flanking its immediate chromosomal surround-
ings. The algorithm gave the ten monogenic disease–causing genes an 
average rank of 13 ± 5 out of 200 test genes (Table 1). When using a 
training set not related to the disease under study to prioritize the test 
sets as a negative control, the disease genes ranked randomly (position 
96 on average). As a further validation the algorithm was applied to a 
very large set of test genes (that is, all 1,048 genes from chromosome 3; 
Supplementary Notes and Supplementary Table 2 online).

This pseudo-prospective analysis, using rolled-back literature, reveals 
that expert-based construction of training sets may lead to high discov-
ery rates when hunting for monogenic disease genes in both small and 
large test sets.

Prioritization of genes underlying polygenic diseases
In many cases, human disease is not monogenic, but polygenic in nature. 
We therefore prioritized six genes, recently identified as polygenic dis-
ease genes, together with 199 chromosomal flanking genes (Table 2). 
The sets of training genes used for these prioritizations are explained 
in Supplementary Table 1. On average, the susceptibility genes ranked 
at position 40 ± 10, when using the rolled-back literature together with 
all the other data sources. As expected, the prioritization of polygenic 
disease candidate genes is a greater challenge than ranking monogenic 
disease genes. Nonetheless, the ranking was still specific, as the suscep-
tibility genes ranked at position 96 ± 10, when training sets for these 
disorders were randomly assigned to other test sets as a negative control. 
Thus, although the performance is lower than for monogenic diseases (as 
anticipated), susceptibility genes to polygenic diseases can be enriched 
by Endeavour’s prioritization.

Prioritization of regulatory pathway genes
To analyze whether Endeavour could also rank genes involved in a partic-
ular biological process, we combined computation with functional vali-
dation in vitro. First, using the previously characterized ModuleSearcher 

3-Mb 2-Mb atypical deletion

Chromosome 22

Prioritization of YPEL1
by Endeavour within
the 2-Mb deletion

Functional validation of Endeavour: ypel1 knock-down in zebrafish

1

58

YPEL1

T
B

X
1

T
H

A
P

7

H
IC

2
U

B
E

2L
3

S
D

F
2L

1

P
P

IL
2

Y
P

E
L1

M
A

P
K

P
P

M
1F

TO
P

3B
2

V
P

R
E

B
1

A
S

H
2L

P
1

S
U

H
W

2
S

U
H

W
1

P
R

A
M

E

IG
L-

re
gi

on
B

C
R

L4

P
O

M
12

1L
1

G
G

T
L4

G
N

A
Z

R
T

D
R

1

R
A

B
36

B
C

R

a

b

c

d e

f g

Figure 5  Functional validation of Endeavour in zebrafish. (a) Part of 
chromosome 22, illustrating the hemizygous 3-Mb region deleted in many 
DGS patients and the atypical 2-Mb region, which is deleted in some 
(atypical) DGS patients. For clarity, only some of the 58 Ensembl-annotated 
genes within the 2-Mb region, and only TBX1 in the 3-Mb deleted region, are 
shown. It remains unknown whether any of the genes in the 2-Mb region play 
a role in pharyngeal arch development defects seen in DGS. (b) YPEL1 was 
prioritized among the 58 genes of the 2-Mb deleted region by Endeavour as 
the most likely candidate involved in pharyngeal arch development.
(c) Photo of a zebrafish, which has been used as a suitable model to study 
the role of YPEL1 in pharyngeal arch development. (d,e) Lateral view of the 
head in live embryos at 4 d after fertilization. The lower jaw is clearly visible 
in the control, whereas ypel1KD embryos show an underdeveloped lower 
jaw (mandibular arch; indicated by the red dotted line) and open mouth 
(indicated by the vertical line). (f,g) Ventral view of the pharyngeal arch 
cartilage using alcian blue stain at 3 d after fertilization. Black arrow depicts 
the mandibular arch; white arrow depicts hyoid arch. In ypel1KD embryos, the 
jaw arches were severely malformed with the mandibular arch often reduced 
in size. The pharyngeal arch cartilage also showed reduced or no staining.
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algorithm within TOUCAN12,13, we predicted a cis-regulatory module 
(CRM) in the regulatory regions of 18 genes, known to be upregulated 
during myeloid differentiation14. We then selected 100 putative target 
genes containing this CRM from the genome, and ordered them accord-
ing to their CRM score (see Supplementary Notes). These 100 genes 
were then prioritized with the algorithm, using the 18 genes involved 
in myelopoiesis as a training set. To investigate whether it enriched the 
number of true-positive target genes involved in myeloid differentiation, 
we induced differentiation of HL-60 cells in vitro and analyzed which of 
the 20 best ranking genes, before and after prioritization by Endeavour, 
were more than threefold up- or downregulated. Before prioritization, 
the expression of two genes (Fig. 4) was differentially regulated, whereas 
after prioritization up to eight genes were differentially regulated (P < 
0.05; Fig. 4). Importantly, several of these differentially regulated genes 
are implicated in myeloid function: SPP1, BCL6 and MET are known 
to be involved in myeloid differentiation15–17, whereas FRSF6, better 
known as the FAS inducer of apoptosis, is a suppressor of macrophage 
activation18. The possible involvement of PTPRB, NFAT5, PET112L and 
EVI2B in myeloid differentiation was, however, unknown. Our prioriti-
zation protocol can thus be used for gene discovery as well.

