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Abstract

Ask any neuroscientist to name the most profound discoveries in the field in the past 60 years, and 

at or near the top of the list will be a phenomenon or technique related to genes and their 

expression. Indeed, our understanding of genetics and gene regulation has ushered in whole new 

systems of knowledge and new empirical approaches, many of which could not have even been 

imagined prior to the molecular biology boon of recent decades. Neurochemistry, in the classic 

sense, intersects with these concepts in the manifestation of neuropeptides, obviously dependent 

upon the central dogma (the established rules by which DNA sequence is eventually converted into 

protein primary structure) not only for their conformation but also for their levels and locales of 

expression. But, expanding these considerations to non-peptide neurotransmitters illustrates how 

gene regulatory events impact neurochemistry in a much broader sense, extending beyond the 

neurochemicals that translate electrical signals into chemical ones in the synapse, to also include 

every aspect of neural development, structure, function, and pathology. From the beginning, the 

mutability – yet relative stability – of genes and their expression patterns were recognized as 

potential substrates for some of the most intriguing phenomena in neurobiology – those instances 

of plasticity required for learning and memory. Near-heretical speculation was offered in the idea 

that perhaps the very sequence of the genome was altered to encode memories. A fascinating 

component of the intervening progress includes evidence that the central dogma is not nearly as 

rigid and consistent as we once thought. And this mutability extends to the potential to manipulate 

that code for both experimental and clinical purposes.
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Gene transcription

Transcription factors

Soon after the structure of DNA had been determined, in both generalized terms of the helix 

and specific terms of individual gene sequences, it became clear that an understanding of 

how genes are regulated would be at least as exciting and important. Because of their 

relative simplicity and potential for rapid amplification to biochemical quantities, 

prokaryotic genomes provided many of the early discoveries, such as the fact that certain 

primary genes could influence the activity of other secondary genes physically distant in the 

genome. Systematic quests for the agents of this ‘trans-acting’ phenomenon soon 

determined that proteins, expressed by the primary genes, conducted some of the most 

important trans effects, often by binding specific and predictable sequences within the 

secondary genes. These DNA-binding sites of transcription factors are responsible for a 

great many of the identified ‘cis-acting’ elements, sequences within a given gene that control 

its own expression. Once bound to a cis element, a transcription factor typically acts to 

recruit the RNA polymerases necessary for transcription. These and related phenomena were 

soon demonstrated in eukaryotes, as well, where the complexity of chromatin structure 

(more below) afforded interactions of transcription factors not only with RNA polymerase 

II, for instance, but also with histone acetyl transferases and other proteins of the 

‘transcriptosome’ complex. Early studies on the role of gene regulation in ontological events 

meant that a great many hormones, growth factors, and similar agents were found to activate 

transcription factors critical for development, including that of the nervous system. But, 

some of the most intriguing roles for transcriptional regulation in the CNS related to 

neurotransmission and synaptic plasticity, and it was not long before gene regulatory events 

were invoked to explain these and other aspects of neurochemistry.

AP-1—Curran and colleagues (Morgan et al. 1987; Shin et al. 1990) created quite a stir 

when they presented evidence that neuronal activity was associated with induction of the c-

Fos protooncogene under disease models of epileptiform states. Perhaps, more consequential 

was the demonstration of c-Fos induction as a consequence of physiological changes in 

neuronal activity, including trans-synaptic induction in second-, third-, and perhaps fourth-

order neurons in a circuit (Hunt et al. 1987; Sagar et al. 1988). This opened up the potential 

to use c-Fos elevation as an index of connectivity. Similar forms of regulation were 

eventually discovered for other members of the c-Fos family, such as FosB (Chen et al. 

1995). Protooncogenes, the normal versions of genes that can foster neoplasia when 

mutated, had been the subject of intense scrutiny in the early 1980s as essential players in 

mitosis and tissue pattern development. But, just as the neurotrophin nerve growth factor 

was found to share tyrosine phosphorylation and other signal transduction elements with 

mitogens such as epidermal growth factor, parallels in those transduction pathways were 

found to extend to transcription factors and gene regulation. Still, it was somewhat novel at 

the time to consider that ion channels and other mediators of rapid neurotransmission could 

intersect with the same pathways.

The transcription factor formed by c-Fos is AP-1, a heterodimer of a Fos with a member of 

the c-Jun family. Although the regulation of c-Fos and its contribution to AP-1 is nearly 
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always dependent upon changes in quantity, the Jun proteins were found to be regulated by 

growth factors and cytokines primarily via rapid phosphorylation, namely by Jun N-terminal 

kinase (JNK) (Derijard et al. 1994). However, many neural phenomena in which Jun-family 

proteins participate appear to require induced expression, similar to that for c-Fos (Morgan 

and Curran 1988; Sonnenberg et al. 1989; Oo et al. 1999). Jun has been connected to a host 

of biological phenomena in neurons, with particular emphasis on roles in neuroplasticity and 

death from trophic factor withdrawal (Raivich 2008).

Of particular relevance to AP-1 and its modulation by JNK are the many aspects of 

neuroinflammation in which that kinase participates. Cytokines, chemokines, and pathogen-/ 

danger-associated molecular pattern ligands often activate JNK. Indeed, an impact of such 

immune-related stimuli on neurochemistry is manifest in the induction of the serine 

racemase gene (Srr) by JNK activation of JunB (Wu and Barger 2004). This induction of Srr 

by a JunB-containing AP-1 may even involve activation of an alternative transcription-

initiation site (Figs 1 and 2). The resulting elevation of serine racemase in activated 

microglia is responsible for their production of D-serine, the most abundant and relevant 

agonist of the ‘glycineB’ site of the NMDA receptor in the forebrain (Van Horn et al. 2013). 

In addition to potentially contributing to excitotoxicity, the elevated tone for NMDA-

receptor activity could create transient, less drastic perturbation of neurotransmission. The 

role of JNK in neuroinflammation is covered more thoroughly in other contributions to this 

special issue (Feinstein 2016).

CREB—The correlation of Fos and Jun factors with neurophysiology and neurochemical 

stimulation found rational explanations in the connections that were being established at the 

time between such protooncogenes, mitogens, and calcium. Many growth factor receptors 

are coupled to activation of phospholipase C, resulting in production of inositol 

trisphosphate, which activates release of calcium from stores in the endoplasmic reticulum. 

Considerable evidence indicated that cell-surface calcium channels are often activated too, in 

part to provide calcium for refilling the ER stores. It was soon determined that a major 

component of the activity-dependent induction of Fos was secondary to the activation of 

cyclic AMP-responsive element-binding (CREB) protein. CREB is activated by 

phosphorylation, and the first relevant kinase identified was cAMP-activated kinase (PKA). 

But, it was eventually determined that calcium/calmodulin-activated kinase II (CaMKII) 

could perform this role as well. And given the critical contribution that calcium makes to 

neurotransmission, it is not surprising that neurochemists led the charge in exploration of 

this aspect of CREB regulation. First came colocalization of phospho-CREB and CaMKII, 

which was reported in a retinal system in which elevation of calcium was shown to mimic 

photostimulation in the elevation of both CREB phosphorylation and c-Fos expression 

(Yoshida et al. 1995). Soon, calcium-dependent activation of CREB came to be recognized 

as an important connection between neurochemical signals that elevate intracellular calcium, 

such as glutamate receptors, and gene regulatory events (Dash et al. 1991; Sheng et al. 1991; 

Fukuchi et al. 2014).

Of course, discoveries of CREB activation by CaMKII does not mean that PKA is irrelevant 

to CREB in the nervous system. As would be predicted by the array of neurotransmitters and 

other neuroactive agents coupled to cAMP production, the PKA-CREB axis is involved in a 
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host of neural events, such as induction of the tyrosine hydroxylase gene (Piech-Dumas et al. 

2001). Indeed, the respective reliance on calcium or cAMP may be specific to brain region 

and/or cell type (Moore et al. 1996). In some cases, cAMP- and calcium-mediated pathways 

may cooperate to effect a super-induction of CREB-dependent transcription (Hansen et al. 

2004). There is even evidence that the capacity for calcium-dependent activation of CREB 

reflects a permissive state that is established through the integration of neuronal activity 

patterns by PKA activation over time (Pokorska et al. 2003). (This concept is discussed at 

greater length below.)

CREB is involved in important non-neuronal events in the nervous system too, such as glial 

differentiation and reactivity. Inflammation-related stimuli activate the CREB-Fos axis in 

primary glial cultures (Simi et al. 2005). Several agents impacting oligodendrocyte 

differentiation rely on CREB (Sato-Bigbee et al. 1999). Astrocytic expression of 

proenkephalin appears to involve a phosphorylation of CREB by a Src-related kinase 

(Kobierski et al. 1999).

NFκB family—Once the floodgates of neurochemical-transcriptional interactions had been 

opened, investigators began to test many different transcription factors for roles in the 

nervous system. One family that appeared intriguing was that contained under the rubric 

‘nuclear factor κ light chain enhancer of activated B cells’ NFκB. Canonical NFκB, most 

commonly comprising a heterodimer of NFKB1/p50 with RelA/p65, was known to dwell in 

the cytoplasm until rapid activation is effected via liberation from a tonic inhibitor IκB when 

the latter is targeted for degradation by the ubiquitin/proteasome system. This seemed an 

ideal system for conveying signals from post-synaptic compartments to the neuronal nucleus 

to effect the gene regulatory aspects of neuroplasticity. In a classic example of confirmation 

bias, a spate of publications reported activation of NFκB in cultured neurons by glutamate 

receptor agonists and other neurochemical stimuli. Most of these paradigms appear to have 

been confounded by artifacts of glial contamination of the cultures or supraphysiological 

over-expression of active NFκB subunits via transfection or viral transduction (reviewed in 

Mao et al. 2009). Studies performed in intact animals or acute tissue slices have often 

correlated neuronal activity or neuropathology with active NFκB in homogenized tissue 

extracts (Cardenas et al. 2000; Nakai et al. 2000; Madrigal et al. 2001; Hu et al. 2005). But 

these paradigms, of course, include the potential for contributions from glia, endothelial 

cells, etc.

For the purposes of understanding transcriptional regulation in post-mitotic neurons, one can 

almost dismiss out-of-hand NFκB studies that were performed in ‘neuronal’ cell lines 

derived from neuroblastomas or other tumor cells, since shown to be poor representatives of 

this and other aspects of differentiated neurons. Nevertheless, NFκB has important roles in 

proliferative activity and survival properties in tumors; so, its activity may persist and even 

contribute to neuroblastoma. This is implied by preclinical studies being conducted with the 

NFκB inhibitor bortezomib, which appears to hold some promise in the treatment of 

neuroblastoma (Sholler et al. 2013), as it has proved to be useful in treatment of other 

cancers.
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Regardless of the problems with early studies on glutamatergic regulation of NFκB, 

evidence exists to suggest that the protein subunits have some natural biological role in 

neurons. For instance, NFκB ablation or inhibition inhibits neurite outgrowth and synapse 

formation (Imielski et al. 2012; Saleh et al. 2013; Su et al. 2013). It is possible that these 

involve some mechanism other than activation of gene transcription. For instance, NFκB can 

physically interact with glucocorticoid receptors, inhibiting their transcriptional effects (Fig. 

1). It is noteworthy that RelA/p65 has been documented to translocate from the cytosol to 

the nucleus even in neurons where it does not activate RNA transcription (Barger et al. 

2005), similar to its behavior in other paradigms (Mukaida et al. 1994; Brostjan et al. 1996; 

Ray et al. 1997; Harant et al. 1998; Wang and Baldwin 1998). Nevertheless, more 

sophisticated techniques have provided evidence for some amount of NFκB activity in 

neurons. In particular, a Cre/Lox system has been employed to deplete RelA/p65 from 

neurons, and this was documented to reduce the expression of a luciferase reporter gene 

containing a NFκB-responsive promoter (Boersma et al. 2011). In the end, there is ample 

evidence that NFκB proteins – while present in CNS neurons – fail to participate in robust 

gene transcription in these cells (Jarosinski et al. 2001; Srinivasan et al. 2004; Saha and 

Pahan 2007; Mao et al. 2009; Lian et al. 2012, 2015; Listwak et al. 2013; Dvoriantchikova 

and Ivanov 2014). Such might be the expectation for a family of proteins extensively 

documented to participate in self-sacrificial inflammatory states, such as the surface 

expression of major histocompatibility complex I proteins (Drew et al. 1993; Rall et al. 

1995). Unusual aspects of this system in neurons apparently extend to NFκB-inducing 

kinase, which participates in non-canonical activation of the transcription factor in other cell 

types, yet appears to inhibit NFκB in post-mitotic neurons (Mao et al. 2016).

Roles for NFκB are very well established in glia. In astrocytes, it is activated by amyloid β-

peptide (Aβ) and lipopolysaccharide (LPS) (Dodel et al. 1999), mediating the latter’s 

induction of glucose 6-phosphate dehydrogenase (Garcia-Nogales et al. 1999) and glucose 

transporter 3 (Cidad et al. 2001), and it mediates the induction of interleukin 6 by bradykinin 

(Schwaninger et al. 1999) and of glial fibrillary acidic protein by interleukin 1 (Krohn et al. 

1999). Indeed, the contributions of NFκB to these and other aspects of the innate immune 

system, particularly in microglia (Laflamme and Rivest 1999; Bruce-Keller et al. 2001; 

Nicolini et al. 2001; Liu et al. 2005), make this transcription factor family extremely 

important to every aspect of neuroinflammation. Anti-inflammatory drugs such as aspirin 

and ibuprofen even owe a portion of their effectiveness to ‘off-target’, yet serendipitous 

inhibition of NFκB (Kopp and Ghosh 1994; Scheuren et al. 1998).

