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Abstract

Long non-protein-coding RNAs (lncRNAs) are

proposed to be the largest transcript class in the

mouse and human transcriptomes. Two important

questions are whether all lncRNAs are functional and

how they could exert a function. Several lncRNAs

have been shown to function through their product,

but this is not the only possible mode of action. In

this review we focus on a role for the process of

lncRNA transcription, independent of the lncRNA

product, in regulating protein-coding-gene activity in

cis. We discuss examples where lncRNA transcription

leads to gene silencing or activation, and describe

strategies to determine if the lncRNA product or its

transcription causes the regulatory effect.

Keywords: Gene expression regulation, Histone

modifications, lincRNA, lncRNA, Silencing,

Transcriptional interference

LncRNAs - a new layer of genome regulatory
information
It is now well appreciated that less than two percent of

the human genome codes for proteins and the majority

of the genome gives rise to non-protein-coding RNAs

(ncRNAs) [1], which are predicted to play essential roles

in a variety of biological processes [2,3].

The focus of this review is long ncRNAs (known as

lncRNAs), which constitute the biggest class of ncRNAs

with approximately 10,000 lncRNA genes so far anno-

tated in humans [4]. lncRNAs are RNA polymerase II

(RNAPII) transcripts that lack an open reading frame

and are longer than 200 nucleotides. This size cut-off

distinguishes lncRNAs from small RNAs such as

microRNAs, piwi-interacting RNAs (piRNAs), small nu-

cleolar RNAs (snoRNAs) and small interfering RNAs
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(siRNAs) and arises from RNA preparation methods that

capture RNA molecules above this size. Although the

function of most lncRNAs is unknown, the number of

characterized lncRNAs is growing and many publica-

tions suggest they play roles in negatively or positively

regulating gene expression in development, differenti-

ation and human disease [2,5-10]. lncRNAs may regulate

protein-coding (pc) gene expression at both the post-

transcriptional and transcriptional level. Posttranscrip-

tional regulation could occur by lncRNAs acting as

competing endogenous RNAs to regulate microRNA

levels as well as by modulating mRNA stability and

translation by homologous base pairing, or as in the ex-

ample of NEAT1 that is involved in nuclear retention of

mRNAs [11]. In this review we focus on the regulation

at the transcriptional level.

Modes of transcriptional regulation by lncRNAs
Regulation of transcription is considered to be an interplay

of tissue and developmental-specific transcription factors

(TFs) and chromatin modifying factors acting on enhancer

and promoter sequences to facilitate the assembly of the

transcription machinery at gene promoters. With a grow-

ing number of lncRNAs implicated in transcriptional gene

regulation, this view may need refinement to include net-

works of tissue and developmental-stage specific lncRNAs

that complement known regulators to tightly control gene

expression and thereby organism complexity [12,13].

Transcriptional regulation by lncRNAs could work either

in cis or in trans, and could negatively or positively control

pc gene expression. lncRNAs work in cis when their ef-

fects are restricted to the chromosome from which they

are transcribed, and work in trans when they affect genes

on other chromosomes.

Regulation in trans

Some significant examples of lncRNAs that act in trans

are those that can influence the general transcriptional

output of a cell by directly affecting RNAPII activity

(Figure 1a,b). One example is the 331 nucleotide 7SK

© 2013 Kornienko et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Kornienko et al. BMC Biology 2013, 11:59

http://www.biomedcentral.com/1741-7007/11/59

mailto:fpauler@cemm.oeaw.ac.at
http://creativecommons.org/licenses/by/2.0


lncRNA, which represses transcription elongation by

preventing the PTEFβ transcription factor from phos-

phorylating the RNAPII carboxy-terminal domain

(CTD) [14] (Figure 1a). Another example is the 178 nu-

cleotide B2 lncRNA, a general repressor of RNAPII ac-

tivity upon heat shock [15]. The B2 lncRNA acts by

binding RNAPII and inhibiting phosphorylation of its

CTD by TFIIH, thus disturbing the ability of RNAPII to

bind DNA [16,17].