Functional validation of Endeavour in zebrafish
As a final and most stringent test, we validated our approach in an animal 
model in vivo. The DiGeorge syndrome (DGS) is a common congenital 
disorder, in which craniofacial dysmorphism and other defects result 
from abnormal development of the pharyngeal arches19,20. Many DGS 
patients typically have a 3-Mb hemizygous deletion in chromosome 22 
(del22q11)19,20. Genetic studies in mice and zebrafish have established 
Tbx1 as a key DGS disease candidate gene in this region21–24 (Fig. 5a). In 
atypical DGS cases, a 2-Mb region, downstream of del22q11 is deleted25, 
but it remains unknown which of the 58 Ensembl-annotated genes in 
this region plays a role in pharyngeal arch development. In this experi-
ment, we first assessed whether the algorithm would prioritize any of 
these genes as a possible regulator of pharyngeal arch development, and 
then analyzed whether this gene indeed affected this process in vivo.

We first tested, as a positive control, whether 
Endeavour would identify TBX1 as a DGS can-
didate when added to the list of 58 test genes. 
To avoid possible selection bias due to an overly 
restricted choice of training genes, we used 
various training sets according to their rela-
tionship with DGS, cardiovascular or cleft pal-
ate birth defects (typical DGS symptoms), or 
neural crest biology (neural crest cell anoma-
lies cause DGS-like symptoms; Supplementary 
Notes). When using these training sets, TBX1 
ranked first or second (Table 3). This prioriti-
zation was specific, as TBX1 was not identified 
as a DGS candidate gene when using train-
ing genes unrelated to DGS. We then used 
our approach to prioritize the 58 genes of the
2-Mb deleted region. When using various sets 
of DGS-related training genes, the top-ranking 
gene was always YPEL1 (Table 3 and Fig. 5b). 
Similar to the TBX1 simulation, use of a set of 
training genes, unrelated to DGS, confirmed 
that the prioritization was specific for DGS.

To assess the functional role of YPEL1 in vivo, 
we used the zebrafish model, which has been 
previously used as a suitable model to study 
pharyngeal arch development26 (Fig. 5c). Ypel1 

protein levels in zebrafish embryos were knocked down using a set of 
antisense morpholino oligonucleotides (morpholinos), each targeting 
different sequences of the ypel1 transcript and dose-dependently and 
specifically inhibiting ypel1 translation (not shown). The role of ypel1 
in pharyngeal arch morphogenesis was evaluated by phenotyping the 
development of its derivatives, that is, the jaws and other skeletal struc-
tures of the skull27. Ypel1 knockdown (ypel1KD) embryos displayed vari-
ous craniofacial defects. In particular, they exhibited an underdeveloped 
jaw, with the most severely affected embryos displaying an open-mouth 
phenotype suggestive of craniofacial dysmorphism (Fig. 5d,e). Ypel1KD 
embryos also displayed defects in pharyngeal arch cartilage formation, 
ranging from an overall disorganization to a complete loss of the jaw and 
pharyngeal arch cartilage. In some ypel1KD embryos, the mandibular 
arch was strongly reduced in size. Occasionally, no staining of cartilage 
could be detected at all (Fig. 5f,g). Ypel1KD embryos exhibited addi-
tional pharyngeal arch defects, which will be described in more detail 
elsewhere.

In summary, our method identified YPEL1 as a candidate DGS gene 
and in vivo experiments confirmed its role in pharyngeal arch develop-
ment. These data raise the intriguing question whether YPEL1 might be 
a novel disease candidate gene of atypical DGS in humans.

DISCUSSION
The number of publicly available databases containing information 
about human genes and proteins continues to grow. Here, we developed 
a method to integrate all this information and prioritize any set of genes 
based on their similarity to a set of reference genes. Such a prioritiza-
tion is not only useful for gene hunting in human diseases, but also for 
identifying members of biological processes.