Sp1 family—One of the first eukaryotic transcription factors ever identified was Specific 

protein 1 or, as it is known universally now, Sp1. Indeed, this appears to have been the first 

eukaryotic transcription factor for which the gene was cloned. Eventually, other family 

members were isolated and cloned, including Sp2, −3, and 4; but, Sp1 was considered to be 

the ubiquitous family member among mammalian tissue and cell types. Indeed, there 

appeared to be a considerable amount of Sp1 in neurons, as it was identified as the factor 

occupying a substantial subset of NFκB target sequences under the neuronal conditions of 

paucity for the latter. Sp1 has a somewhat broad specificity for sites that can be said to 

generally possess high GC content, and most NFκB target sequences are GC-rich. DNA 

Barger Page 5

J Neurochem. Author manuscript; available in PMC 2018 December 14.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



sequences containing optimal Sp1-binding sites were found to efficiently compete for 

binding to the proteins that were found constitutively interacting with these NFκB sequences 

in nuclear extracts from CNS neurons. However, antibodies to Sp1 did not appear to interact 

with these proteins, and they were eventually determined to be a mixture of Sp3 and Sp4 

(Mao et al. 2002). Indeed, this is one of the few settings in which Sp4 is present. Indeed, Sp1 

was found to be essentially replaced by Sp4 during neuronal differentiation (Mao et al. 

2009; Milagre et al. 2012). The significance is not entirely clear; but, Sp4 is generally less 

active as a transcriptional activator, and many Sp1-induced genes are active in cell 

proliferation. This suggests that Sp4 replaces Sp1 to suppress mitotic genes in neurons, 

which will no longer need them and, in fact, may suffer from their expression (Wang et al. 

2009).

The Sp3 and −4 DNA-binding activity in neurons is vulnerable to cytosolic calcium 

overloads. In neurons treated with abusive levels of glutamate-receptor agonists, Sp3 and −4 

DNA binding is diminished, and the remaining activity has a faster migration consistent with 

proteolysis (Mao et al. 2002). This effect can be blocked with calcium chelator or inhibitors 

of the calpain proteases. Thus, some portion of the calcium-dependent phenomenon of 

excitotoxicity may involve degradation of Sp3 and −4. This appears to lead to liberation of at 

least one Sp1-induced mitotic gene (Mao et al. 2009). It remains to be determined whether 

or not this contributes to excitotoxicity via the documented ability of mitotic signals to foster 

apoptosis in neurons (Liu and Greene 2001).

Nuclear receptors—Many steroid hormones and other small, lipophilic molecules bind 

and modulate proteins that physically interact with DNA and components of the 

transcriptosome essentially as transcription factors. Estrogen receptors provide a classic 

example of such ligand-dependent transcription factor (Gruber et al. 2002). Other, similar 

factors are the glucocorticoid/mineralocorticoid receptors, thyroid hormone receptor (T3R), 

retinoid-activated receptor, 9-cis retinoic acid receptor (RXR), liver X receptors (LXR), and 

peroxisome proliferator-activated receptors (PPAR). A considerable amount of the progress 

made in the past 60 years on the actions of these ligand-receptor pairs relates to their 

interactions with other components of the nuclear transcriptional control mechanisms. In 

particular, several members of the LXR and RXR families act via corepressors for other 

transcription factors such as nuclear receptor corepressor (N-CoR) and silent mediator of 

retinoic acid receptor and thyroid receptor (Perissi et al. 1999; Hu et al. 2003). RXR and GC 

modulate the actions of the nuclear orphan receptor Nurr1 in neurons (Wallen-Mackenzie et 

al. 2003; Carpentier et al. 2008).

Roles for nuclear receptors in cellular differentiation and other aspects of development were 

predicted by groundbreaking studies on the ontological effects of retinoic acid, intensified to 

a focus on individual genes regulated by retinoids (Suzuki et al. 1995; Cheung et al. 1997). 

It was only a matter of time before the nuclear receptors for these retinoids were invoked to 

explain their effects on such genes (Nikcevic et al. 2008; Murakami et al. 2010), as well as 

on broader phenomena such as hippocampal neuron morphology (Liu et al. 2008), 

astrogliogenesis (Faigle et al. 2008), and control of inflammatory states (van Neerven et al. 

2010).
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The nuclear receptors are particularly important to neuroinflammation. There is an extensive 

literature on the antiinflammatory effects of estrogens (Giatti et al. 2012; Petrone et al. 

2014). The PPAR family generally contributes to antiinflammatory effects when activated by 

ligands such as prostaglandin J2 (Xu et al. 2008). An LXR agonist also attenuates 

inflammation in an experimental model of spinal cord injury (Paterniti et al. 2010).

The LXR and retinoid-activated receptor/RXR factors and their interactions have gained 

substantial interest in the field of Alzheimer’s disease, due in part to the role for lipid 

homeostasis in that disease implied by apolipoprotein E genetics. When activated by ligand, 

LXRα and -β induce the expression of ATP-binding cassette transporters (especially, A1 and 

G1) and other gene products involved in the transport of cholesterol and other lipids. A 

natural agonist of LXRs, 24S-hydroxycholesterol, creates conditions that facilitate transport 

of cholesterol – in the context of lipoprotein particles – from individual cells in culture 

(Burns et al. 2006) and into the CSF in vivo (Fujiyoshi et al. 2007), presumably shifting the 

gradient from the brain parenchyma. This may explain, in part, why LXR-knockout mice 

exhibit degenerative accumulations of cholesterol in the CNS (Wang et al. 2002). RXRs 

participate in the homeostasis of lipids and Ab in the brain as well, as illustrated by the 

ability of RXR agonist bexarotene to reduce (at least, temporarily) amyloid burden in Aβ-

overproducing models of Alzheimer’s disease (Cramer et al. 2012).

Transcription factors in neuroplasticity—From the earliest applications of molecular 

biology to neuroscience, investigators hypothesized about the potential for genes and their 

activity to serve as a physicochemical substrate for long-term changes such as those required 

for learning and memory. Although an individual protein or small-molecule metabolite may 

have a half-life of only seconds or hours, the expression patterns of genes obviously 

represent a form of stability that lasts a lifetime. Mechanistically, the capacity for 

transcription factors to integrate neurophysiological signals may depend on a difference in 

the natural rhythms created by the relative kinetics of these two modes of activity. The 

kinetics of biochemical events regulating transcription factors – protein phosphorylation, 

acetylation, ubiquitination, degradation, etc. – are generally slower than most 

electrochemical events that mediate neurotransmission. Therefore, for those transcription 

factors that are impacted by the ions and signaling cascades set in motion by 

neurotransmitter receptors, a volley of depolarizations can induce post-translational 

modifications more rapidly than they can be reversed, generating a summation or ‘recording’ 

of the activity, e.g. through nuclear translocation or transcription of second-order 

transcription factors such as Fos (Fig. 2). The possibility that such modifications can be 

converted to a somewhat irreversible form by epigenetic mechanisms could reinforce the 

stabilization of the record.

One undesirable form of neuroplasticity is drug addiction, and AP-1 and the Fras are 

impacted in these paradigms. Drugs of abuse such as opiates and cocaine induce an acute 

elevation of c-Fos and other Fras such as FosB, Fra-1, Fra-2, and DFosB. But, chronic 

addiction models produce attenuation of these responses, mirroring many other aspects of 

drug dependency; the acute Fras are replaced, however, by the ‘chronic Fras’ (Laorden et al. 

2002; Larson et al. 2010; Nunez et al. 2010), which now appear to be somewhat longer 

alternative splice variants of the conventional 33-kDa ΔFosB (Chen et al. 1997). In a chronic 
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methamphetamine-exposure model, the activation of AP-1 attenuated in second and third 

exposures, and this was attributable to a recalcitrance of c-Jun rather than its Fos partner 

(Ishihara et al. 1996). In keeping with evidence that some of the engrained activity patterns 

responsible for addition also underlie chronic pain, ΔFosB is induced in a carrageenan-

induced model (Luis-Delgado et al. 2006).

Epigenetic gene regulation

DNA methylation—The chromosomal DNA of all known species of life undergoes 

chemical modification in the form of post-replicative methylation (Billen 1968; Lark 1968; 

Kalousek and Morris 1969; Kappler 1970), including such covalent modification of 

mitochondrial DNA. DNA methylation occurs most often on the cytosine of a C-G pair 

(usually referred to as ‘CpG’ in this context), but guanosine is occasionally methylated. 

Unique to mature CNS neurons and certain stem cell populations is the methylation of 

cytosines outside of CpG pairs (Xie et al. 2012; Lister et al. 2013; Varley et al. 2013).

DNA methylation suppresses transcription, as first evinced by Venner and Reinert (1973). In 

the simplest interpretation, the conformational changes in DNA brought about by this 

modification interfere with the binding of proteins such as transcription factors. However, 

this explanation is likely incomplete, as several heavily methylated genes are transcribed at a 

high rate, especially if methyl-CpG-binding proteins are absent. The latter information 

suggests that it is protein-protein competition that squelches the interactions of the 

transcriptosome with methylated DNA. This relationship may represent a two-way street: 

evidence suggests that transcriptionally active genes are less readily targeted by 

methyltransferase enzymes (Brandeis et al. 1994; Mummaneni et al. 1998), possibly through 

sheer steric competition (see ‘molecular momentum’, below). This is particularly likely for 

the Sp1 family of transcription factors, as their consensus binding sites are all GC-rich.

The inactivation of genes by methylation is a primary means of epigenetic stability. Several 

key methyltransferases make it their business to methylate the opposite strand at sites where 

DNA is hemimethylated; in this way, methylation patterns are perpetuated after DNA 

replication creates the pairing of a methylated strand with a nascent, unmethylated strand. 

DNA methylation was first recognized as mechanism to confer gene imprinting only 28 

years ago (Reik et al. 1987; Sapienza et al. 1987), though this inheritance phenomenon – 

expression of a locus restricted to either the maternally or the paternally derived copy – has 

been recognized since the 1920s (Boycott and Diver 1923; Sturtevant 1923; Boycott et al. 

1930).

Although DNA methylation is considered a means of perpetuating gene expression patterns, 

it is nevertheless pliable. Methyltransferases rely on methyl donors such as S-

adenosylmethioine that are cyclically renewed from dietary one-carbon sources. The ability 

to alter epigenetic gene regulation via environmental and behavioral nuances is well 

supported by the reliance of DNA methylation on dietary levels of folate, an important 

contributor to the maintenance of S-adenosylmethionine. Deficiencies in vitamin B12 can 

also compromise methytransferases, many of which use B12 as a cofactor. This is one of the 

risks associated with alcohol abuse, which often gives rise to B12 deficiencies (Kruman and 

Fowler 2014). Issues of blood–brain barrier permeability create nuances for the brain’s 
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utilization of this one-carbon cycle (Long et al. 1989). Failure to maintain proper 

methylation patterns also seems to be a predictable and efficacious consequence of aging 

(Horvath 2013; Keleshian et al. 2013), whether through stochastic loss of fidelity in 

replication or through some other impact of the aging process on the relevant enzymes.

Dietary folate and its impact on DNA methylation is illustrated in an interesting 

phenomenon that unites neurological mechanisms with something as esoteric as hair color. 

The Agouti gene product is a peptide antagonist of melanocortin receptors and thereby 

suppresses melanin content in hair. In strains of mice bearing the dominant Agouti allele 

lethal yellow (Ay), the long-terminal repeat of a retrotransposon has been inserted in the 

promoter region of the Agouti gene, causing ectopic expression of the agouti peptide. This 

results in antagonism of the MC4R receptor in the hypothalamus, leading to hyperphagia, 

obesity, insulin resistance, and a shortened life span, as well as a yellow coat color (Hidaka 

et al. 2001). However, hypermethylation of the Ay promoter can be forced via a high-folate 

diet. This suppresses expression of agouti peptide and mitigates the phenotype (Wolff et al. 

1998).

The importance of DNA methylation for neural systems is also exemplified by Rett 

syndrome, which begins postnatally as an autistic-spectrum disorder in girls that progress to 

profound motor and sensory disability, seizures, cognitive impairment, and a somewhat 

shortened life span. The disorder is caused by mutations in methyl-CpG-binding protein 2 

(MeCP2) (Amir et al. 1999) (though this is something of a misnomer, as the protein binds 

any methyl-cytosine). The gene for MeCP2 resides on the X chromosome, but it is mutated 

sporadically in most cases, defying an X-linked inheritance pattern; Rett syndrome is 

observed exclusively in females, as males with a MeCP2 mutation are so severely affected as 

to die shortly after birth. MeCP2 effects widespread changes in gene expression patterns 

(Mellen et al. 2012), and loss of function even at adult ages causes disability similar to that 

of Rett (McGraw et al. 2011), further underscoring the rather unique dependency of the CNS 

on gene regulation through DNA methylation.

Chromatin structure—A key distinction between prokaryotic and eukaryotic genomes is 

the presence of higher level structural components such as histones. Histones have been 

known to biologists since the work of Albrecht Kossel in the late 19th century. But, it was 

only in the 1980s that Michael Grunstein found that histones were able to suppress gene 

transcription (Han et al. 1987; Grunstein 1990), and a true understanding of the critical role 

they play in gene regulation would await demonstrations by Vincent Allfrey in the 1990s 

that this inhibition was dynamic and modifiable (Vidali et al. 1978; Prior et al. 1983), 

ushering in a key aspect of the modern theory of epigenetic mechanisms. It is now 

recognized that the steric, conformational interactions of chromosomal DNA with histones 

critically influence the accessibility of that DNA to the transcriptosome and that this DNA-

histone interaction is tightly regulated through post-translational modification of the 

proteins. In recognition of its profound role in transcriptional regulation, the regulation of 

histones and their interactions with DNA have been dubbed the Histone Code (Jenuwein and 

Allis 2001).
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Histones and their modification—Over half a dozen types of modifications of histone 

residues have been identified, including acetylation, phosphorylation, methylation, mono-

ubiquitination, ADP-ribosylation, citrullination, and SUMOylation. Acetylation is 

commonly associated with a reduction in the affinity of the histone for DNA, thereby 

dissolving this association and making the DNA more accessible for transcription. This 

acetylation is conducted by histone acetyltransferases, generally considered an important 

component of the transcriptosome complex. Their action is opposed by the histone 

deacetylases, critical players in gene silencing (Anekonda and Reddy 2006). The other 

modifications of histone are not as universal in their outcome as acetylation. Methylation 

and ubiquitination of specific residues on specific histones can either promote or inhibit 

transcription (Kouzarides 2007). Indeed, contextual fear learning is associated with two 

separate histone methylation events, each of which has an opposite effect on transcription 

(Gupta et al. 2010). Likewise, phosphorylation events can either facilitate or inhibit 

acetylation, and thus transcription (Rossetto et al. 2012).