Regulation in trans can also act locus-specifically. While

the ability of lncRNAs to act locus-specifically to regulate

a set of genes was first demonstrated for imprinted genes

where lncRNA expression was shown to silence from one

to ten flanking genes in cis [18-20], lncRNAs that lie out-

side imprinted gene clusters, such as the HOTAIR

lncRNA, were later found also to have locus-specific ac-

tion. HOTAIR is expressed from the HOXC cluster and

was shown to repress transcription in trans across 40 kb

RNAPII
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Figure 1. Long non-protein-coding RNAs (lncRNAs) act at different levels to regulate protein coding gene expression. lncRNAs can

inhibit general protein-coding (pc) gene expression in trans (a) by preventing transcription factor (TF) activity (7SK lncRNA) or (b) by inhibiting

RNAPII binding to DNA (B2 lncRNA). Xist lncRNA is transcribed from the X inactivation center (XIC) and inactivates a whole chromosome in cis (c)

by recruiting epigenetic modifiers (EM). lncRNAs can regulate specific genes, acting in trans like HOTAIR (d) or in cis like HOTTIP (e) by directly

recruiting epigenetic modifiers to certain genomic loci. In both cases the lncRNA binds EMs via a specific sequence or structure and targets them

to promoter regions via DNA/RNA interaction elements to affect expression of the respective pc gene. Transcription of a lncRNA through a pc

gene promoter or a cis-regulatory element (RE) affects pc gene expression in cis independent of the lncRNA product (f) by mechanisms discussed

in the text. Both DNA strands are shown as separate boxes to indicate lncRNA transcription over the pc gene promoter in the antisense

orientation. For details see text.

Kornienko et al. BMC Biology 2013, 11:59 Page 2 of 14

http://www.biomedcentral.com/1741-7007/11/59



of the HOXD cluster [21]. HOTAIR interacts with

Polycomb repressive complex 2 (PRC2) and is required

for repressive histone H3 lysine-27 trimethylation

(H3K27me3) of the HOXD cluster. Targeting of epigenetic

modifiers (EMs) by lncRNAs provided a much sought

after model to explain how EMs gain locus specificity (Fig-

ure 1d), and has since been suggested as a general mech-

anism for trans-acting lncRNAs [22,23].

Regulation in cis

In contrast to trans-acting lncRNAs, which act via their

RNA product, cis-acting lncRNAs have the possibility to

act in two fundamentally different modes. The first mode

depends on a lncRNA product. The major example of gen-

eral cis-regulation is induction of X inactivation by the Xist

lncRNA in female mammals. Xist is expressed from one of

the two X chromosomes and induces silencing of the

whole chromosome [24] (Figure 1c). As an example of

locus-specific regulation it has been proposed that enhan-

cer RNAs activate corresponding genes in cis via their

product [25]. A well-studied cis-acting lncRNA acting

through its product is the human HOTTIP lncRNA that is

expressed in the HOXA cluster and activates transcription

of flanking genes. HOTTIP was shown to act by binding

WDR5 in the MLL histone modifier complex, thereby

bringing histone H3 lysine-4 trimethylation (H3K4me3) to

promoters of the flanking genes [26]. Such a mechanism in

which a nascent lncRNA transcript binds and delivers epi-

genetic modifiers to its target genes while still attached to

the elongating RNAPII is generally termed ‘tethering’ and

is often used to explain cis-regulation by lncRNAs [23,27]

(Figure 1e). It was also proposed to act in plants. In

Arabidopsis thaliana, the COLDAIR lncRNA is initiated

from an intron of the FLC pc gene and silences it by

targeting repressive chromatin marks to the locus to con-

trol flowering time [28].

In contrast, the second mode of cis regulation by

lncRNAs involves the process of transcription itself, which

is a priori cis-acting (Figure 1f). Several lines of evidence

suggest that the mere process of lncRNA transcription can

affect gene expression if RNAPII traverses a regulatory

element or changes general chromatin organization of the

locus. In this review we discuss this underestimated role

for lncRNA transcription in inducing protein-coding gene

silencing or activation in cis, and overview possible mecha-

nisms for this action in mammalian and non-mammalian

organisms. Finally, we describe experimental strategies to

distinguish lncRNAs acting as a transcript from those act-

ing through transcription.