Our approach is useful in several respects. First, it uses genes to 
retrieve information about a disease or biological pathway, instead of 
disease characteristics. Existing methods that use disease characteristics 
can only retrieve information from databases that use the same dis-
ease vocabulary4,5,7. By using genes, Endeavour accesses not only these 
vocabulary-based data sources, but also other data sources, storing

Table 3  Prioritization of YPEL1 by Endeavour
Training sets used to prioritize TBX1 or 
YPEL1 Rank assigned to YPEL1 Rank assigned to TBX1

DGS-related

DGS (14) 1* 1*

Cardiovascular birth defects (14) 3* 1*

Cleft palate birth defects (9) 2* 1*

Neural crest genes (14) 1* 2*

Average rank 1.75 ± 0.48 1.25 ± 0.25

DGS-unrelated

Atherosclerosis (24) 12 24

Parkinson disease (9) 31 15

Distal hereditary motoneuropathy (8) 13 41

Charcot-Marie-Tooth disease (17) 9 16

Alzheimer's disease (5) 21 14

Rheumatoid arthritis (8) 20 7

Inflammatory bowel disease (7) 7 24

Average rank 16 ± 3 20 ± 4

The set of test genes contained the 58 genes present in the 2-Mb atypical deletion region on chromosome 22q11 
(middle column) or, in addition, the TBX1 gene (right column). These test genes were prioritized by Endeavour for 
their similarity to the indicated set of training genes, which were related or unrelated to DGS. As shown, TBX1 and 
YPEL1 ranked among the first three test genes, indicating their high degree of similarity with the set of training 
genes (*, probability of P < 0.05 that the test and training genes had a similar profile). The number of training 
genes is indicated between brackets.
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information about a gene (e.g., derived from a microarray experiment) 
or a gene sequence (e.g., BLAST sequence similarity). Moreover, by using 
genes, the method is also suitable for gene prioritization in biological 
processes as well.

Second, compared to existing methods, which access only one or two 
data sources4–7, our method accesses many more data sources (cur-
rently up to 12). Importantly, consultation of each of the individual 
sources by Endeavour generates biologically relevant prioritizations. 
We developed an algorithm based on order statistics to fuse all these 
separate prioritizations into a single overall rank. This algorithm is able 
to handle genes with missing values, thereby minimizing the bias for 
known or well-characterized genes. This bias will decrease even further 
in the future, when new and better high-throughput data become avail-
able, and when the genome annotation and curation processes reach 
their finalization.

Third, the algorithm is publicly available as a software tool, built by 
bioinformaticians, but designed for experimentalists, helping them to 
focus readily on key biological questions. The only other available pri-
oritization tool for diseases, G2D, uses GO and literature data sources 
and is therefore restricted in making predictions about annotated or 
known genes5.

Fourth, the approach gives the user maximal control over the set of 
training and test genes. Biologists prefer the flexibility of interactively 
selecting their own set of genes over an automatic and noninteractive 
data-mining selection procedure.

We validated the method extensively, in a large-scale validation study 
of 703 disease and pathway genes, and in a number of case-specific 
analyses. The validation results were remarkably good: on average, the 
correct gene was ranked 10th out of 100 test genes—for monogenic 
diseases, the performance was even better. The algorithm was capa-
ble of prioritizing large test sets (up to 1,000 genes)—the upgrade of 
Endeavour into a package capable of prioritizing the entire genome 
would be an interesting perspective for the future. Functional validation 
studies in vitro further demonstrated that the method worked equally 
well for prioritization of pathway genes. Furthermore, in vivo studies 
in zebrafish revealed that YPEL1, a gene prioritized by Endeavour in a 
2-Mb chromosomal region deleted in patients with craniofacial defects, 
indeed regulates morphogenesis of the pharyngeal arches and their cra-
niofacial-derivative structures.

Lastly, the Endeavour software design is modular and allows the inclu-
sion of publicly available or proprietary data sources (e.g., disease-specific 
microarray experiments). We have illustrated and validated this possibil-
ity by including the general disease probability criteria of Lopez-Bigas9 
and Adie8.

In summary, we present a computational method for fast and interac-
tive gene prioritization that fuses genomic data regardless of its origin.