Histone modification and cellular differentiation—Early in the investigation of these 

mechanisms, it was determined that silencing the expression of specific genes via tight 

association of DNA with histones is a key element of cellular differentiation. Neurons, of 

course, are often considered among the most highly differentiated cells in the vertebrate 

body plan. However, CNS neurons are known for their relatively high euchromatin-to-

heterochromatin ratio, manifest as a large nucleus with rather pallid staining by 

nucleophiles. Indeed, the Nissl substance in neuronal cytosol often accrues denser staining 

than does the nucleus. Euchromatin is recognized as being the template of active 

transcription, thus marking neurons as the most diverse transcript venue. This is consistent 

with the findings that (i) histone acetylation levels are higher among neurons than glia and 

(ii) neuronal differentiation of neural progenitor cells is fostered by an HDAC inhibitor 

(Hsieh et al. 2004; Yellajoshyula et al. 2011). Thus, it would appear that neurons are distinct 

from most other cell types in their requirement for relatively high levels of histone 

acetylation during (and after) differentiation.

The neuronal histone code is largely attributable to a master regulatory factor known as 

RE1-silencing transcription factor (REST; AKA neuron-restrictive silencer factor, NRSF). 

Originally identified as a protein that silences neuronal genes in mature non-neuronal cell 

types, REST is now known to play a critical role in the maintenance of a tenuous neuronal 

potential through the transition of neural stem cell to mature neuron (Ballas et al. 2005). Key 

to this discussion is the manner in which REST exerts its effects: The protein exerts 

transcriptional repression via recruitment of histone deacetylases, G9a histone 

methyltransferase, and heterochromatin protein-1 (HP-1) to specific genes in nonneuronal 

and undifferentiated cells. This results in cell type-appropriate expression of individual 

genes critical for the differentiated phenotype of important neuronal classes, such as the 

NR1 component of the NMDA receptor (Bai et al. 2003).

Translational impacts of the histone code—Diseases from cancer to epilepsy are 

associated with gene expression changes that appear to arise from aberrations in histone 

modification. Generally speaking, deacetylation of histones is important for the quiescence 
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of proinflammatory genes expected in a state of health. Microglial activation is dramatically 

influenced by modulators of histone acetylation, for instance (Suuronen et al. 2003). 

Accordingly, hyperinflammatory conditions are generally associated with histone acetylation 

(Suuronen et al. 2005; Ma et al. 2010; Forgione and Tropepe 2012; Machado-Filho et al. 

2014), presumably because the genes for cytokines and their receptors are particularly 

sensitive to histone deacetylation. To the extent that macromolecular synthesis is required 

for apoptosis and other forms of programmed cell death, histone modification appears 

critical to these phenomena as well (Boutillier et al. 2003; Ryu et al. 2005; Yang et al. 2011; 

Koriyama et al. 2014; Feng et al. 2015). In addition, the relevant enzymes, such as HDACs, 

can interact with non-histone proteins such as Tau in a disease-relevant manner (Ding et al. 

2008; Perez et al. 2009).

Histone modification is a pharmacologically tractable modality. Current drugs impact global 

histone acetylation and thus one might expect that they would be limited to conditions in 

which the primary defect is one that alters the histone code universally. However, butyrate 

has been used successfully to treat a seizure condition resulting from inheritance of a 

glycosylphosphatidylinositol deficiency (Almeida et al. 2007).

If specificity beyond the general histones is required clinically, it may be afforded by 

targeting less universal proteins. REST is typically restrained in the cytosol of neurons, and 

this appears to fail in Huntington’s disease. A drug-discovery project has identified 

compounds that have shown preliminary success in a screen aimed at restoring the cytosolic 

retention of REST in Huntington’s (Conforti et al. 2013).

The nuclear envelope—The condensation of DNA around histones is not the only means 

by which nuclear structure influences transcription. Considerable evidence indicates that 

interaction of chromatin with the nuclear envelop also makes an impact (Gay and Foiani 

2015). The lamins, nuclear envelope proteins that contribute to this structure, appear to be 

negatively impacted by ethanol and thereby participate in the untoward effects of ethanol on 

astrocyte gene expression (Marin et al. 2008). An intriguing array of signal transduction 

enzymes – phospholipases, kinases, GTPases, ubiquitin ligases/proteasomes, and the like – 

have been localized to the cellular nucleus in recent years. The lamins appear to participate 

in regulating these localizations (Garcia Del Cano et al. 2014; Koliou et al. 2016).

Epigenetics in neuroplasticity—In addition to the medium-/long-term integration of 

neural activity that transcription factors mediate (above), some aspects of gene regulation 

also appear to be critical for the integration of experiences and exposures that can be passed 

transgenerationally from parent to offspring (or even grandoffspring). It has become 

increasingly clear that epigenetic control over gene expression is malleable, and impacts on 

the epigenetic status of chromosomes in an individual’ s gametes can change patterns and 

propensities for gene expression in his/her progeny. Natural and pharmaceutical agonists of 

PPARγ can create an acute leptin resistance (Hosoi et al. 2015); this and similar conditions 

have often been found to convey in a heritably vertical manner from one generation to the 

next via epigenetic mechanisms (Masuyama and Hiramatsu 2012). As might be expected, 

given the connections between such metabolic disturbances and inflammation, one finds a 

high potential for epigenetic transmission of the inflammatory state. Tumor necrosis factor is 
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more readily elevated by 6-hydroxydopamine in the substantial nigra of rats that had been 

exposed to LPS in utero (Ling et al. 2004), and microglia generally express more 

proinflammatory genes when obtained from animals that had been exposed to LPS in utero 

(Cao et al. 2015). Such a priming toward inflammation has been associated with a decline in 

global CpG methylation (O’Brien et al. 2014).

One possible mechanism for the ability of epigenetic phenomenon to integrate experience 

and have transgenerational conveyance is a sort of ‘molecular momentum’. Intuitively, it 

would seem that a transcriptionally active promoter may be less accessible to DNA 

methyltransferases, MeCPs, or even histones; the transcriptosome may simply exert steric 

hindrance on these enzymes locally (Fig. 3). Whether or not this is true, more precise 

molecular mechanisms have been identified (Jones 2012). Regardless of the mechanism, 

‘molecular momentum’ is consistent with the finding that transcriptional quiescence is 

achieved prior to DNA methylation (You et al. 2011); and genes that are highly expressed 

early in the life span – e.g. in utero – tend to continue in high expression in later life stages. 

It is easy to envision a pregnant dam’s environment or behavior making an impact on the 

conditions that prevail in utero. The vertical transmission of ‘molecular momentum’ from 

parent to progeny outside of pregnancy, however, is more demanding; it would require that 

the transcriptionally active state be extended to the gamete.

Post-transcriptional regulation

As the beginning of new macromolecular synthesis, gene transcription is a logical control 

point. But, the decades since the discovery of mRNA have seen the elucidation of a host of 

subsequent events that control the rate at which genes become proteins. In fact, several 

elements of these post-transcriptional mechanisms involve genes that exert an impact on 

phenotype without ever being converted into proteins. Only about 20 percent of eukaryotic 

transcription is devoted to mRNA (Kapranov et al. 2007). The other genomic sequences that 

participate in expression encode the ‘non-coding’ RNAs, and beyond the well-known 

requisite players rRNA and tRNA are several categories that have complex and intriguing 

modulatory functions, such as microRNA (miRNA), piwi-interacting RNA, small nuclear 

RNA, and long non-coding RNA. Many non-coding RNAs are still poorly understood and 

will likely provide fascinating work for molecular biologists – including some 

neurochemists – throughout the next 60 years. In addition to those processes that depend on 

non-coding RNA, there are several post-transcriptional controls that are manifest through 

conventional enzymology and signal transduction. These are no-less important and are 

increasingly invoked to explain translational aspects of neurochemistry from disease 

etiology to the aging process.

Control of translation

RNA-binding proteins—A practical understanding of post-transcriptional processing, 

even in its most pedestrian forms, was only possible after the discovery of RNA-binding 

proteins that are involved in steps such as exon splicing, polyadenylation, and nuclear 

export. RNA-binding proteins, however, also participate in modulating mRNA translation 

rates, stability, and subcellular localization. Some of these processes are generalized to 
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common elements, e.g. the poly(A)-binding protein which regulates translation rates and 

stability via interactions with the poly(A) tail of most messages (Bernstein and Ross 1989). 

Somewhat more interesting are those that interact with discrete sequences in specific 

mRNAs. Many of these interactions depend upon the formation of RNA secondary structure, 

such as a stem-loop motif. One of the most instructive classes of structures exemplifying 

these phenomena are the iron-responsive elements that participate in regulation of proteins 

involved in iron handling. Ferritin and the transferrin receptor are markedly regulated at the 

translational level by iron levels, and this occurs via iron-binding proteins that specifically 

interact with a stem-loop structure in the 5′ untranslated region (UTR) of the ferritin and 

transferrin receptor mRNAs (Hu and Connor 1996). A similar structure and its interaction 

with iron-regulatory RNA-binding proteins have also been connected to translational 

regulation of the amyloid precursor protein by transition metals and, interestingly, by the 

proinflammatory cytokine interleukin-1 (Rogers et al. 1999). Though a specific binding 

protein has not been identified, a stem-loop structure in the 3′ UTR of brain-derived 

neurotrophic factor (BDNF) mRNA is critically involved in a phenomenon by which the 

message, particularly specific splice variants, is stabilized by neurophysiological activity 

(Fukuchi and Tsuda 2010).

Musashi is an RNA-binding protein of particular interest to neurobiologists (MacNicol et al. 

2008). Maintenance of neural stem cell populations appears to depend upon musashi, and its 

expression continues into mature astrocytes (Sakakibara and Okano 1997). However, 

musashi expression levels in the subgranular zone of the dentate gyrus – one of the few areas 

of adult neurogenesis in the CNS – are correlated with continued expression of neuronal 

markers in mature dentate granule neurons, illustrating the importance of this RNA-binding 

protein for maintaining neuropotency. Choline acetyltransferase levels, in particular, wane 

along with musashi in Alzheimer’s disease progression (Perry et al. 2012).

Phosphorylation of ribosomal proteins—Much of what has been learned in recent 

decades about the translational regulation RNA-binding proteins exert involves their 

interaction with proteins that play critical roles in the initiation and progression of 

translation at the ribosome, such as eukaryotic initiation factors (eIF) 2α, 4A, and 4G. 

Modulation of such proteins and their function can also be mediated by post-translational 

modifications such as phosphorylation. Several of the initiation factors interact with the 5′ 
7-methyl-guanosine cap of mRNA, so modification of these proteins and their function alters 

protein translation globally. Because some mRNAs can be translated independently of the 5′ 
cap, phosphorylation of these eIFs can change the mix of proteins being synthesized rather 

than shutting down translation universally (Thakor and Holcik 2012). Nevertheless, 

phosphorylation of eIF2α is effected by several stress-related kinases, and the general 

inhibition of protein synthesis that results can culminate in either energy conservation or – if 

it is too extensive and lasts too long – cell death. Thus, eIF2α phosphorylation has been 

connected to the neurodegenerative effects of ischemia, Aβ, and calcium overload (DeGracia 

et al. 1996; Althausen et al. 2001; Kumar et al. 2001; Chang et al. 2002).

Moderate and reversible changes in protein translation are an appropriate response to 

limitations in the supply of energy or amino acids. Thus, glucose deprivation typically 

activates phosphorylation of eIF2α, interfering with the critical action of eIF2α in 
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facilitating the ternary complex of an mRNA’s ‘Start’ ATG with the ribosome and Met-

tRNA. In addition, phospho-eIF2α appears to inhibit (Rajesh et al. 2015) a master regulator 

that serves to coordinate energy availability with an array of cellular functions from 

macromolecular synthesis to mitosis to apoptosis: ‘mammalian target of rapamycin’ 

(mTOR), so named for its relationship with the first TORs, which were isolated from yeast 

in the early 1990s. This lynchpin of cell energetics, mTOR, was isolated from mammalian 

cells a couple of years later. Now recognized to function within a unit comprising important 

cofactors, more useful characterizations parse mTOR into complexes 1 and 2 (mTORC1 and 

−2). These moieties have become the focus of intense scrutiny. The lifespan extension 

properties of caloric restriction appear to involve mTORs, particularly their inhibition; this 

scheme is consistent with the activation of mTORC1 by insulin/insulin-like growth factor 

signaling, which is itself generally inhibited under caloric restriction and genetic alterations 

that extend lifespan (Johnson et al. 2013). In addition, recent research suggests that mTOR 

inhibition may mimic starvation in a way that activates autophagy (Roscic et al. 2011); to the 

extent that neurodegeneration involves protein aggregates, stimulation of autophagy is 

considered a promising therapeutic approach for preventing their accumulation.

A major target of the mTORC1 axis is ribosomal protein S6. Its immediate upstream 

regulators are members of the S6 kinase family, which includes two major branches: p90rsk, 

a.k.a. MAPK-activated protein kinase-1, and p70rsk, a.k.a. S6-H1 kinase. The latter also 

phosphorylates and thereby inactivates eEF2-kinase, leading to a reduction in the levels of 

phospho-eEF2 and a resultant increase in general translation rate (Wang et al. 2001). But, 

the more direct actions of S6 kinases and their target S6 itself appear to be somewhat more 

restricted to the ‘5′ terminal oligopyrimidine (TOP)’ RNAs, those that have a 

polypyrimidine stretch near the 5′ end and encode proteins that orchestrate responses to 

nutrients (e.g. glucose/insulin) and (hyper-)trophic signals such as insulin-like growth factor, 

nerve growth factor (NGF), and BDNF (Matsuda et al. 1986; Cahill and Perlman 1991; 

Ishizuka et al. 2013). And the examination of the consequences of S6 phosphorylation for 

those hypothalamic circuits regulating appetite, activity, and glucose disposal accounts for a 

great deal of the attention devoted to S6 and its kinases in recent years (Ono 2009; Xia et al. 

