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There have been various attempts to improve the reconstruction of gene regulatory net-
works from microarray data by the systematic integration of biological prior knowledge.
Our approach is based on pioneering work by Imoto et al.11 where the prior knowledge
is expressed in terms of energy functions, from which a prior distribution over network
structures is obtained in the form of a Gibbs distribution. The hyperparameters of this
distribution represent the weights associated with the prior knowledge relative to the
data. We have derived and tested a Markov chain Monte Carlo (MCMC) scheme for
sampling networks and hyperparameters simultaneously from the posterior distribution,
thereby automatically learning how to trade off information from the prior knowledge
and the data. We have extended this approach to a Bayesian coupling scheme for learning
gene regulatory networks from a combination of related data sets, which were obtained
under different experimental conditions and are therefore potentially associated with
different active subpathways. The proposed coupling scheme is a compromise between
(1) learning networks from the different subsets separately, whereby no information
between the different experiments is shared; and (2) learning networks from a monolithic
fusion of the individual data sets, which does not provide any mechanism for uncovering
differences between the network structures associated with the different experimental
conditions. We have assessed the viability of all proposed methods on data related to
the Raf signaling pathway, generated both synthetically and in cytometry experiments.

Keywords: Gene regulatory networks; Bayesian networks; Bayesian inference; Markov
chain Monte Carlo; gene expression data; Raf pathway; KEGG; data integration.
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544 A. V. Werhli & D. Husmeier

1. Introduction

Bayesian networks have received increasing attention from the computational biol-

ogy community as models of gene regulatory networks, following up on pioneering

work by Friedman et al.1 and Hartemink et al.2 Several tutorials on Bayesian net-

works have been published.3–5 We therefore only qualitatively recapitulate some

aspects that are of relevance for the present study, and refer the reader to the

above tutorials for a thorough and more rigorous introduction.

The structure of a Bayesian network is defined by a directed acyclic graph (DAG)

indicating how different variables of interest, represented by nodes, interact. The

word “interact” has a causal connotation, which is ultimately of interest to the biolo-

gist, but has to be taken with caution in this context, as explained shortly. The edges

of a Bayesian network are associated with conditional probabilities, defined by a

functional family and their parameters. The interacting entities are associated with

random variables, which represent some measured entities of interest like relative

gene expression levels or protein concentrations. We denote the set of all the mea-

surements of all the random variables as the data, represented by the letter D. As a

consequence of the acyclicity of the network structure, the joint probability of all the

random variables can be factorized into a product of lower-complexity conditional

probabilities according to conditional independence relations defined by the graph

structure M. Under certain regularity conditions, the parameters associated with

these conditional probabilities can be integrated out analytically. This allows us

to compute the marginal likelihood or evidence P (D|M), which captures how well

the network structure M explains the data D. In the present study, we computed

P (D|M) under the assumption of a linear Gaussian distribution. The resulting

score was derived by Geiger and Heckerman6 and is referred to as the BGe score.

We are interested in learning a network of causal relations between interacting

nodes. While such a causal network forms a valid Bayesian network, the inverse

relation does not hold: when we have learned a Bayesian network from the data,

the resulting graph does not necessarily represent the correct causal graph. One

reason for this discrepancy is the existence of unobserved nodes. When we find a

probabilistic dependence between two nodes, we cannot necessarily conclude that

there exists a causal interaction between them, as this dependence could have been

brought about by a common yet unobserved regulator. However, even under the

assumption of complete observation, the inference of causal interaction networks

is impeded by symmetries within so-called equivalence classes, which consist of

networks that yield the same evidence scores P (D|M). A simple example is two

conditionally dependent nodes, say A and B, where the two networks related to the

two possible directions of the edge, A → B and A ← B, are equivalent.

There are two ways to break the symmetries of the equivalence classes. One

approach is to use active interventions, like gene knockouts or overexpressions. If

knocking out gene A affects gene B, but knocking out gene B does not affect gene

A, then A → B will tend to have a higher evidence than A ← B. For more detail,

see Pournara and Wernisch7 and Werhli et al.8 An alternative way to break the
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Bayesian Integration of Prior Knowledge and Different Experimental Conditions 545

symmetries, investigated in this paper, is to use prior information. If genes A and B

are conditionally dependent, and we have prior knowledge that A is a transcription

factor that regulates genes in the functional category B belongs to, then we will

presumably favor A → B over A ← B. To formalize this notion, we score networks

by the posterior probability

P (M|D) ∝ P (D|M)P (M), (1)

where P (D|M) is the evidence, and P (M) is the prior distribution over network

structures; the latter distribution captures the biological knowledge that we have

prior to measuring the data D. While different graphs might have identical scores

in light of the data, P (D|M), symmetries can be broken by the inclusion of prior

knowledge, P (M), and these two sources of information are systematically inte-

grated into the posterior distribution P (M|D). Our ultimate objective, therefore,