Mechanisms by which lncRNA transcription
silences gene expression
Transcription-mediated silencing, also referred to as

‘transcriptional interference’ (TI), is defined here as a

case in which the act of transcription of one gene can

repress in cis the functional transcription of another

gene [29,30]. TI has been reported in unicellular and

multicellular organisms [30]. Mechanistic details are still

largely unclear, but TI could theoretically act at several

stages in transcription: by influencing enhancer or pro-

moter activity or by blocking RNAPII elongation, spli-

cing or polyadenylation. All that would be required is

that the RNA polymerase (RNAPII) initiated from an

'interfering' promoter traverses a 'sensitive' DNA regula-

tory sequence. TI has mainly been reported at over-

lapped promoters [31-35], but there are also examples

where TI acts downstream of the promoter. In mouse,

overlapping transcription controls polyadenylation

choice of two imprinted genes [36,37]. In Saccharomyces

cerevisiae, collisions between elongating antisense

RNAPIIs can lead to stalling of both polymerases that is

resolved by ubiquitylation-directed proteolysis, and this

has been proposed to be a regulatory mechanism [38].

However, it is unknown if RNAPII collisions occur suffi-

ciently frequently in vivo in yeast or other organisms to

offer a means of regulating convergent genes, or if this

mechanism could lead to an interfering RNAPII elimin-

ating its sensitive collision partner. Despite these exam-

ples, the most common reports of TI concern an

overlapped promoter, and in the following sections we

describe studies investigating the molecular mechanisms

underlying interference at the promoter.

Transcriptional interference acting by promoter
nucleosome repositioning
DNA in the nucleus is organized into chromatin with

the organizational scaffold consisting of nucleosomes,

each with two copies of H3, H4, H2A and H2B histones

[39]. Nucleosomes can be densely packed, interfering

with protein-DNA interactions, or relaxed, facilitating

these interactions [40]. The transcription process, which

generates single-stranded DNA as RNAPII progresses

along a gene locus, can directly affect nucleosome posi-

tioning [41-43] (reviewed in [44,45]). Thus, lncRNA

transcription could cause TI by depositing nucleosomes

in a manner unfavorable for TF binding on promoters

or enhancers. An example of this mechanism is the si-

lencing of the yeast SER3 pc gene by transcriptional

overlap by the SRG1 lncRNA (Figure 2a) [46]. SRG1

transcription increases nucleosome density at the over-

lapped SER3 promoter. Deletion of three transcription

elongation factors that are associated with the elongating

polymerase and are necessary for nucleosome reposi-

tioning (SPT16, SPT6, SPT2) [47-49] abolished the silen-

cing effect without stopping transcription of the

overlapping lncRNA SRG1 [50,51], indicating the neces-

sity of chromatin reorganization for silencing. In con-

trast, deletion of epigenetic modifiers (such as SET1/2
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Figure 2. Transcription interference-mediated silencing by chromatin changes. (a) Top: in yeast the absence of SRG1 lncRNA allows

transcription machinery assembly at the SER3 protein coding gene promoter. Bottom: SRG1 lncRNA transcription causes dense nucleosome

packing over the downstream SER3 pc gene promoter that blocks TF binding and pc gene expression. (b) Top: in yeast the absence of IRT1

lncRNA allows IME1 pc gene expression. Bottom: RNAPII transcribing the IRT1 lncRNA carries EMs that deposit repressive histone modifications at

the IME1 promoter (EM1 - methyltransferases). These modifications allow the binding of other EMs that remove active histone modifications (EM2 -

deacetylases) and cause a repressive chromatin environment that blocks TF binding leading to silencing. (c) Top: in a healthy human, LUC7L

and HBA2 pc genes do not overlap and are both expressed. Bottom: a chromosomal deletion of the LUC7L transcriptional stop signal (red

‘stop’ box) causes transcription of the LUC7L pc gene through the promoter of the HBA2 pc gene. By an unknown mechanism this aberrant

transcription causes DNA methylation and silencing of the HBA2 promoter. For details see Figure 1g and text.
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histone methyltransferases and SET3C/RPD3S deacetylases

described later) did not affect silencing, showing that nu-

cleosome positioning, but not changes in histone modifica-

tions, is responsible for repression. The experiments did

not directly exclude a role for the SRG1 lncRNA product,

but the silencing can be explained solely by the process of

transcription [44,45]. TI by nucleosome repositioning may

be a general mechanism in yeast, as the RNAPII elongation

and chromatin organization factors responsible for SER3

silencing are also known to be involved in the suppression

of transcription initiation from cryptic promoters within

the body of actively transcribed genes [52,53]. Since genes

controlling RNAPII elongation and chromatin organization

are largely conserved, it is possible that lncRNAs could use

similar nucleosome repositioning silencing in mammals.

This is supported by the example that chromatin reassem-

bly factors are necessary for silencing an HIV provirus

when integrated into an actively transcribed host gene in a

human cell system [54].