2012).

One can be forgiven for becoming confused about the value and role(s) of mTOR in health 

and disease. Activation of mTOR has been associated with post-conditioning 

neuroprotection in models of brain ischemia (Xie et al. 2013), but the remarkable resistance 

of hibernating squirrels to ischemia has been attributed to their pre-emptive inhibition of 

mTOR (Miyake et al. 2015). Forsoklin-induced long-term potentiation (LTP) in the 

hippocampal CA1 depends upon mTOR (Gobert et al. 2008), but mTORC1 appears 

critically involved in the circuitry reinforcement that facilitates drug dependency (Neasta et 

al. 2014). As with other instances of ‘antagonistic pleiotropy’, there are benefits and 

disadvantages to mTOR activation; the ultimate conclusion is dependent upon both context 

(Is there adequate nutrition available to embark on a hypertrophic or neuroplastic cellular 

endeavor?) and perspective (Is the robust function of an individual cell moot in comparison 

to the health of the entire organism?) (Fig. 4).
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ER stress—Many of the players active in modulating protein translation as a response to 

energy depletion and toxins also participate in conveying the translation machinery stresses 

in the endoplasmic reticulum. The unfolded protein response (UPR) is a stereotypical series 

of events set in motion by denaturation of nascent proteins in the ER as a consequence of 

heat, over-expression, or failures in glycosylation (Paschen and Frandsen 2001). Though it 

includes nuclear events aimed at transcriptional regulation, the UPR exerts a rapid and 

marked inhibition of protein translation, a reprieve that gives chaperones and other 

protective mechanisms a chance to clear the backlog and potential aggregation that may 

arise in the ER. Chief among the mechanisms executing this inhibition of translation is 

protein kinase RNA-like ER kinase, which acts as a sensor of misfolding in the ER and 

thereafter inactivates eIF2α (Harding et al. 1999).

Many stressful and toxic circumstances interfere with proper progression of proteins through 

the ER, and therefore the list of conditions under which UPR is active has continued to grow. 

Elements of this program have been detected after traumatic brain injury (Nakagawa et al. 

2000; Paschen et al. 2004), cerebral ischemia (Kumar et al. 2001; Llorente et al. 2013), 6-

hydroxydopamine lesions (Holtz et al. 2006), and even sleep deprivation (Naidoo et al. 

2005). Indeed, neurodegeneration models that include aggregating proteins – e.g. α-

synuclein transgenesis (Zagrodnick and Kaufner 1990), parkin knockout (Wang et al. 

2008a), parkin-associated endothelin receptor-like receptor overexpression (Kubota et al. 

2006), and TDP-43 over-expression (Suzuki and Matsuoka 2012) – have an obvious 

connection to the UPR. Curiously, however, peroxidative stress has been reported to 

antagonize the UPR (Paschen et al. 2001). Also reported to be inert or inhibitory for the 

UPR are Tau-related neurofibrillary pathologies (Spatara and Robinson 2010; Liu et al. 

2012b); this might be predicted based on the location of Tau filaments outside the ER 

secretory pathway. Nevertheless, conflicting evidence exists, suggesting that it may be 

sufficient for Tau to impinge on the ER externally (Nijholt et al. 2012; Abisambra et al. 

2013).

Type-2 diabetes mellitus (T2DM) and the associated insulin resistance seen in prodromal 

phases have been connected to the UPR of late. This may simply reflect the fact that insulin 

resistance compromises glucose transporter function, starving the intracellular environment 

of hexoses; this would likely result in inadequate glycosylation of ER proteins and thereby 

activate the UPR. However, evidence suggests that a somewhat more complex chain of 

events involving fatty acid metabolism could be at work. Non-esterified free fatty acids 

released from adipose appear capable of activating the UPR (Kawasaki et al. 2012). 

Activation of the UPR by such lipids may be detrimental to any tissue, compromising the 

health and function of pancreatic β-cells (Kharroubi et al. 2004; Karaskov et al. 2006), 

hepatocytes (Pfaffenbach et al. 2010; Achard and Laybutt 2012), or even adipocytes 

themselves (Miller et al. 2007; Basseri et al. 2009; Han et al. 2013). Some evidence 

indicates that the UPR exerts its most nefarious effects when activated within the 

hypothalamic nuclei that control appetite, activity levels, and glucose disposal (Kozuka et al. 

2012; Cragle and Baldini 2014). But exercise, which prevents many of the untoward effects 

of high-fat diets in mice, actually elevates markers of the UPR in the hypothalamus (Kim et 

al. 2010). In this vein, it is important to recognize that the UPR evolved as an adaptive 
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program. Whether it contributes to pathology appears to depend on degree of activation and 

the weighing of cytotoxicity versus systemic derangement; in this sense, it is somewhat 

analogous to the Janus-faced characterization of mTOR.

Subcellular localization of mRNA

Dendritic targeting—Another important development in the maturation of molecular 

biology – one with a unique relevance to neurobiology – is the discovery that the mRNA 

products of specific genes are differentially trafficked to subcellular niches for localized 

translation. Oswald Steward led the way in the early demonstrations of this phenomenon, 

first documenting the presence of polyribosomes (beads on the ‘string’ of an mRNA 

undergoing rapid translation) at the base of dendritic spines (Steward and Levy 1982), 

illuminating the possibility of protein translation that might contribute to – or be influenced 

by – synaptic activity. But, the real significance was realized a few years later when Steward 

and his colleagues demonstrated specific transport of individual mRNAs (Kleiman et al. 

1990; Eberwine et al. 2001). Dendrite-specific mRNAs were also found to be enriched in 

synaptosomes (Rao and Steward 1993), paving the way for utilizing this sort of preparation 

to explore activity-dependent changes in translation. At the turn of the century, elements of 

the transport machinery that couple mRNA to microtubule-dependent transport mechanisms 

were elucidated (Ohashi et al. 2000). The cis elements within the mRNA sequences that 

underwent specific transport were identified soon after (Miller et al. 2002; Chen et al. 2003).

The implications of targeted delivery of specific mRNAs to specific synapses created 

immediate excitement in the field. It is true that synaptic plasticity involves, to some extent, 

localized delivery of the ultimate gene products: proteins themselves. Indeed, the targeting 

of an mRNA to a specific subcellular locale is mediated by proteins that interact with 

specific sequence elements in the message (Ohashi et al. 2000; Miller et al. 2002; Chen et al. 

2003). However, localized translation provides the capacity for much more rapid changes in 

the neurotransmitter receptors (Conti et al. 1994; Eberwine et al. 2001), cytoskeletal 

elements (Kremerskothen et al. 2006; Barker-Haliski et al. 2012), kinases (Wang et al. 

2008b), and other critical elements of synaptic plasticity (Huang et al. 2004; Duning et al. 

2008). Dendritic transport of proteins that might be needed to establish and/or maintain a 

potentiated synapse would be expected to take place at ~ 15 μm per hour. By contrast, 

translation can occur at a rate of 6–10 amino acids per second, stamping out the 905-aa 

GRIK1, for instance, in just a couple of minutes.

Axonal translation—For several decades dogma held that the axon was a peculiar 

subcellular domain from which translation was essentially excluded. In fact, Steward’s 

hypothesis about targeted mRNA delivery to dendritic spines was lent considerable support 

by the inability to detect mRNA delivery to axons (Davis et al. 1987). Like so many rules, 

however, this one has its exceptions. And the acknowledgment of axonal protein translation 

need not have awaited the 21st century. Localized synthesis of acetylcholinesterase and other 

proteins in mammalian axons was demonstrated only a few years after the christening of the 

Journal of Neurochemistry (Koenig 1961) and was elaborated upon throughout the 1960s 

(Koenig 1967a,b). Axonal translation appears to be particularly important during 

regeneration from injury or axotomy (Koenig and Adams 1982; Perry et al. 1983). 
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Eventually, synaptosome preparations, combined with the modern advent of sensitive 

proteomic approaches, were also used to uncover proteins synthesized within presynaptic 

boutons (Jimenez et al. 2002). Telomere repeat-binding factor 2 was recently determined to 

play an important role in facilitating axonal transport of specific mRNAs, a process 

antagonized by fragile X mental retardation protein (Zhang et al. 2015).

MicroRNA

For well over half of the 60 years that the Journal of Neurochemistry has been extant 

investigators have succeeded in manipulating the expression of specific genes by introducing 

into cells RNA containing the reverse-complement of the targeted genes’ mRNA 

(Stephenson and Zamecnik 1978; Zamecnik and Stephenson 1978; Izant and Weintraub 

1984). This ‘antisense’ approach was one example of several phenomena in which 

suppression of the levels of an ultimate protein product was effected through naturally 

occurring or empirically induced RNA hybridization, referred to variously as ‘quelling’, 

‘post-transcriptional gene silencing’, and ‘co-suppression of gene expression’. After many 

years of attempting to optimize the antisense technique by modifying nucleotides’ structure 

for the sake of stability or more efficiently introducing it into the cell’ s interior, a key 

discovery was made by Andrew Fire and Craig Mello when they found that double-stranded 

RNA worked much more efficiently – substoichiometrically, in fact – compared to single-

stranded RNA (Fire et al. 1998).

Fire and Mello shared the 2006 Nobel Prize for showing us (i) that RNAi was mediated most 

efficiently by dsRNA and (ii) how to harness RNA interference in an empirically practical 

way. Some viewed their award as an affront to the investigators who discovered some years 

earlier the natural phenomenon underlying these effects, such as the normal endogenous 

production of lin-4 in C. elegans (Lee et al. 1993; Wightman et al. 1993) or of antisense 

RNA for myelin basic protein (Okano et al. 1991). But, whether it was scientific synergism 

or just good timing, Fire & Mello (Fire et al. 1998) kicked off a spate of studies that 

eventually uncovered shared mechanisms uniting empirical manipulation of gene expression 

and the underlying natural phenomena that the Nobel laureates unwittingly mimicked.

That underlying natural system is now appreciated as a critical form of post-transcriptional 

regulation of the stability and translatability of mRNA. It is dependent upon noncoding RNA 

that is initially transcribed from the nuclear genome as a stem-loop structure wherein the 

stem is highly homologous to one or more mRNA sequences. These non-coding transcripts 

are referred to as microRNA (miRNA). They are transcribed primarily by RNA polymerase 

II and often reside within the introns of other, mRNA-encoding genes. In animals, the 

complementary regions with which they hybridize are typically in the 3′ UTR of mRNAs. 

Key to understanding the function of miRNA is an appreciation for the multiprotein complex 

within which it is ultimately processed, resides, and functions. This RNA-induced silencing 

complex contains one RNase termed ‘dicer’ that prepares the dsRNA by cleaving it into 21–

25 basepair fragments. One strand of these oligomers is subsequently combined with the 

remaining protein subunits of the RNA-induced silencing complex, including a second 

RNase of the Argonaute family, which is the component that can ultimately cleave the 

mRNA target. This cleavage of the mRNA actually happens only rarely, however, typically 
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requiring a perfect or near-perfect match between the miRNA and the mRNA. More often, 

the miRNA has several mismatched nucleotides and the resulting hybridization merely 

inhibits translation. It is perhaps worth noting here that the term ‘siRNA’ was coined by 

Elbashir et al. (2001) when they confirmed the work of Hamilton and Baulcombe (1999), 

Hammond et al. (2000), and of Zamore et al. (2000) showing that larger dsRNA molecules 

were processed to active, 22-b.p. fragments.

Besides inhibition of translation (with or without mRNA degradation), miRNA can have 

other effects on gene expression. In some cases, miRNA can suppress transcription via 

impacts on DNA methylation or histone modification at genomic sites (Bayne and Allshire 

2005; Guil and Esteller 2009); in very rare cases, miRNA can even participate in elevation of 

transcription rates (Li et al. 2006).

Deviations from the central dogma

If the exception proves the rule, the central dogma is perhaps strengthened by several 

instances in which the straightforward relationship between gene, mRNA, and protein 

expression is altered in ways that were initially shocking.

Selenocysteine—From Archaea to mammals, the same set of 20 amino acids is supplied 

for protein translation by designated tRNA molecules that recognize corresponding mRNA 

codons. It was something of a surprise when Thressa Stadtman and colleagues reported the 

presence of a novel amino acid, selenocysteine, in certain proteins (Cone et al. 1976). In 

these cases, a selenium-containing selenol group takes the place of the sulfur-containing 

thiol that would otherwise constitute the R- group of cysteine. Often, these selenocysteine 

proteins are enzymes involved in reduction–oxidation reactions such as glutathione 

peroxidase, explaining the requirement for selenium as a micronutrient. The biochemical 

world was in for an even greater surprise when August Böck and coworkers – initially 

working in bacteria – determined that the thiol of this novel amino acid was not replaced 

with a selenol moiety through post-translational modification of an intact protein but rather 

through the cotranslational utilization of a novel tRNA (tRNASec) that is coupled to extant 

selenocysteine and acts at the site of a UGA ‘stop’ codon (Leinfelder et al. 1988). Part of the 

secret by which this mechanism takes place lies in a specific sequence – a cis element – 

lying just 3′ to the relevant UGA. The tRNASec has an unusually long acceptor arm, the 

stem-loop structure that interacts with elongation factors. The unique acceptor arm of the 

tRNASec eschews the typical elongation factor (eEF1A in eukaryotes), favoring instead 

eEFSec as it interacts with the 3′ cis element (reviewed in Chen and Berry 2003).