is to find the network structure M that maximizes P (M|D). Unfortunately, the

number of structures increases superexponentially with the number of nodes. Also,

in systems biology, where we aim to learn complex interaction patterns involving

many components, the amount of information from the data and the prior is usually

not sufficient to render the distribution P (M|D) sharply peaked in a single graph;

instead, the distribution is usually diffusely spread over a large set of networks. Sum-

marizing this distribution by a single network would not be appropriate. Instead, we

aim to sample network structures from the posterior distribution P (M|D) so as to

obtain a typical collection of high-scoring networks and, thereby, capture intrinsic

inference uncertainty. Direct sampling from this distribution is usually intractable,

though. Hence, we resort to a Markov chain Monte Carlo (MCMC) scheme,9 which

under fairly general regularity conditions is theoretically guaranteed to converge

to the posterior distribution of Eq. (1). Given a network structure Mold, a new

network structure Mnew is proposed from a proposal distribution Q(Mnew|Mold),

which is then rejected or accepted according to the standard Metropolis–Hastings

scheme10 with the following acceptance probability:

A = min

{

P (D|Mnew)P (Mnew)

P (D|Mold)P (Mold)
×

Q(Mold|Mnew)

Q(Mnew|Mold)
, 1

}

. (2)

The functional form of the proposal distribution Q(Mnew|Mold) depends on the

chosen type of proposal moves. In the present paper, we consider three edge-based

proposal operations: creating, deleting, and inverting an edge. The computation of

the Hastings factor Q(Mold|Mnew)/Q(Mnew|Mold) is, for instance, discussed in

Husmeier et al.4

2. Methodology A: Integration of Prior Knowledge

2.1. Biological prior knowledge

To integrate biological prior knowledge into the inference of gene regulatory net-

works, we define a function that measures the agreement between a given network
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546 A. V. Werhli & D. Husmeier

M and our biological prior knowledge. Following an approach first proposed by

Imoto et al.11 and subsequently applied in Refs. 12–15, we call this measure the

energy E, borrowing the name from statistical physics. We split E into two com-

ponents. One of the components, E0, is associated with the absence of edges; the

other component, E1, is associated with the presence of edges. A network M is rep-

resented by a binary adjacency matrix, where each entry Mij can be either 0 or 1.

A zero entry, Mij = 0, indicates the absence of an edge between nodei and nodej ;

conversely, if Mij = 1, there is a directed edge from nodei to nodej . We define the

biological prior knowledge matrix B to be a matrix in which the entries Bij ∈ [0, 1]

represent our knowledge about interactions between nodes as follows: If entry

Bij = 0.5, we do not have any prior knowledge about the presence or absence of the

directed edge between nodei and nodej . If 0 ≤ Bij < 0.5, we have prior evidence

that the directed edge between nodei and nodej is absent; the evidence is stronger

as Bij is closer to 0. If 0.5 < Bij ≤ 1, we have prior evidence that the directed edge

pointing from nodei to nodej is present; the evidence is stronger as Bij is closer to 1.

Having defined how to represent a network M and the biological prior knowledge

B, we now define the energies associated with the presence and absence of edges as

follows:

E0(M) =

N
∑

i, j = 1
Bi,j < 0.5

|Bi,j −Mi,j | (3)

E1(M) =
N

∑

i, j = 1
Bi,j > 0.5

|Bi,j −Mi,j | , (4)

where N is the total number of nodes.

To integrate the prior knowledge expressed by Eqs. (3) and (4) into the inference

procedure, we follow Imoto et al.11 and define the prior distribution over network

structures M to take the form of a Gibbs distribution:

P (M|β0, β1) =
e−{β0E0(M)+β1E1(M)}

Z(β0, β1)
, (5)

where β0 and β1 are hyperparameters that indicate the weight of the respec-

tive source of prior knowledge relative to the data, and the partition function is

defined as

Z(β0, β1) =
∑

M∈M

e−{β0E0(M)+β1E1(M)}, (6)

with M denoting the set of all valid (i.e. directed and acyclic) network structures.

Unfortunately, the number of structures increases superexponentially with the num-

ber of nodes, rendering the computation of Z not viable for large networks. To
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Bayesian Integration of Prior Knowledge and Different Experimental Conditions 547

proceed, we define

E0(M) =

N
∑

n=1

E0(n, πn[M]) (7)

E1(M) =

N
∑

n=1

E1(n, πn[M]), (8)

where πn[M] is the set of parents of node n in the graph M, and we have defined

E0(n, πn) =
∑

i ∈ πn

Bi,n < 0.5

(1 − Bi,n) +
∑

i/∈πn
Bi,n<0.5

Bi,n (9)

E1(n, πn) =
∑

i ∈ πn

Bi,n > 0.5

(1 − Bi,n) +
∑

i /∈ πn

Bi,n > 0.5

Bi,n. (10)

Akin to the perfect gas approximation in statistical physics (e.g. Chapter 7 in

Balian16), we now approximate the partition function of the whole network by a

product of single-node partition functions:

Z ≈
∏

n

∑

πn

e−{β0E0(n,πn)+β1E1(n,πn)}. (11)

The summation in the last equation extends over all parent configurations πn of

node n, which in the case of a fan-in restriction is subject to a constraint on their

cardinality (for which we chose an upper bound of 3, as in Refs. 1, 17, and 18).