Transcriptional interference acting by promoter
histone modifications
Promoter associated nucleosomes carry post-translational

histone tail modifications that reflect the activity state of

the promoter and also influence accessibility of DNA

binding factors involved in transcription [55]. Active gene

promoters correlate with H3 and H4 acetylation and with

H3K4me3, while inactive promoters do not and, in mam-

mals, they also gain repressive histone marks such as

H3K9me3 or H3K27me3. Some histone modifying en-

zymes have been shown to bind and travel with elongating

RNAPII [56,57], so it is possible that lncRNA transcription

can induce TI by affecting histone modifications at the pro-

moter of an overlapped target gene. For example, in yeast

the SET1/2 methyltransferases, which induce H3K4me2

and H3K36me3 in the body of transcribed genes, bind and

travel with elongating RNAPII [58-60]. These modifica-

tions in turn recruit the SET3C/RPD3S histone deacetylase

complexes to create a chromatin environment repressive

for transcription initiation [61-63].

Two studies indicate that this is a mechanism used by

lncRNAs to induce TI in yeast. In the first study the

IME1 pc gene, which induces gametogenesis in diploid

S. cerevisiae cells but is repressed in haploid cells, was

shown to be silenced by the IRT1 lncRNA that overlaps

its promoter [64]. Genetic experiments repositioning the

IRT1 lncRNA distant from IME1 on the same chromo-

some showed that IRT1 transcriptional overlap of the

IME1 promoter is necessary for silencing. Interestingly,

the instability of the IRT1 lncRNA product and its non-

specific cellular localization indicated the lncRNA prod-

uct is unlikely to play a role in the silencing mechanism.

Instead, IRT1 lncRNA transcription through the IME1

promoter reduced recruitment of the essential POG1

transcription factor, increased nucleosome density and

induced the SET1/2 mediated cascades of histone modi-

fications, which were shown to be necessary for silencing

[64] (Figure 2b). In the second study lncRNA transcrip-

tion was shown to be causative for silencing of the

GAL1 and GAL10 genes, involved in galactose metabolism

in S. cerevisiae. GAL10 and GAL1 are divergently tran-

scribed from a bidirectional promoter. The 4 kb lncRNA,

called GAL10-ncRNA, initiates in the body of the GAL10

gene, and is transcribed through the GAL10/GAL1

promoter antisense to the GAL10 gene. GAL10-ncRNA

transcription induces SET2-mediated establishment of

H3K36me3 along its gene body, thereby recruiting RPD3S-

dependent deacetylation that resulted in reduced transcrip-

tion factor binding and repression of the GAL1/GAL10

promoter [65]. Both SET3C and RPD3S are proposed to

have a general role in repressing cryptic promoters within

gene bodies [61,66] and a genome-wide study implied a

role for SET3C in overlapping lncRNA-mediated silencing

of a set of pc genes in yeast [66]. This indicates that the

mechanism described above might be widely used to

control gene expression in yeast. Although similar studies

have not been described for the mammalian genome,

H3K36me3 marks the body of transcribed genes in mam-

mals, raising the possibility that such TI mechanisms could

be conserved [56,57].

Transcriptional interference acting by promoter
DNA methylation
In mammalian genomes DNA methylation is generally as-

sociated with silent CpG island promoters, but the majority

of CpG island promoters remain methylation free inde-

pendent of their expression status [67-69]. The process of

de novo methylation depends on the DNMT3A/3B

methyltransferases and the catalytically inactive DNMT3L

homologue and requires histones lacking H3K4me3, ensur-

ing that active promoters remain methylation-free [70].

Notably, while DNA methylation at the promoter blocks

transcription initiation, methylation in the gene body does

not. Two important examples in humans based on genetic

analyses indicate that DNA methylation can be involved in

TI-induced silencing, although the causality between DNA

methylation and silencing is still a matter of discussion

[67]. One study of a patient with inherited α-thalassemia

identified a deletion of the LUC7L 3' end that allowed aber-

rant transcription of LUC7L through the downstream

HBA2 gene, causing its silencing and the disease pheno-

type [71] (Figure 2c). Mouse models that mimicked the de-

leted genomic locus showed that the main cause of

silencing was the acquisition of DNA methylation at the

HBA2 promoter. Notably, DNA methylation acquisition

was not simply the consequence of an inactive promoter,

as removal of HBA2 transcription by deleting its TATA

box did not induce methylation. The sequence of the
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LUC7L gene and thus the aberrant RNA product was also

not essential for HBA2 silencing, as replacing the LUC7L

gene body with another protein-coding gene did not re-

move the repressive effect. In a second example, a subset

of Lynch syndrome patients display DNA methylation and

inactivation of the mismatch repair MSH2 gene that corre-

lates with aberrant transcription from the flanking EPCAM

gene that carries a 3' deletion [72].