RNA editing—Another surprising exception to the central dogma is the modification of 

mRNA sequences after transcription and routine processing. RNA editing was first reported 

in the mRNA of mitochondria in the mid-1980s (Benne et al. 1986); eventually, 

mitochondrial tRNA was found to be edited, as well (Janke and Paabo 1993). But along the 

way, rather profound consequences were discovered for editing of a nuclear-encoded mRNA 

that dramatically impacts neurophysiology. From 1991 to 1993, Peter Seeburg and 

colleagues published a series of articles outlining an editing of the mRNA for three ionic 

glutamate receptors whereby 1–3 codons in the mRNA were altered from the genomic DNA 
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sequence at incomplete rates, resulting in heterogeneity in the ultimate protein sequences 

(Sommer et al. 1991; Higuchi et al. 1993; Kohler et al. 1993). Eventually, the laboratories of 

Tom Maniatis, Richard Axel, and Ron Emeson got into the act, elucidating some of the 

mechanisms, e.g. adenosine conversion into inosine, through which the codon is recognized 

by a tRNA anticodon distinct from that which its genomic sequence would dictate. This 

editing and the resulting amino acid change can result in markedly altered ion permeability 

of the channel, to calcium, for instance (Kohler et al. 1993).

One of the most consequential changes rendered by editing is in the mRNA for the GluR2 

AMPA-receptor subunit (the gene for which is now designated GRIA2). The editing of the 

so-called Q/R site in this protein greatly diminishes calcium permeability of the channels in 

which it participates (Hollmann et al. 1991); thus, calcium conductance is rare in a-amino-3-

hydroxy-5-methylisoxazole-4-propionate receptors because of the widespread expression – 

and editing – of the GluR2 subunit. One exception is the lower motor neurons of the spinal 

cord, a considerable proportion of which have calcium permeability because of incomplete 

GRIA2 mRNA editing, a status that may explain some of the selective vulnerability of these 

cells in motor neuron diseases (Takuma et al. 1999; Greig et al. 2000; Kawahara et al. 2003). 

Stresses such as ischemia (Peng et al. 2006) or chronic depolarization (Condorelli et al. 

1993) can reduce the expression or editing rate of GRIA2, and these conditions have been 

invoked to explain some instances of excitotoxicity, even in glial cell types (Yoshioka et al. 

1995).

Another RNA-editing event is embedded in the unfolded protein response introduced above. 

One of the first sensors of ER stress is inositol-requiring protein-1 (IRE1), and it participates 

in the unusual function of executing on-demand, extranuclear mRNA splicing of a single 

substrate: the mRNA for X-box binding protein-1 (XBP1); IRE1 cleaves the XBP1 mRNA, 

and the catalytic subunit of the tRNA ligase complex (RTCB) ligates it back together (Ron 

and Walter 2007; Jurkin et al. 2014). Once updated in this manner, the new XBP1 mRNA is 

translated into a transcription factor that induces several other components of the UPR.

Genetic instability

RNA is believed to be older than DNA, which is derived from the former through 

dehydroxylation of the 2′ ribose carbon; yet, the latter is the substrate for encoding 

biological blueprints. This seems to be because DNA is more stable, the dehydroxylation 

having removed the potential for alkaline conditions to instigate a nucleophilic attack by the 

2′ hydroxyl on the 3′ bond and thus break the phosphate backbone of an RNA polymer. 

But the relative stability of DNA is only that: relative. The structure and sequence of our 

chromosomes is subject to change. Of course, we know this happens through the accidents 

of mutagenesis; the process of evolution depends on that. What has been surprising is the 

series of discoveries demonstrating the extent to which the genome is modified, expanded, 

and abbreviated in a programmatic manner throughout the development of an individual 

organism. And few tissues exhibit these events, or are affected by them, to the extent seen in 

the brain.
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Structural variations of the genome include substantial differences (i.e. greater than the 

single-nucleotide polymorphisms and similarly discrete differences) that exist between 

individuals but are consistent throughout the body (or, at least, as consistent as any other 

genomic element). This includes copy number variations (CNVs) that comprise duplication 

or deletion of sequences that can be several megabases in size (Martin et al. 2015).

In addition to such somatically consistent deviations from the norm, there are somatic 

mutations and even somatic CNVs in individual tissues or cell types, creating a genomic 

mosaicism that we are only now beginning to appreciate (Fig. 5). Mosaic variation of 

chromatin in neurons was documented in invertebrates beginning around 1970 (Coggeshall 

et al. 1970; Manfredi Romanini et al. 1973). A few investigators reported similar findings in 

vertebrates, indeed even humans (Brodskij and Kusc 1962; Herman and Lapham 1968; 

Lapham 1968; Mares et al. 1973). But, these reports went largely unappreciated, in part 

because of skepticism about the precision of the methods available at that time (Swartz and 

Bhatnagar 1981). More sophisticated techniques and instrumentation were applied in the 

21st century to confirm ‘constitutional’ tetraploidy of neurons in the chicken retina (Morillo 

et al. 2010) and the mouse retina and brain (Lopez-Sanchez and Frade 2013).

In addition to the evidence that whole genomes are duplicated to tetraploidy in a few cells in 

the brain, there are signs of more piecemeal hyperdiploidy in neurons. Thomas Arendt and 

others used a sequencing-independent measurement of DNA content per cell (slide-based 

cytometry) and found that approximately 11% of neurofilament-positive cells had greater 

than 2N chromatin. Eighteen months later, Fred Gage and colleagues showed that a 

considerable number of neurons in the human frontal cortex have CNVs at least as large as 1 

megabase (McConnell et al. 2013). An additional finding reported by Arendt and coworkers 

is that the proportion of cells with these CNVs declines with aging. One interpretation is that 

the CNVs are maladaptive; so, these cells die sooner than the others or cause the individual 

bearers to develop neurodegenerative diseases (which would have removed these individuals 

from the pool of neurologically healthy specimens used for the study).

A quarter century ago, Huntington Potter proposed the very novel hypothesis that 

Alzheimer’s disease is a consequence of mosaic Down’s syndrome, i.e. aneuploidy for 

Chromosome 21 in a cell-by-cell basis in the brain (Potter 1991). Over the years, his 

laboratory and others have produced evidence that supports this idea, including an elevated 

degree of aneuploidy or hyperdiploidy in Alzheimer brain tissue, i.e. DNA allelic counts that 

are greater than 2N (Potter 1991; Yang et al. 2001; Rehen et al. 2005; Iourov et al. 2009); the 

Potter laboratory has also produced evidence that mutated forms of presenilin that give rise 

to Alzheimer’s can interfere with proper mitotic segregation of chromosomes, which might 

facilitate aneuploidies (Li et al. 1997). Frade and López-Sánchez have more recently 

proposed that Alzheimer’s disease may involve simply an expansion of the frequency with 

which cortical neurons normally exhibit constitutional tetraploidy (Frade and Lopez-

Sanchez 2010). However, other evidence argues against this hypothesis (Westra et al. 2009). 

Arendt and colleagues posit that a pathological process distinct from what is considered 

constitutional tetraploidy gives rise to the CNV mosaicism observed in pathological states 

such as Alzheimer’s (Mosch et al. 2007).
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Though there is no evidence that it contributes to the mosaic CNVs discussed above, a 

startling phenomenon recently observed in CNS neurons further contributes to the 

impression that these cells are quite different from any other in the body. Lennart Mucke’s 

laboratory reported that double-strand breaks are routinely generated in mouse neurons 

through normal physiological activity, including that which accompanies exploring a novel 

environment (Suberbielle et al. 2013). Though spurred by normal learning and memory 

correlates, the breaks were more extensive and persistent in an amyloid precursor protein-

transgenic mouse model. Long-term potentiation is associated with the elevation of reactive 

oxygen species (Klann et al. 1998), and so were some of the conditions that fostered double-

strand breaks in neurons; this would be consistent with the well-characterized ability of 

oxidative stress to effect DNA damage. It was somewhat surprising that antioxidants did not 

impact the generation of double-strand breaks in Mucke’s study. Though DNA damage is 

certainly stressful, only a single observable repair focus was present in about 99% of the 

cells showing breaks in this study, and they seemed to recover well over the following 24-h 

period.

Owing to the error-prone mechanism that predisposes them to disease mechanisms, tri- and 

hexanucleotide repeats often exhibit somatic mosaicism. Such variety across different tissues 

and organs is well established in the CAG repeat of huntingtin (Telenius et al. 1994). 

Mosaicism has also been reported in the trinucleotide repeats relevant to spinocerebellar 

ataxias, where it is seen across peripheral tissues, as well as across the brain regions (Tanaka 

et al. 1996; Hashida et al. 1997; Ito et al. 1998). Mosaicism is also seen in the length of the 

GAA repeat expansion across various brain regions in Friedreich’ s ataxia (Montermini et al. 

1997). Though the repeat size did not appear to correlate with neuropathological findings in 

the various regions, mosaicism was invoked to explain dramatic differences in the clinical 

presentation of two siblings who showed similar repeat counts in the DNA obtained from 

their leukocytes (Klopstock et al. 1999). Mosaicism also appears to explain a rare 

occurrence of Rett syndrome (above) in a male; in hair and blood samples, the affected 

individual had a mixture of wild-type and mutated MECP2 genes though he had only one X 

chromosome (Topcu et al. 2002). Nevertheless, mosaicism of hexanucleotide repeats in 

C9orf72 does not appear to contribute to the genotypic profile of amyotrophic lateral 

sclerosis (ALS) (Pamphlett et al. 2013).

In addition to mosaicism within an individual’ s genome, there are well-documented cases of 

cellular chimeras among dizygotic (‘fraternal’) twins that happen to be monochorionic. This 

results from the two chorions fusing because of proximity in the uterus, and it evidently 

allows blood (and apparently stem cells) to intermingle between the two individuals. This 

phenomenon is more common in pregnancies that are the product of in vitro fertilization 

(Williams et al. 2004; Miura and Niikawa 2005). Thus, the rise in frequency of such assisted 

reproductive technology may have implications for genetic diseases, with regard to both the 

potential ‘partial’ manifestation of the phenotype and the complications for genetic 

screening from a single cell type (which may not manifest the same proportion of chimerism 

or mosaicism as that occurring in the more relevant cell or tissue type).
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Dividends of molecular technology

Our understanding of molecular aspects of biology, particularly those relevant to the central 

dogma, has benefited tremendously from technical advances. The ability to sequence and 

synthesize polynucleotides, to manipulate DNA sequences in vitro and even in situ, and to 

precisely quantify specific sequences has allowed advances that could not have been dreamt 

60 years ago. And the boon this technology has provided to basic science may be surpassed 

someday by the benefits to human health provided by the utilization of these methods in 

translational medicine.

Polymerase chain reaction

The impact of RNA editing on glutamatergic activity (above) gained considerable heft from 

a better understanding of the subunit composition of functional receptors, and this was 

dramatically aided by the ability to analyze the mRNA levels of individual receptor subunits 

in a single cell. It is difficult to imagine this and a great many other advances, coming to 

pass without the technological watershed provided by invention of the polymerase chain 

reaction (PCR). This technique now underlies the state-of-the-art techniques for 

quantification of mRNA, forensic investigations, several site-specific mutagenesis strategies, 

the power of laser-capture microscopy, and much of the efficiency of next-generation 

sequencing (below). In addition to its common utilization in quantitative analysis of RNA 

levels, the structural constraints of PCR also make it useful for qualitative assessments of 

polynucleotide structure, such as the relative positions of gene elements or the nature of 

transcripts and splice variants (Fig. 6).

PCR also serves as one of the murkiest and contentious episodes in the history of scientific 

discovery. Volumes have been written about this story and its inherent controversies. 

However, a retrospective such as this has at least some duty to highlight a few historical 

aspects of the saga. Kary Mullis won the 1993 Nobel Prize in Chemistry for his role in 

developing PCR, but the team that first reported the concept – 14 years earlier – was led by a 

1968 Nobel laureate Har Gobind Khorana. In 1971, Khorana and his postdoc Kjell Kleppe 

first outlined a strategy for amplifying DNA by cyclical polymerase reactions running off 

terminal primers (Kleppe et al. 1971); colleagues remember the pair presenting this 

technique at major scientific conferences of the day. However, the potential utility of this 

procedure was not realized at the time. In part, this was because of the fact that a new bolus 

of DNA polymerase had to be resupplied at each cycle of amplification because each cycle 

requires heating to a relatively high temperature to melt the nascent strands apart and allow 

access of the primers; this denatured and inactivated the DNA polymerase. Consequently, 

Kleppe and Khorana only managed a four-fold amplification. Mullis reckoned that this could 

be extended by several orders of magnitude, and thankfully he was right. He and his 

colleagues also sold the scientific community on the technique by explicating some of the 

utilitarian dividends it would reap. In perhaps the earliest report focused on the procedure 

itself, they explained (or demonstrated) the power of PCR to essentially isolate a sequence 

from a complex mixture, to attach useful tags such as restriction sites, to analyze RNA via 

the reverse-transcriptase corollary, and to synthesize relatively large novel sequences entirely 
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from synthetic oligonucleotides by stepwise progression of consecutive primers that 

extended their overlapping 3′ ends in cyclical amplifications (Mullis et al. 1986).

Randall Saiki and Henry Erlich, colleagues of Mullis at Cetus Corporation, were keen to 

apply the technique to one of their primary interests, genotyping of human disease loci. 

Their first report, a method for diagnosing sickle cell anemia (Saiki et al. 1985), actually 

made it to press before the initial explanation of PCR cited above. Saiki is also credited by 

most for the momentous brainchild of using a heat-stable polymerase for PCR (Saiki et al. 

1988). It was this innovation that seemed to have captured the imagination of industry, and 

soon thereafter automated thermocyclers (e.g. US Patent 5 616 301) were being sold to 

laboratories all over the world, relieving scientists of the drudgery of manually moving tubes 

between various temperature baths.

In a sense, the advance that allowed PCR to have its profound impact on biological sciences 

began in the 19th century with Pierre Miquel’s reports of ‘thermophilic’ bacteria that could 

thrive at 72°C (Miquel 1888). Nearly, a century later, Thomas D. Brock and Hudson Freeze 

reported a new species of thermophilic bacterium which they named Thermus aquaticus 

(Brock and Freeze 1969). It was this bacterium, discovered in the Lower Geyser Basin of 

Yellowstone National Park, that Saiki and colleagues would employ to solve the only real 

limitation of Mullis’ s vision. As a key enzyme of a bacterium that could obviously replicate 

its genome at high temperatures, the T. aquaticus (T.aq.) DNA polymerase was stable at the 

melting temperature of PCR and thus well suited for application to this procedure.