METHODS
Data sources. A more detailed description of the data sources is available as 
Supplementary Methods online. Briefly, for information retrieved from attri-
bute-based data sources (that is, Gene Ontology, EST expression, InterPro and 
KEGG), the algorithm uses a binomial statistic to select those attributes that are 
statistically overrepresented among the training genes, relative to their genome-
wide occurrence. Each overrepresented attribute receives a P-value pi that is 
corrected for multiple testing. For information retrieved from vector-based 
data sources (that is, literature, microarray expression data or cis-regulatory 
motif predictions), the algorithm constructs an average vector profile of the 
training set. The literature profile is based on indexed abstracts and contains 
inverse document frequencies for each term of a GO-based vocabulary28; the 
expression profile contains expression ratios; the motif profile contains scores of 
TRANSFAC position weight matrices, obtained by scanning promoter sequences 
of the training genes that are conserved with their respective mouse orthologous 

sequences. To rank a set of test genes, attribute-based data are scored by Fisher’s 
omnibus meta-analysis (Σ-2logpi), generating a new P-value from a χ2-distri-
bution. Vector-based data are scored by Pearson correlation between the test 
vector and the training average. The data in the BLAST, BIND and cis-regulatory 
module (CRM) databases are neither vector- nor attribute-based. For BLAST, 
the similarity score between a test gene and the training set is the lowest e-value 
obtained from a BLAST against an ad hoc indexed database consisting of the 
protein sequences of the training genes. For BIND (Biomolecular Interaction 
Network Database)29, the similarity score is calculated as the overlap between all 
protein-protein interaction partners of the training set and those of the test gene. 
Lastly, for CRM data, the best combination of five clustered transcription fac-
tor binding sites—in all human-mouse conserved noncoding sequences (up to 
10 kb upstream of transcription start site) of the training genes—is determined 
using a genetic algorithm12,30. The similarity of this trained model to a test gene 
is determined by scoring this motif combination on the conserved noncoding 
sequences of the test gene.

Order statistics. The rankings from the separate data sources are combined using 
order statistics. A Q statistic is calculated from all rank ratios using the joint 
cumulative distribution of an N-dimensional order statistic as previously done 
by Stuart et al.31

They propose the following recursive formula to compute the above integral:

where ri is the rank ratio for data source i, N is the number of data sources used, 
and r0 = 0. However, two problems arose when we tried to use this formula. First, 
we noticed that this formula is highly inefficient for moderate values of N, and 
even intractable for N > 12 because its complexity is O(N!). We therefore imple-
mented a much faster alternative formula with complexity O(N2):

with Q(r1,r2,...,rN) = N!VN, V0 = 1, and ri is the rank ratio for data source i.
Second, we noticed that the Q statistics calculated by (1) are not uniformly 

distributed under the null hypothesis and can thus not directly be used as P-val-
ues. Therefore, we fitted a distribution for every possible number of ranks and 
used this distribution to calculate an approximate P-value. We found that the Q 
statistics for N ≤ 5 randomly and uniformly drawn rank-ratios are approximately 
distributed according to a beta distribution. For N > 5 the distributions can 
be modeled by a gamma distribution. The cumulative distribution function of 
these distributions provides us with a P-value for every Q statistic from the order 
statistics. Next to the original N rankings, we now have an (N + 1)th that is the 
combined rank of all separate ranks.

Cell culture, RNA isolation and RT-PCR. HL-60 cells were grown in RPMI 1640, 
supplemented with 10% FCS. Differentiation was induced by 10 nM phorbol 12-
myristate 13-acetate (PMA), when cells were grown to a density of 7 × 105/ml. 
Before induction and 24 h after induction, cells were harvested by centrifugation 
and RNA was isolated using the trizol reagent (Invitrogen), and subsequently 
treated with Turbo DNA-free DNase (Ambion). First-strand cDNA was synthe-
sized using Superscript II reverse transcriptase (Invitrogen). Real-time quantita-
tive PCR was performed using the qPCR core kit for SYBR green (Eurogentec), 
on an ABI PRISM 7700 SDS (Applied BioSystems). The mRNA levels were nor-
malized to the geometric average of four different housekeeping genes: ACTB, 
GAPDH, UBC and HPRT1. Numbers of differentially expressed genes before and 
after prioritization were compared with a chi-square test.
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Zebrafish care and embryo manipulations. Wild-type zebrafish (Danio rerio) 
of the AB strain were maintained under standard laboratory conditions32. 
Morpholino oligonucleotides (Gene Tools) were injected into one- to four-cell-
stage embryos27. Alcian blue cartilage staining was carried out as previously 
described33. All animal studies were reviewed and approved by the institutional 
animal care and use committee for Medical Ethics and Clinical Research of the 
University of Leuven.

Software availability. Endeavour is freely available for academic use as a Java 
application at http://www.esat.kuleuven.be/endeavour.

Note: Supplementary information is available on the Nature Biotechnology website.
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