In both these examples, the molecular details of

methylation establishment and the mechanism by which

the methylation machinery targets the overlapped pro-

moter are yet unknown. However, the data so far show

that it is a cis-acting mechanism as only the allele carry-

ing the deletion silences the overlapped protein-coding

gene. In addition, although a role for the aberrant RNA

product was not excluded, it appears unlikely that

mutation-induced transcription of two independent

intergenic chromosomal regions in the described dis-

eases produces lncRNA products with similar repressive

functions. Interestingly, the silencing of imprinted pc

genes by lncRNAs is also often correlated with the gain

of DNA methylation on the silent pc gene promoter

[73]. In the case of the Igf2r gene, this DNA methylation

mark is not necessary for initiation or maintenance of

the silent state but seems to play a role in re-enforcing

the silent state [35,74].

Transcriptional interference in the absence of
chromatin changes at the silenced promoter
In addition to RNAPII acting as a carrier of chromatin

modifying enzymes, other TI models predict that

RNAPII from one promoter traversing across another

promoter can interfere with its activity without introdu-

cing chromatin changes [30,75,76]. An indication that

such a mechanism can be used by lncRNAs in mammals

comes from a study that used a genetic approach to dis-

sect the silencing function of the imprinted mouse Airn

lncRNA [77,78]. Airn is an inefficiently spliced 118 kb

lncRNA expressed on paternally inherited chromosomes

that overlaps and silences the promoter of the Igf2r pc

gene - a dose-sensitive and essential embryonic growth

suppressor [18,79] (Figure 3a). To determine if Airn

transcription or its lncRNA product were required for

silencing, homologous recombination in embryonic stem

cells was used to shorten the length of Airn, either be-

fore or after the Igf2r promoter, by insertion of a

polyadenylation cassette [35]. Notably, only shortened

Airn variants that traversed the Igf2r promoter induced

silencing. Furthermore, while Igf2r silencing is normally

accompanied by DNA methylation, repressive histone

marks and chromatin compaction of the silent Igf2r pro-

moter [80,81], Igf2r silencing was not dependent on

DNA methylation - in contrast to the silencing of HBA2

by aberrant LUC7L transcription described above.

Instead, Airn transcriptional overlap interfered with the

accumulation of functional RNAPII on the Igf2r pro-

moter in the presence of open chromatin [35]. Add-

itional support for Igf2r silencing by Airn transcriptional

interference is provided by genetic experiments that

used an inducible Airn promoter to silence Igf2r at dif-

ferent stages of embryonic stem cell differentiation [74].

The demonstration that Airn transcription is continu-

ously required for Igf2r silencing and that its silencing

efficiency decreases when the Igf2r promoter is strongly

expressed provides support for a model whereby RNAPII

initiated from an 'interfering' promoter interferes with

transcription initiation from a 'sensitive' promoter.

To date, other examples of lncRNAs acting by this

mechanism in mammals are lacking. It has been sug-

gested that silencing of an alternative promoter of the

mouse fpgs pc gene is an example of transcription indu-

cing silencing without introducing chromatin changes

[82], but this system has not been subject to a similar

genetic analysis and alternative explanations remain pos-

sible. How RNAPII from an interfering promoter is able

to suppress functional transcription of the overlapped

promoter remains to be determined, but stalling of the

interfering RNAPII elongating over the sensitive pro-

moter has been suggested to block access of essential

TFs [30,83]. This mechanism should not be confused

with the phenomenon of genome-wide RNAPII pausing

at promoters, which represents an intermediate step be-

tween RNAPII initiation and elongation phases and

might be a common mechanism regulating differential

gene expression in metazoans [84,85].