As mentioned above, one of the earliest major advances that PCR afforded neurochemistry 

was the ability to determine receptor subunits and channels responsible for the actions of 

neurotransmitters. This relied on the ambitious vision of Jean Rossier and others who 

dreamed it might be possible to patch-clamp a neuron, record from it, and then extract the 

cytosolic contents through the patch pipette for reverse-transcriptase PCR of the cellular 

RNA (Lambolez et al. 1992). Clues about glutamate receptor distribution, for instance, had 

been provided a few years earlier through studies by Sakmann and Seeburg, who 

demonstrated through in situ hybridization that certain receptor subunits, such as ‘flip’ and 

‘flop’ splice variants were exclusively expressed in single - sometimes adjacent - cells 

(Sommer et al. 1990). However, a true understanding of the way subunits were combined 

into a functional receptor required comprehensive determination of all the subunits which 

were in a cell that exhibited specific conductance properties and ligand specificity. After 

glutamate receptors, the approach was applied to the subunit composition of GABA and 

other receptors (Santi et al. 1994). More recently, these efforts benefited from the application 

of techniques that utilize internal standards to make possible an absolute quantification of 

the number of individual molecules (± 10) of a given subunit (Tsuzuki et al. 2001)!

DNA sequencing

Virtually all of molecular biology has been developed in the past 60 years, making a 

comprehensive discussion of its progress during this period an onerous task. This 

retrospective has therefore focused primarily on those advancements with a particular 

relevance to neurochemistry. Nearly, none of this progress could have taken place without 

the ability to determine the sequence of polynucleotides. But, most biological scientists 
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working today have been well schooled in the two traditional, workhorse methods of DNA 

sequencing: ‘Maxam-Gilbert’ and ‘Sanger’. So, these (generally obsolete) methods will be 

passed over to devote space to the mind-boggling potential that next-generation sequencing 

provides via its speed and power.

Next-generation sequencing—A few different modes have been used in the next-

generation (‘next-gen’) sequencing boon: sequencing-by-hybridization (SBH), sequencing-

by-synthesis (SBS), and sequencing-by-ligation. Next-gen SBS is similar to the traditional 

Sanger method: in that, it actually reports the sequence of a DNA polymerase reaction 

executed on a primer that is complementary to the template DNA supplied from the 

‘unknown’ sample. In both Sanger and next-gen SBS, only one nucleotide (dATP, dCTP, 

dGTP, or dTTP) is offered per ligation reaction, and whether or not it is ligated to the primer 

is determined because of the fact that it is labeled with radioactivity (Sanger only) or 

fluorescence (utilized by commercial systems currently marketed by Illumina and Roche), or 

by the reaction’ s effect on pH (utilized by the Ion Torrent system). Although the Sanger 

method utilizes only one polymerase reaction per strand (and therefore requires much more 

input DNA), next-gen SBS is reiterative, supplying each nucleotide in successive reactions, 

creating an ever-growing complementary strand and recording whether or not the nucleotide 

offered in each round is conjugated or not. Because it utilizes these reiterative cycles, and 

often involves an initial PCR step to amplify the input DNA, next-gen SBS paradigms can 

be performed with as little as 50 ng of input DNA. For fluorescence detection, the reiterative 

cycle format is possible through photobleaching of the fluorescent tag after each polymerase 

reaction so that each successive round can be assayed against low background. The Ion 

Torrent system relies on acidification resulting from liberation of a proton when the primer’s 

3′ hydroxyl executes nucleophilic attack on the α-phosphate of a nucleoside triphosphate. 

The liberation from a photobleaching step and other issues of sensitivity allow the Torrent to 

run considerably faster than the light-based sequencers.

SBH approaches have found a solid utility in specialized types of genotyping and are 

gaining in popularity for more yeoman work as well. The application for which 

hybridization seems most needed is in the identification of CNVs (above), especially the 

moderate-to-large regions of the genome that appear to have been duplicated not only during 

evolution but also during diversification of the human diaspora. Often, these duplications are 

so large and so similar to the original sequence that they can scarcely be detected by 

conventional sequencing approaches. Except for heterozygosity that may not be consistent 

with 2N allelic distributions, the results of SBS sequencing are so myopic that they report 

essentially no difference between the sequence of 200 base pairs in the p arm of 

Chromosome 17 and the same sequence within a 1.4-megabase duplicate lying next door in 

some individuals. SBH – in particular, comparative genomic hybridization arrays – can 

quantify the number of copies hybridizing to its templates; therefore, it is one of the few 

techniques that can readily detect CNVs.

RNA-Seq—One of the most powerful dividends of next-gen sequencing is its application to 

quantitative gene expression analysis. Early strategies for gaining a somewhat 

comprehensive view of the changes in gene expression across two or more conditions relied 
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on burdensome and technically tricky methods such as differential display (Shirvan et al. 

1997; Toki et al. 1998; Chen et al. 1999; Liu et al. 1999; Yagita et al. 1999; Yamashita et al. 

1999) and subtractive hybridization (Walker and Sevarino 1995; Gould et al. 2000; Leypoldt 

et al. 2001; Ftouh et al. 2005; Boucquey et al. 2006). Enormous gains in throughput and 

quantitative accuracy were made when microarray screening was developed (Ang et al. 

2001; Chun et al. 2001; Grunblatt et al. 2001; Yoshihara et al. 2002). Nevertheless, arrays 

must be constructed in advance; they are inherently limited to the ‘known universe’ of 

expressed sequences. The human genome is estimated to express protein-encoding mRNA 

from only about 19 000 genes, and microarrays can accommodate as many as 480 000 

‘features’ (spots) per microscope slide. It is usually considered necessary to include multiple 

sequences for each gene, primarily for the sake of confirmation. But, this could be achieved 

at a level of 25 sequences for each gene on an 8 × 60 000 microarray.

Nevertheless, next-gen sequencing offers the advantage of potentially pulling novel 

sequences out of a specimen. And the true beauty is that the sequence is not merely tabbed 

qualitatively, it can be identified entirely on the basis of a quantitative distinction it exhibits 

between two treatment groups, between disease and healthy tissue, or indeed between any 

two (or more) sets of conditions. Use of next-gen sequencing for RNA screening is often 

called ‘RNA- seq’, but a somewhat more formal name is ‘whole-transcriptome shotgun 

sequencing’. This technology is somewhat better at quantitation than are microarrays, 

especially at the high and low ends of the abundance scale. In addition, quantitative 

comparisons in microarrays are limited by differences in affinity for each target-probe 

hybrid, a handicap that RNA-seq transcends. It should also be noted that an investigator is 

dependent upon commercial enterprises or other third parties to select the best probes, and 

this trust has proved to be misplaced occasionally. Finally, the ability to discover novel 

splice variants and other modifications should not be overlooked. It has been argued that 

RNA-seq is uniquely qualified to overcome challenges inherent in analyzing expression 

patterns in complex human neurological disorders (Sutherland et al. 2011).

Human genome project and HapMap—The political will and financial investment 

made in sequencing the human genome represents a commitment that rivals the endeavor to 

put a man on the moon; the payoff may have been even more significant in practical terms. 

Although much is made of the limitations on understanding the contributions of genes 

without elucidation of their regulation, discoveries related to the roles that genetic variations 

play in human biology and disease have been dramatically accelerated by sequencing even a 

single genome. Almost as important has been the delineation of genetic haplotypes – the 

various ‘Chinese menu’ combinations of polymorphisms that predominate in the population 

– which reached a milestone in 2005 with public release of Phase I of the International 

HapMap Project (International HapMap Consortium, 2005). This release marked a ‘data 

freeze’ that included genotypic information about at least one common single-nucleotide 

polymorphism (SNP) for every five kilo-bases in all populations under study. The 

combination of these two undertakings has made possible the tremendous progress of 

genome-wide association studies (GWAS) and their application to neurological disorders. As 

inarguably the most complex organ of the body, the brain and its functional auxiliaries is 

subject to the most complex genetic circumstances of health and disease. GWAS approaches 
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are perhaps best suited to discovering quantitative trait loci that summate in ‘sporadic’ 

instances of complex diseases such as Alzheimer’s disease or bipolar disorder (Baum et al. 

2008; Liu et al. 2012a; Lambert et al. 2013), but GWAS are also important for identification 

of genes that influence age of onset, severity, and rate of progression for diseases known to 

arise from discrete, highly penetrant genetic loci (Finch et al. 2011; Soler-Lopez et al. 2011; 

Vass et al. 2011).

There are numerous examples of neurological disorders that have yielded to insights gained 

from genomic profiling of normal and abnormal brain function (Tsuji 2013). It was 

traditional genetic analysis that provided mechanistic insights, and the potential for familial 

screening, regarding Huntington’ s disease (The Huntington’ s Disease Collaborative 

Research Group, 1993). However, next-gen approaches have proved their usefulness with a 

spate of discoveries. Mutations in over 50 genes have been associated with Charcot-Marie-

Tooth, and at least one, identified through a next-generation (exome-sequencing) approach, 

had been missed by conventional Sanger sequencing (Landoure et al. 2012). Spinocerebellar 

ataxia, another condition with marked locus heterogeneity, was also mechanistically 

unraveled by exome sequencing. Two compound heterozygous mutations in the GLB1 gene 

were found to confer recessive juvenile-onset GM1 gangliosidosis (Pierson et al. 2012). Of 

course, the true hope is that genetic understanding can lead to therapeutic innovation. One 

striking example of the power of genetic discovery comes from the treatment of obesity, a 

disease we did not even perceive as neurological until we came to understand, largely 

through basic studies on the molecular physiology and genetics of rodents, that the primary 

site of action for the satiety hormone leptin is in the hypothalamus (Harvey 2007). Humans 

with a loss-of-function mutation in leptin, while rare, have benefited tremendously (Paz-

Filho et al. 2011).

Transgenesis

Perhaps, no other advance in molecular biology has captured the imagination of the 

layperson like transgenesis, the technical ability to rationally and specifically manipulate the 

genome of any living thing. The genetic makeup of other species has been manipulated by 

selective breeding and other aspects of domestication for approximately 20 000 years of 

human history. Experimentalists have occasionally accelerated this process with chemical 

mutagenesis. However, the power inherent in directing the genetic modification as it is done 

in transgenic plants and animals obviously renders this objective into another dimension. 

The lay public immediately comprehends the potential that transgenesis holds for curing 

genetic diseases or leveraging the efficiency of food production. It is worth noting that a 

great many inborn errors of metabolism, typically resulting from loss-of-function mutations 

in an anabolic or catabolic enzyme, manifest as neurological disorders. Thus, the concept of 

supplying a functional gene through transgenic techniques has particular resonance with 

those who have a concerned with neurological disease. However, neurochemists and other 

scientists have probably been just as captivated by the profound impact such genetic 

modification has as an experimental independent variable for answering difficult biological 

questions.
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Terminology—The lay press sometimes presumes that ‘transgenic’ always refers to trans-

species insertion of a gene, which it is not, of course. But, scientists are guilty of creating 

confusion in nomenclature, as well. It seems that one routinely encounters non-standard uses 

of the term ‘knock-in’, for instance. Convention dictates that this term be reserved for 

genetic transfers resulting from homologous recombination, but investigators often use it 

when working with a randomly inserted transgene if it is combined with knockout of the 

homolog. The field would be done a great service if all publications and presentations on 

genetically modified mice were prepared after consultation of standards prepared by the 

International Committee on Standardized Genetic Nomenclature for Mice (Montoliu and 

Whitelaw 2011). Nevertheless, there remain substantial differences in the conventions for 

genetic nomenclature across different species. Today, a great many projects benefit from 

utilization of multiple models, many transcending entire phyla; thus, it seems that a universal 

convention for genetic nomenclature might be in order.

Germline transgenics—The earliest germline transgenic animals were created by 

injection of viral – and later, plasmid – DNA directly into blastocytes or eggs, typically 

targeting the male pronucleus. A recombination event at this stage enhances the chances that 

gametes will be included among the cells that incorporate the transgene (though, as a result 

of the potential for epichro-mosomal replication of concatemerized transgenes, only 20–30% 

of founder animals are true mosaics). It also results in a founder that is of a pure strain. The 

other major approach is stable transfection of a cultured embryonic stem (ES) cell line, 

followed by injection of the transfectants into a blastocyst. Because the ES cells may or may 

not differentiate into germ cells in the resulting chimeric mouse, founder lines are somewhat 

less likely to propagate the transgene. In addition, the vast majority of transgenics produced 

in this manner rely on ES cells from the Sv129 strain of mice due their efficiency in this 

application. Introduction of the transgene into another strain – either as the initial blastocyst 

recipient or through interbreeding of a germline transgenic – creates an animal that is 

genetically mosaic for more than just the transgene. Though backcrossing to the desired 

strain for experimentation for six generations is conventionally considered sufficient, even 

this can permit artifacts; particularly if a phenotypically potent gene is in linkage 

disequilibrium with the transgene. This and related issues have been highlighted as 

particularly problematic for neurobehavioral studies (Gerlai 1996). There are a few other 

approaches to creating germline transgenics, including viral transduction of blastocysts or 

using sperm as vectors, but these represent a very small fraction of the total lines created.

Knockouts and other instances of homologous recombination—The availability 

of ES cells has greatly facilitated experimental objectives that require homologous 

recombination. In straightforward transgenics, the novel gene integrates at site in the 

genome outside the control of the investigator. However, there are situations in which the 

genetic modification must be site-specific or ‘targeted’. This is a key element of gene 

ablation, commonly known as ‘knockout’. Such targeted deletional mutagenesis is most 

commonly accomplished by replacing at least part of a gene with a selectable marker such as 

a drug-resistance gene. This has the practical advantage of allowing enrichment for cells in 

which integration has taken place, a considerable percentage of which will be correctly 
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inserted into the gene of interest via sequences flanking the NeoR gene that are homologous 

to the targeted gene.