The above examples describe repressive effects from

RNAPII transcribing lncRNAs through promoters of

silenced genes. However, transcriptional interference

might also disrupt enhancer function when RNAPII tra-

verses an enhancer, and this is an attractive model to ex-

plain the repression of a cluster of genes by a lncRNA in

a tissue-specific manner [75] (Figure 3b). This situation

arises in two imprinted gene clusters where the Airn and

Kcnq1ot1 lncRNAs each overlap one gene, but silence

multiple genes in cis in a tissue-specific manner. The re-

pressive histone EHMT2 methyltransferase has been

shown to be necessary in the placenta to silence one of

the three genes controlled by Airn [86]. The Kcnq1ot1

lncRNA has been shown to silence multiple genes in

placental cells by the action of repressive POLYCOMB

histone modifying enzymes [87,88]. In both cases, a dir-

ect role for the lncRNA in targeting the histone modify-

ing complexes was proposed, based on the findings that

the lncRNAs interact with the respective histone modify-

ing complex. This correlation-based evidence is, how-

ever, not sufficient to rule out the possibility that both

lncRNAs silence distant genes by transcription alone

(reviewed in [75,76]). In support of a transcription-based
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model, it was shown that Kcnq1ot1 silences at least one

gene by regulating chromatin flexibility and access to en-

hancers [89]. This is consistent with a two-step model

whereby lncRNA transcription initiates silencing of non-

overlapped genes by enhancer interference, then repres-

sive histone modifying enzymes maintain that silencing.

lncRNA transcription creating a permissive
chromatin environment
Enhancers are genetic elements that bind transcription

factors facilitating transcription machinery assembly at

nearby promoters [90,91]. RNAPII transcripts up to 2 kb

long are transcribed bi-directionally from some neuronal

(a) Airn lncRNA transcriptional interference silences the paternal Igf2r promoter 
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lncRNA OFF

pc gene ON
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pc gene OFF

Airn promoter 

move

lncRNA ON
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P
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 Airn lncRNA 

enhancer

(b) LncRNA transcription overlapping enhancer blocks mRNA expression 
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(c) Key 

enhancer
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RNAPII

RNAPII

RNAPII

RNAPII

RNAPII
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TF
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Figure 3. Transcription interference-mediated silencing without chromatin changes. (a) Top: a wild-type maternal allele does not express

Airn lncRNA as its promoter is repressed by a DNA methylation imprint, thus allowing the Igf2r gene to be active. Middle: on the wild-type

paternal allele Airn transcription overlaps with and silences the Igf2r pc gene promoter, independent of the Airn lncRNA product. The silent Igf2r

promoter is marked by increased nucleosome density and DNA methylation in the absence of active histone modifications. Bottom: increased

nucleosome density, loss of active histone marks and DNA methylation are not necessary for Igf2r repression as demonstrated by the FAP allele

that moved the Airn promoter close to the Igf2r promoter and silenced Igf2r in the absence of repressive chromatin features. (b) Top: a

hypothetical enhancer activates a pc gene by direct long-range DNA interactions. Bottom: transcription of a lncRNA overlapping the enhancer

interferes with the DNA interaction and thereby silences the pc gene. For details see Figure 1g, Figure 2d and text.
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enhancers (termed enhancer or eRNAs) [91,92]. Tran-

scription of eRNAs positively correlated with expression

of nearby mRNAs and a model was proposed, but not

yet experimentally tested, in which their transcription

establishes a chromatin landscape that supports enhan-

cer function (Figure 4a). lncRNA transcription, either by

opening chromatin or inhibiting repressor protein bind-

ing, could similarly result in gene or locus activation.

One example of this is the process of V(D)J recombin-

ation, which joins elements of the V, D and J multigene

family by chromosomal rearrangements to create func-

tional B cell immunoglobulins and T cell receptors [93]

(Figure 4b). The V, D and J genes lie next to each other

on the same chromosome and antisense intergenic tran-

scription through these genes is detected prior to the re-

combination process [94]. Genetic experiments have

shown that intergenic lncRNA transcription is required

for both B and T cell V(D)J recombination [95,96]. Simi-

lar correlations between intergenic transcription and

gene expression were observed for the mouse β-globin

locus [97] where promoter deletion experiments showed

that lncRNA transcription was responsible for stable, ac-

tive and hyper-accessible chromatin [98].