In some cases, a more subtle mutation is desired; e.g. a point mutation. In this case, a 

missense mutation or other small change can be included in the homologous flanking arm of 

mutagenic construct. It is usually necessary to remove, after the homologous recombination, 

the selectable marker gene (e.g. NeoR) that intervenes between the mutated homologous 

flanking arm and the wild-type flanking arm. This is often accomplished via Cre/Lox 

technology (below), such that a residual of the mutagenesis remains: a single loxP site. If the 

mutagenic construct is designed such that the selectable marker (and its attendant loxP sites) 

is placed in an intron, there should be no significant consequence for the gene’s expression 

or function other than the intended subtle mutation.

A tremendous boon to in situ site-specific mutagenesis has been provided by ‘CRISPR’ 

technology (van der Oost 2013; de Souza 2013). The details are too complicated to 

thoroughly describe here, but this methodology utilizes an RNA guide to seek out a specific 

position in the chromosomal DNA and target it for attack by an endonuclease (Cas9). The 

resulting double-stranded break is ligated back together by DNA-repair mechanisms that 

will usually generate small deletions, resulting in frame-shift mutations that are often 

deleterious for the targeted gene. Thus, CRISPR is typically used for knockout objectives. 

However, other types of mutation are possible with the inclusion of a DNA repair template. 

This construct, introduced along with the guide RNA and Cas9 expression vector, is 

analogous to the homologous recombination constructs described above; in that, it has two 

flanking sequences homologous to the gene of interest and straddling the mutation. The 

latter is incorporated by the naturally occurring, endogenous ‘homology-directed repair’ 

system operating on the chromosome following a Cas9 cut. This sort of subtle, site-specific 

mutation is best accomplished with a slightly modified version of Cas9 that lacks one of its 

nuclease sites and thereby produces only single-strand breaks; this greatly reduces non-

homologous recombination.

Conditional mutation and inducible expression—A high proportion of 

neurologically relevant genes cause developmental lethality when ablated. This may be 

related to the intersection of physiological requirements with important behaviors, such as 

suckling, and neurological control of other systems, as in the case of respiration. For this and 

other reasons, it is often desirable to restrict a genetic modification spatially (e.g. to a 

specific cell type) or temporally (e.g. postnatal). A variety of approaches have been 

developed for this purpose, applicable to either ablation (‘conditional knockout’) or over-

expression.

Some of the earliest strategies for creating precise control of a genetic modification involved 

inducible transgenes. A system dependent upon the ecdysone receptor (EcR) was used rather 

commonly in the late 1990s and was based on supplying a nuclear hormone receptor from 

insects (actually, a highly engineered derivative of that EcR) along with a transgene whose 

promoter had a cis element targeted by EcR (No et al. 1996). Expression of the transgene 

could be induced by administering a synthetic ecdysone to transgenic mice (or cell cultures) 

carrying both elements. The other major systems used for such inducible expression are 
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those utilizing tetracycline-responsive trans-acting factors (Gossen and Bujard 1992; Furth 

et al. 1994; Gossen et al. 1995); they predated EcR systems by a couple of years and has 

persisted in more widespread use since. The original approach utilized a tetracycline-binding 

factor (tTA) that associates with its target DNA element and activates transcription until 

ligand (a tetracycline, most commonly, doxycycline) is supplied; accordingly, it is termed 

‘Tet- Off™’. Later, mutations were discovered that reversed the actions of tTA such that 

administration of doxycycline induces the gene in question, creating a system dubbed 

‘TetOn™’ (Gossen et al. 1995). In all of these systems, the requirement for an auxillary 

transgene expressing EcR or tTA creates an additional level of control. The timing of 

expression can be dictated by administration of the chemical inducer or suppressor, and the 

distribution of expression can be controlled by placing the auxillary transgene under a cell 

type-specific promoter, such as the CaMKII promoter for expression in forebrain neurons 

(Engel et al. 2006). Spatial restrictions that are independent of cell type are sometimes 

effected by injection of a viral vector carrying tTA, for instance, under a universal promoter 

(Bahi et al. 2005). Of course, when the objective is the reduction of a specific gene product, 

the inducible transgene can be an RNAi construct (i.e. expressing a short-hairpin RNA) 

(Bahi et al. 2005).

While inducible expression of RNAi is one means to suppress expression of a gene of 

interest, it is often more desirable to completely remove the gene in a specific cell type or 

developmental stage. This is now accomplished most commonly via the Cre/Lox approach, 

pioneered by Brain Sauer (Sauer and Henderson 1988; Lakso et al. 1992). Like the systems 

for inducible transgenes (above), Cre/Lox involves transgenic modification not only of the 

gene of interest but also the introduction of an auxillary protein not present in wild-type 

eukaryotes: the Cre recombinase, in this case. This enzyme cuts and religates DNA 

sequences of the loxP motif; when two loxP sites are placed on either side of a particular 

chromosomal region (a practice that has come to be called ‘floxing’) Cre will cut both sites 

and religate, excising the intervening chromosomal region. It has been demonstrated 

empirically that this technique can be effective (albeit with somewhat compromised 

efficiency) for excising DNA stretches as long as two centimorgans (~ 4 Mb) (Zheng et al. 

2000). Just as with EcR and rTA, tissue-specific promoters can restrict expression of Cre 

spatially and developmentally. In addition, constructs expressing a Cre transgene fused to an 

estrogen receptor ligand-binding domain (CreER) is used to exert temporal control on the 

Cre activity (Metzger et al. 1995). The modified CreER enzyme is only active in the presence 

of an estrogen analog such as tamoxifen. This can be used to overcome one oft-overlooked 

problem of germline transmission of the Cre: temporary activity arising in a ‘cell-type-

specific’ promoter at unique developmental nodes. A case in point is the expression of glial 

fibrillary acidic protein in neural stem cells. Driving Cre from a glial fibrillary acidic protein 

(GFAP) promoter with the intent to restrict a gene excision to astrocytes would be folly 

unless the CreER construct is used in conjunction with carefully timed tamoxifen 

administration.

Viral transduction

One of the earliest approaches for the manipulation of genes in intact organisms entailed 

infection with genetically altered viruses. Indeed, one might say that Mother Nature beat us 
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to it! There is essentially a continuum of gene transfer evident in the natural history. From 

the transient infection and expression of virally encoded genes, to retroviruses that insert 

their genomes into the host’ s during a lysogenic phase, to retrotransposons that become 

stabilized and get passed vertically through reproduction, one can say that viral vectors have 

been shuffling genes around for eons. There are now many reputable studies providing 

evidence that DNA has been passed between species as disparate as reptiles and mammals 

for millions of years (Piskurek and Okada 2007; Thomas et al. 2010; Walsh et al. 2013). 

Thus, it is only natural that scientists and clinicians came to apply this strategy rationally to 

their métier.

Modified viruses were first used to express foreign genes in mammalian cells in 1976 (Goff 

and Berg 1976; Nussbaum et al. 1976). A key development was rendering the source virus 

replication deficient; propagation in cell cultures for the purposes of producing a sufficient 

titer is achieved with the assistance of a co-infecting ‘helper virus’ that supplies the missing 

components of the vector. Although conventional plasmid transfections are very inefficient 

in non-replicating cells (perhaps due to a need for the nuclear membrane breakdown that 

mitosis effects), viruses proved quite capable of transducing post-mitotic cells such as 

neurons. Several viruses with favorable traits for gene transduction also happen to have 

significant neurotropism. One of the first used for neuroscience studies was an attenuated 

herpes simplex 1. Early vectors derived from herpes simplex 1 showed early success in 

cultured neurons, which they infected readily and directed in the robust expression of 

important proteins (Geller and Breakefield 1988; Geller et al. 1995; Ho et al. 1995; Fink et 

al. 1997). But, these vectors were more problematic in vivo, where they suffered frequent 

inactivation and tended to promote a prohibitively strong immune reaction (Fink and 

Glorioso 1997). Adenoviruses and adeno-associated viruses (AAV) were being developed 

concurrently (Fritz et al. 1997; Robert et al. 1997; McFarland et al. 2009), and the latter 

seem to have surpassed these other first-generation vectors, largely by virtue of their ability 

to fly under the radar regarding the host immune system (McFarland et al. 2009).

Recombinant AAV (rAAV) vectors are derived from a naturally occurring parvovirus first 

isolated in 1966 in studies of pathogens in the respiratory tract (Hoggan et al. 1966). 

Regarding the initial hurdles of making viral vectors replication deficient, AAV almost 

seems to have been designed for this application, as even in the wild form it is not capable of 

replicating autonomously (hence its description as an adenovirus-associated virus). But, 

despite their other favorable properties for neuronal gene expression, rAAVs have a 

significant limitation on the size of the novel genetic material they can carry – the maximum 

of foreign DNA is approximately 4.4 kilobases. Lentiviruses and other similar retroviruses 

can solve this problem, with insertion capacities on the order of 10.5 kilobases. This larger 

size comes at a cost, however, the infectious particle is also large, and this limits the spread 

of lentiviruses in tissues somewhat. Moreover, side effects of retroviral vectors are somewhat 

unpredictable because of their insertion at multiple sites in the genome; destruction of a 

tumor-suppressor locus or transcriptional activation of an oncogene is quite common, with 

the potential result being an iatrogenic cancer. It had been thought that rAAV-based vectors 

were free from this concern, though the native wild-type AAVs are capable of insertion. But, 

even rAAV vectors are now known to integrate oncogenically at a rate that may be 

unacceptable (Valdmanis et al. 2012). Considerable hope is placed on the idea that 
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nanotechnology may help solve some of the most persistent problems of viral vectors by 

modifying – perhaps even replacing – viral envelop components with artificial bioactive 

polymers (Dodds et al. 1999; Shea and Houchin 2004).

Applications

Experimental implementation—Transgenesis of genes has, of course, made a dramatic 

impact on empirical biology. The ability to add or remove a gene, or replace it with mutated 

versions, has meant the world for our understanding of neurochemistry and other 

subdisciplines. And beyond testing the role of individual proteins, such manipulations have 

helped to elucidate networks through which genes impact one another in a systemic manner. 

Indeed, network (or ‘pathway’) analysis is now a major computational endeavor in 

expression analysis outputs such as those provided by microarrays and RNA-seq (Crawford 

et al. 2006; Boulaire et al. 2009; Host et al. 2010; Loke et al. 2013). Nevertheless, some of 

the dividends of gene shuttling were novel techniques that probably could not have been 

imagined, much less implemented, prior to the age of transgenesis.

One important innovation has been the use of viral vectors for transsynaptic tracing of 

neuronal connectivity. Horseradish peroxidase and its conjugates with lectins have been used 

to trace axon projections since the 1970s (Kristensson et al. 1971; Trojanowski et al. 1981). 

This technique was even considered as a drug-delivery method for some time (Haschke et al. 

1980). The drug in question was an antiviral one, which is somewhat ironic considering that 

the biggest advance in circuitry tracing in the past decade has used viruses as the tracer. The 

primary advantage of viral vectors for axonal tracing is the improved capability for 

transsynaptic propagation. Though wheat-germ-agglutinin and tetanus- or cholera-toxin 

conjugates of horseradish peroxidase have limited utility as transsynaptic tracers, they dilute 

quickly and can rarely be used beyond single synapses. Though the strains used are 

somewhat attenuated, these viruses can replicate; so, they can propagate after they cross a 

synapse, thus maintaining signal strength. The earliest uses of viruses used more-or-less 

native pseudorabies virus (PRV) and visualized by immunostaining (Spencer et al. 1990), 

followed by recombinant PRV containing β-galactosidase (Loewy et al. 1991). But, the 

approach gained popularity when sensitivity and versatility were enhanced with the 

introduction of green-fluorescent protein and its color variants into the viruses (Maskos et al. 

2002).

Versatility of this technique is one of its assets. Despite the power of transsynaptic tracing, it 

is sometimes desirable to restrict the labeling. Restriction to a single cell can be achieved by 

use of a replication-deficient virus (Wu et al. 2014). And it is even possible to engineer a 

virus that will stop after crossing just a single synapse (Wickersham et al.2007). The latter is 

achieved by supplying a missing replication component within only the single original cell 

(or cell type); this can be provided from another virus or from a specifically expressed 

transgene (Weible et al. 2010). It is also possible to include or exclude spread through other 

types of connections, e.g. gap junctions. Many viral tracers will spread via such non-

synaptic sites, but the ‘challenge-virus standard’-derived strains of rabies virus and the 

Bartha strain of PRV, travel only across synapses (Ekstrand et al.2008). In the right hands, 

viral transsynaptic tracing can reveal novel information about circuitry that has been missed 
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by other anatomical approaches. But like so many scientific methods, this technology is also 

prone to the effect of the observer (McCarthy et al. 2009).

Also benefiting from the transgenic expression of fluorescent proteins is the ‘Brainbow’ 

mouse (Livet et al. 2007). This technology utilizes the Cre/Lox system to produce a quasi-

random distribution of neurons labeled with different colors of fluorescent proteins. The 

effect is produced by introducing a compound transgene that contains a coding region (CDS) 

for green-fluorescent protein, its red variant, its yellow variant, etc., separated by distinct and 

– this is key – incompatible loxP sites. By placing a compatible partner of each of these loxP 

sites in a small region outside the entire protein coding region, the investigators allow Cre 

(driven by a neuron-specific promoter) to stochastically choose any compatible pair and 

thereby excise any intervening fluorescent protein CDS(s) – and the other loxP sites – in any 

given neuron. The recombination event also removes a transcriptional ‘Stop’ signal blocking 

the remaining fluorescent protein(s) CDS(s). Because the other loxP sites have been 

removed, no other Cre-mediated deletions can occur, locking that cell into its fated color for 

the rest of its life. More than one fluorescent CDS may remain, however, creating as many as 

90 distinguishable combinations!

Similar, but chromatically simpler, approaches are utilized for neuronal fate mapping. A 

single fluorescent protein reporter gene (mCherry is a favorite) is introduced, again, 

squelched by a transcriptional block (e.g. a NeoR coding region followed by robust 

polyadenylation signals) that is flanked by loxP sites. This can be combined with a Cre 

construct driven by a promoter specific to a stage in differentiation, such doublecortin (Dcx). 