lncRNA transcription and locus activation
Other examples indicate that lncRNA transcription acti-

vates gene expression by blocking access of repressor

complexes to chromatin. In Drosophila, intergenic non-

coding transcription at the BITHORAX complex (BX-C)

is implicated in reversing POLYCOMB group (PCG)-me-

diated gene silencing and is correlated with an active

chromatin state [99]. This mode of action was later sug-

gested to be a general mechanism where the act of tran-

scription serves as an epigenetic switch that relieves

PCG-mediated gene silencing by recruiting epigenetic

modifiers to induce gene expression and generate stable

and heritable active chromatin [100]. In line with this hy-

pothesis, intergenic transcription through PCG response

elements (PREs) in the BX-C cluster is not only found dur-

ing embryogenesis but also in late stage larvae, indicating

that continuous transcription is required to keep genes ac-

tive [101]. In mouse and human, a similar role for PRE

transcription has been proposed. An analysis of lncRNA

transcription in the human HOXA cluster revealed a posi-

tive correlation between lncRNA transcription and the

loss of PCG/chromatin interactions that precedes HOXA

gene activation [102]. Additionally, lncRNAs have been

identified at promoter regions of PCG-regulated genes in

mouse cells; while their role is not yet clear, it has been

suggested that they either promote or interfere with PCG

binding at target genes [103,104].

A further example of a lncRNA mediating chromatin

opening was described at the S. cerevisiae PHO5 gene. Tran-

scription of an antisense lncRNA that initiates near the

3’end of PHO5 and overlaps its gene body and promoter is

associated with rapid activation of PHO5 by enabling nu-

cleosome eviction. Biochemical inhibition of RNAPII elong-

ation as well as genetic disruption of lncRNA elongation

demonstrated a direct role in PHO5 activation [105]. The as-

sociation of lncRNA transcription with gene activation

needs, however, to be considered within the framework that

most protein-coding gene promoters in yeast and mamma-

lian cells give rise to a bidirectional antisense lncRNA tran-

script [106,107]. To date it is unclear if promoter-associated

bidirectional lncRNAs represent spurious transcription in

the context of open chromatin [108,109] or is required to

maintain open chromatin. In the latter case enhanced TF

binding ensures accessible chromatin that allows more con-

stant pc gene expression within a cell population [110]

(Figure 4c).

Strategies for distinguishing a role for the lncRNA
product from that of its transcription
Following genome-wide lncRNA mapping, functional

studies so far have mainly focused on lncRNA products

[7,111]. As it becomes clear that lncRNAs can act through

their transcription, it is important to identify strategies to

determine the function and mode of action of each par-

ticular lncRNA. One common starting point to determine

lncRNA function has been RNA interference (RNAi)-me-

diated knockdown, despite long-standing observations

that the RNAi machinery in mammalian cells is located in

the cytoplasm [112]. While there is evidence that some

RNA-induced silencing complex (RISC) components are

found in the nucleus, functional complexes are specifically

loaded in the cytoplasm, prohibiting the application of

RNAi strategies for nuclear localized lncRNAs [113]. In

contrast, antisense oligonucleotides (ASO) that work via

an RNaseH-dependent pathway will deplete nuclear-

localized lncRNAs [114,115]. However, three additional

points of caution should be noted. First, non-specific ef-

fects arising from nuclear transfection reagents [116] have

confused some observations. One critical validation step

for knockdown studies would be a rescue experiment in

which the lncRNA, modified to be invulnerable to the

knockdown, is expressed as a transgene under the same

transfection conditions [111]. Second, some results have

highlighted major differences when functional studies

used post-transcriptional depletion strategies in cell lines

in contrast to genetic studies in the organism. Notable ex-

amples are Neat1 [117], Malat1 [116,118,119] and Hotair

[120] where studies of mice carrying genetically disrupted

alleles of these three lncRNAs failed to reproduce pheno-

types deduced from cell lines following RNAi, ASO or

over-expression studies. Third, while knockdown experi-

ments may elucidate the function of lncRNAs acting

through their product, the function of cis-acting lncRNAs

that depend only on transcription will not be disturbed.
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Features such as subcellular localization, half-life and

steady-state abundance would form a good basis to allow

functional tests to be designed. In addition, knowledge of

the lncRNA splicing efficiency, conservation of splicing

pattern in multiple tissues and species, an estimation of

transcript repeat content and, finally, an accurate mapping

of lncRNA 5' and 3' ends are essential preliminary steps.

We have previously proposed that a subclass of lncRNAs,

‘macro’ lncRNAs, show RNA biology hallmarks such as

inefficient splicing, extreme length, high repeat content,

lack of conservation and a short half-life. These features

are also indicators that the lncRNA product is less import-

ant than the act of transcription [121]. Once RNA biology

features are known, experiments can be designed to dis-

tinguish between a role for the lncRNA product or its

transcription.

From the caveats of posttranscriptional knockdown ex-

periments described above, it becomes clear that genetic
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Figure 4. Transcription of lncRNA creates permissive chromatin environment. (a) Top left: an inactive enhancer with closed chromatin

cannot activate the pc gene. Top right, bottom left: transcription of the enhancer opens chromatin. Bottom right: open chromatin at the

enhancer allows TF binding and interaction with and activation of the pc gene promoter. (b) VDJ recombination. From top to bottom: 1, D and J

segments are joined and the V region has closed chromatin; 2, antisense transcription through the V region opens the chromatin and allows

recombination factors to bind; 3, a V segment is joined to the DJ segment. (c) Top: at a bidirectional promoter a lncRNA and a pc gene are

transcribed in opposite directions. The promoter is always in an open chromatin conformation as either the lncRNA or the pc gene is transcribed,

which is thought to reduce transcriptional noise. Bottom: a unidirectional pc gene promoter can acquire a closed chromatin conformation due to

stochastic TF binding, which is thought to increase transcriptional noise. Noise defines the variation of expression of a transcript between

genetically identical cells caused by the stochastic binding of TFs regulated by the local chromatin environment. For details see Figure 1g,

Figure 2d, Figure 3c and text.
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strategies are optimal for testing lncRNA function. These

strategies include manipulating the endogenous locus to

delete the promoter or the whole gene or to shorten its

length using inserted polyadenylation signals, as described

for several examples above. This may appear a formidable

task with the appreciation that lncRNAs in the human

genome may outnumber protein-coding genes [4];

however, suitable cell systems already exist. These include

the use of haploid cell lines with transcriptional stop signal

insertions in most human genes that are screened by RNA

sequencing [122], gene targeting by engineered zinc-finger

nucleases [123] or CRISPR systems [124] or the use of

mouse embryonic stem cells that have efficient rates of

homologous targeting [125,126].
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Figure 5. Strategies to distinguish between the function of a lncRNA product and its transcription. Both DNA strands are shown as

separate boxes to indicate a lncRNA transcribed from the top reverse strand, overlapping a pc gene transcribed from the bottom forward strand

in antisense orientation. A silencing function of the lncRNA can be predicted by an anti-correlating expression pattern. (a) Left: the lncRNA

silencing effect is mediated by tethering of the lncRNA product at the site of transcription, sequence-specific binding of an EM to the lncRNA

and guidance of the EM to the pc gene promoter. Right: silencing is mediated by a transcription process independent of the lncRNA product. (b)

Posttranscriptional knockdown removes the lncRNA product, thus reversing a lncRNA product-mediated effect (left) but not the transcription-

mediated effect (right). (c) lncRNA promoter deletion removes both lncRNA product- (left) and transcription-mediated (right) effects. (d)

Truncation experiments inserting transcriptional stop signals at different positions within the lncRNA gene identify the functional region of the
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only functional when it crosses the promoter of the overlapped pc gene. For details see Figure 1g, Figure 2e, Figure 3c, Figure 4d and text.
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These genetic strategies could be applied to determine if

the lncRNA is functional and if its function requires the

lncRNA product or only depends on the act of transcrip-

tion (Figure 5). Once these answers are obtained, it will be

useful to test whether additional chromatin features are

involved. This could include chromatin accessibility assays

to address nucleosome density in the regulated gene; and

mapping of histone modifications and DNA methylation,

and of the presence of RNAPII and other transcription

machinery components. These studies have been made

easier in the mouse and human genome due to the pub-

licly available ENCODE data [127]. As lncRNA identifica-

tion becomes easier due to improved sequencing and

bioinformatics tools, the number of annotated lncRNA

transcripts is rising sharply [4,128]. It is therefore a high

priority to determine which lncRNAs are functional and

which represent spurious transcription [109,129]. To date

only a relatively small number of mammalian lncRNAs

have clearly been shown to regulate gene expression and

most attention has centered on lncRNAs that act through

their transcription product [23]. With the recent demon-

stration that for some mammalian lncRNAs the act of

their transcription is sufficient for function [35], it be-

comes clear that there can be a number of lncRNAs acting

in a similar way. If the above described findings and ap-

proaches are used as guidelines, many new lncRNAs regu-

lating genes by the act of transcription are likely to be

discovered.
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