If the Cre is also the estrogen-dependent variety (CreER, above), tamoxifen can be 

administered in a pulse-chase paradigm to time stamp a population of neurons that were 

neural stem cells or neuroblasts at the time of tamoxifen treatment. In addition to Dcx, there 

are promoters specific to the progenitors of specific neuron subtypes, e.g. Nkx and Dlx 

homeodomain genes are transiently expressed in neuroprogenitors giving rise to specific 

GABAergic interneurons (Fogarty et al. 2007; Taniguchi 2014). The utility of this sort of 

approach lies in the fact that a marker (e.g. mCherry) can be permanently activated after the 

transient activation of a developmental- or lineage-specific gene promoter, thus providing 

versatility that liberates the investigator from a need to find promoters that are active in 

throughout the life span of a specific cell type.

Light can be used not only to report a cell’s location and lineage but also to control 

neurophysiological activity. ‘Optogenetics’ is the term most commonly used for 

technologies that manipulate a neuron’s electrophysiological activity via illumination of a 

light-sensitive, transgenically introduced ion channel. Channelrhodopsin, for instance, is a 

cation channel discovered in the alga Chlamydomonas reinhardtii. Transgenically expressing 

it ectopically in specific neurons of an animal allows rather precise regulation of the cell’ s 

firing rate; it was first used to manipulate animal behavior by Lima and Miesenböck in 2005 

(Lima and Miesenbock 2005) and had gained recognition as a revolutionary technology by 

2010 (Crick 1999; News Staff, 2010). Optogenetic in mammals was extended by the use 

(and improvement) of optical fibers to deliver light to deeper brain structures (Aravanis et al. 

2007; Sparta et al. 2012; Pisanello et al. 2014). Most recently, the reciprocal relationship 
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between ‘opto-’and ‘genetics’ has taken a new twist with the advent of a photoactivatable 

Cas9 for use in CRISPR applications (Nihongaki et al. 2015).

An alternative to optogenetics is chemogenetics. Research questions that require long-term 

control or structures that may be vulnerable to the invasive procedures required for delivery 

of light can be accessed with pharmacology. Intersection of a toxin with transgenic 

expression of the enzyme that mediates the toxicity – e.g. ganciclovir/thymidine kinase or 

etronidazole/nitroreductase – has been used for many years to effect a time- and location-

specific elimination of specific cell populations. But, more recently, investigators have been 

interested in manipulating the electrophysiological activity of specific neuronal populations 

rather than killing them. ‘Designer receptor exclusively activated by designer drugs’ and 

‘receptor activated solely by a synthetic ligand’ are terms used in this application. Although 

optogenetic methods mostly commonly utilize an ion channel as the controllable transgene, 

Designer receptor exclusively activated by designer drugs/receptor activated solely by a 

synthetic ligand use metabotropic receptors (Redfern et al. 1999).

Translational implementation—As exciting as a new technical tool may be to the 

experimentalist, one cannot forget that gene therapy has always been one of the primary 

objectives of molecular biology.

Despite a great many promising studies in preclinical animal models, gene therapy has yet to 

make a major impact on human health care. And among the success stories, very few can 

claim inroads regarding treatment of neurological disorders. As hinted above, lysosomal 

storage diseases and other inborn errors of metabolism appear to represent one of our best 

chances for cracking into this difficult therapeutic modality. The very first attempt to apply 

gene therapy to a lysosomal strorage disease in humans was a viral-vector strategy directed 

at infantile neuronal ceroid lipofuscinosis, whose victims suffer a loss-of-function mutation 

of palmitoyl-protein thioesterase 1 (PPT1). An initial attempt to resupply palmitoyl-protein 

thioesterase with an AAV2 elicited positive outcomes in a few trial participants, but nearly 

half developed humoral immune responses that mitigated the beneficial effects (Worgall et 

al. 2008). So, when some of the same investigators joined a team designing a gene therapy 

trial against mucopolysaccharidosis type IIIA, they incorporated the application of 

immunosuppressive drugs before and after delivery of the viral gene therapy. In this case, the 

AAV2-mediated gene delivery seemed to be well tolerated, with only mild reactions being 

reported. And while the study was not designed to assess efficacy, there were promising 

trends toward positive outcomes (Tardieu et al. 2014).

A fairly recent study documented a slightly more validated success in metachromatic 

leukodystrophy by starting early (Biffi et al. 2013). Three toddlers were identified by 

genetics and biochemical markers to be at risk for were treated prior to clinical symptoms. 

Autologous stem cell transplants were conducted using hematopoietic stem cells virally 

transduced ex vivo with a functional gene for arylsulfatase A, the enzyme lacking in this 

disorder. After returning the stem cells to the participants, high enzyme expression was 

detected in many hematopoietic lineages and in cerebrospinal fluid of the recipients. At and 

beyond the age when the participants would have been expected to present with neurological 
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symptoms, none were observed. As of April of 2015, an expanded Phase I/II trial had begun 

with 20 participants.

The antisense RNA work mentioned above (see Post-transcriptional regulation) has been a 

very useful tool for exploring the roles of individual gene products in a biological system. 

But, at least one human disease has shown us the promise that such approaches can hold for 

clinical application. Spinal muscular atrophy (SMA) is a genetic disorder that arises when 

one copy of the ‘survival (of) motor neuron 1′ gene (SMN1) suffers a deletion or other loss-

of-function mutation, leaving lower motor neurons to rely on the backup, SMN2 (Cartegni 

and Krainer 2002). Although the specific biochemical functions of the SMNs is not entirely 

clear (they seem to be involved in synthesis and maintenance of small nuclear 

ribonucleoproteins or snRNPs), they are crucial for the viability of motor neurons. SMN2 

differs from SMN1 in a single nucleotide change that reduces the efficiency of an RNA 

splicing modulation, resulting in far fewer mRNA molecules that contain Exon 7, which in 

turn generates a predominance of C-terminally truncated protein that consequently has an 

abbreviated half-life. In 2003, Adrian Krainer and Luca Cartegni showed that it was possible 

to shift the splicing of SMN2 to include Exon 7 more frequently by introducing a 

nucleotide-peptide chimeric molecule that would (i) hybridize near the Exon 7 splice 

acceptor site of SMN2 and (ii) introduce a peptide sequence that would recruit the splice 

enhancer machinery (Cartegni and Krainer 2003). Later, the Krainer laboratory was able to 

effect the same outcome with antisense RNAs that mask splicing silencer sequences in two 

of the SMN2 introns (Hua et al. 2008). Krainer and Kua teamed up with investigators at 

Genzyme and Ionis (nee Isis) Pharmaceuticals in 2011 to show that these antisense 

approaches promote survival in a preclinical mouse model of SMA (Passini et al. 2011). 

Ionis Pharmaceuticals is currently recruiting participants for Phase-3 clinical trials of similar 

antisense therapies. This body of work required not only a practical understanding of the 

SMA disease process but also a detailed understanding of the mechanisms of RNA splicing 

gleaned from thousands of basic science studies.

The next 60 years...

The breadth and scope of discovery in the field of molecular neurobiology in a little over 

half a century is as difficult to grasp as it has been to summarize here. What advances might 

be accomplished by 2076 can hardly be fathomed, as discoveries tend to open new vistas 

and reveal new questions and necessities for both technical innovation and conceptual 

progress. It is predictable, however, that trends we see now will continue in their arc. For 

instance, the speed, sensitivity, and accuracy of DNA (and RNA) sequencing seems to 

continue to advance, perhaps in parallel with Moore’s law of computational processing. The 

bioinformatics boon of the past decade may find a fertile field of specialization in 

‘neuroinformatics’ (Amari et al. 2002). A priority has been placed on substantially 

enhancing our understanding of brain connectivity by policy makers in the US and Europe 

(Waldrop 2012; Insel et al. 2013); President Obama’s BRAIN Initiative has been compared 

to the Human Genome Project, and they may be related by more than analogy. To the extent 

that every aspect of biology relies on the structure and expression of genomes, these 

initiatives must incorporate the tools and concepts of molecular biology to gain their full 
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potential. Virally mediated transsynaptic tracing and chemogenetics are just a couple of 

examples of the assistance gene jockeys can provide to these efforts.

A great deal of hope continues to be placed in the concept of ‘personalized medicine’. 

Implicit in this objective is the individuality in our disease predilections and drug responses 

conveyed by the distinctions in our genomes. And just as exome analysis of a tumor may 

provide tailor-made strategies for attacking it, the molecular biology behind each individual 

case of schizophrenia or autism may be the secret to unlocking successful treatments of 

persons, vis-àvis ‘problems’. Rational drug design already seeks to fashion drugs on the 

basis of conformationally detailed understanding of their targets; it is reasonable to suppose 

that this may one day extend to the design of a specific drug for a specific case.

Regardless of where the genes of our brains and the brains of our geneticists take us in the 

next six decades, there is one likelihood that can be expressed with a great deal of 

confidence: The Journal of Neurochemistry will be here to celebrate 120 years of 

disseminating the latest and greatest progress in our field!
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Fig. 1. 
Hypothetical alternative actions of NFκB in neuronal nuclei. Though DNA binding by 

NFκB is scant in mature CNS neurons, it has been documented to undergo nuclear 

translocation in these cells, and its expression can have biological effects therein. The 

hypothesis is depicted that activation of the NFκB pathway in neurons may result in protein-

protein interactions in the nucleus of neurons that could indirectly affect gene expression via 

an influence on other transcription factors such as the glucocorticoid receptors. NFκB-

inducing kinase was recently found to participate in the inhibition of NFκB in neurons.
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Fig. 2. 
Integration of effects by progressive signal transduction. Most neuroscientists are 

accustomed to interpreting electrophysiological events (e.g. depolarization spikes) that 

summate in an additive fashion. This type of integration is often manifest in a chain of 

events for which the secondary response simply has longer decay kinetics, such that a 

subsequent primary event can arrive before the secondary event has time to dissipate. For 

instance, opening of a ligand-gated sodium channel can evoke conductance as a primary 

event; the resulting depolarization can open a calcium channel as a secondary event, which 

may exhibit a difference in kinetics, e.g. have a longer mean open time. Tertiary signaling 

events may differ not only in kinetics but also in mechanism, perhaps catalytically 

extrapolating the effect size; e.g. activation of a calcium-calmodulin kinase. In this way, a 

quantitative difference becomes a qualitative one. Similar to these ionic integrations, gene 

regulation events can act as molecular switches that convert a quantitative change, e.g. 

repeatedly reaching the activity threshold to activate CREB, to a qualitative one, e.g. a level 

of CREB-dependent transcription that changes histone acetylation. These can even become 

semipermanent changes (dashed line), e.g. gene activity levels that change DNA methylation 

patterns via ‘molecular momentum’ (below).
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Fig. 3. 
Molecular momentum. The rich get richer, and active genes tend to stay active. Perhaps, by a 

process as simple as steric interference by RNA polymerase and its accompanying proteins, 

the transcriptional process appears to inhibit DNA methyltransferases (DMT) from 

modifying an active gene. If this persists over the passage of time, particularly through a 

developmental stage that is especially plastic, the gene may remain hypomethylated into 

adulthood, thus adapting the individual to express higher levels of the gene. Similar events 

may impact other epigenetic processes, such as histone modification. The consequences may 

be adaptive, e.g. elevating appetite for a scarce nutrient, or maladaptive, e.g. sensitizing the 

inflammatory genes to aberrant activation.
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Fig. 4. 
Theoretical consequences of mTORC1 activation for various cell types. On the front, (x)-

axis is the availability of food, increasing left to right. On the receding (y)-axis is the 

challenge or threat to survival an individual cell may face, increasing front to back. On the 

elevation, (z)-axis is the optimal activity of mTORC1. Critical cells may be essential 

neurons in a simple invertebrate or, in the extreme, the entire individual in the case of a 

unicellular species; expendable cells are those that may be sacrificed because of a high 

natural renewal rate, for instance. Benefits to life span are generally seen after inhibition of 

mTORC1 (e.g. with rapamycin) in many species, including yeast. But, this may be limited to 

circumstances with little stress; life span may benefit from neuroprotection, for instance, that 

results from elevated protein synthesis and other consequences of mTORC1 activity in 

stressful situations. This is difficult to engage when nutrition is limited. Perhaps, more to the 

point, excessive food can lead to shortening of life span –as well as detrimental effects along 

the way – unless mTORC1 is inhibited. It is possible that benefits to the intact organism may 

arise from inhibition of mTORC1 in less critical cells, even when these expendable cells are 

challenged with stressors.
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Fig. 5. 
Somatic mosaicism and peripheral-central variations. Genetic variation appears to be 

particularly abundant in the CNS. Copy number variants, extension of tri-or hexanucleotide 

repeats, and aneuploidy of entire chromosomes that are limited to this compartment may 

cause disease or less consequential effects in the nervous system while remaining cryptic to 

DNA sequence analyses that are performed on blood or other peripheral tissue specimens.
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Fig. 6. 
PCR demonstrates alternative transcription of the serine racemase gene. Organization of the 

human serine racemase (SRR) gene is shown; the canonical transcript produced basally, with 

the full-length Intron 1 is at top. LPS was previously found to induce expression in microglia 

via a cluster of AP-1 transcription factor binding sites found just 5′ to the translational start 

site, and an alternative transcript was postulated to result from a nearby alternative 

transcriptional start site. The potential mRNA species are diagrammed at the bottom, with 

the dashed region representing the canonical Intron 1 and the coding region in purple. RT-

PCR reactions were run with an upstream primer (green) that should be omitted from the 

mature mRNA by splicing out of Intron 1; this region may be maintained, however, in the 

alternative transcript because of the removal of the Intron-1 splice donor. The downstream 

primer (red) was placed in Exon 3 to exclude hnRNA. Microglia treated with LPS were 

compared to controls, and the RT-PCR results indicate the presence of a product consistent 

with the alternative transcript, particularly elevated in LPS-treated cells.
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