The consequence of the perfect gas approximation is a considerable reduction in

the computational complexity. However, structures with directed cycles, i.e. invalid

DAGs, are not excluded from the sum. Consequently, the price to pay for the

reduced computational complexity is a small yet systematic overestimation of the

partition function. According to one of our previous studies,19 this bias does not

appear to be critical, though.

2.2. MCMC sampling scheme

Having defined the prior probability distribution over network structures, our next

objective is to extend the MCMC scheme of Eq. (2) to sample both the network

structure and the hyperparameters from the posterior distribution.

Starting from a definition of the prior distributions on the hyperparameters

β0 and β1, P (β0) and P (β1), our aim is to sample the network structure M and

the hyperparameters β0 and β1 from the posterior distribution P (M, β0, β1|D).

To this end, we propose a new network structure Mnew from the proposal distri-

bution Q(Mnew|Mold) and, additionally, new hyperparameters from the proposal

distributions R(β0new
|β0old

) and R(β1new
|β1old

). We then accept this move according
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548 A. V. Werhli & D. Husmeier

to the standard Metropolis–Hastings update rule10 with the following acceptance

probability:

A = min

{

P (D,Mnew, β0new
, β1new

)

P (D,Mold, β0old
, β1old

)
×

Q(Mold|Mnew)R(β0old
|β0new

)

Q(Mnew|Mold)R(β0new
|β0old

)

×
R(β1old

|β1new
)

R(β1new
|β1old

)
, 1

}

= min

{

P (D|Mnew)P (Mnew|β0new
, β1new

)

P (D|Mold)P (Mold|β0old
, β1old

)
×

P (β0new
)P (β1new

)Q(Mold|Mnew)

P (β0old
)P (β1old

)Q(Mnew|Mold)

×
R(β0old

|β0new
)R(β1old

|β1new
)

R(β0new
|β0old

)R(β1new
|β1old

)
, 1

}

. (12)

To increase the acceptance probability and, thus, mixing and convergence of the

Markov chain, it is advisable to break the move up into three submoves:

• Sample a new network structure Mnew from the proposal distribution

Q(Mnew|Mold) for fixed hyperparameters β0 and β1.

• Sample a new hyperparameter β0new
from the proposal distribution R(β0new

|β0old
)

for fixed hyperparameter β1 and fixed network structure M.

• Sample a new hyperparameter β1new
from the proposal distribution R(β1new

|β1old
)

for fixed hyperparameter β0 and fixed network structure M.

Assuming uniform prior distributions P (β0) and P (β1) as well as symmetric pro-

posal distributions R(β0new
|β0old

) and R(β1new
|β1old

), the corresponding acceptance

probabilities are given by the following expressions:

A(Mnew|Mold) = min

{

P (D|Mnew)

P (D|Mold)
×

P (Mnew|β0, β1)

P (Mold|β0, β1)
×

Q(Mold|Mnew)

Q(Mnew|Mold)
, 1

}

(13)

A(β0new|β0old) = min

{

P (M|β0new, β1)

P (M|β0old, β1)
, 1

}

(14)

A(β1new|β1old) = min

{

P (M|β0, β1new)

P (M|β0, β1old)
, 1

}

. (15)

The three submoves are iterated until some convergence criterion is satisfied, dis-

carding an initial burn-in phase before sampling configurations. In our simulations,

we chose the prior distribution of each hyperparameter P (βi), i ∈ {0, 1}, to be

the uniform distribution over the interval [0, MAX], with MAX = 30. The pro-

posal distribution of the hyperparameters R(βinew
|βiold) was chosen to be a uni-

form distribution over a moving interval of length L = 6 ≪ MAX, centered on the

current value of the respective hyperparameter and using reflection to satisfy the

constraint βinew
∈ [0, MAX]. Note that L only affects the convergence and mixing

of the Markov chain — that is, the computational efficiency — and could, in prin-

ciple, be adjusted during the burn-in phase. To test for convergence of the MCMC
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Bayesian Integration of Prior Knowledge and Different Experimental Conditions 549

simulations, various methods have been developed.20 In our work, we applied the

scheme used in Werhli et al.8: each MCMC run was repeated from independent

initializations, and consistency in the marginal posterior probabilities of the edges

was taken as an indication of sufficient convergence, leading to a typical trajec-

tory length of 5 × 105 steps, of which the first half was discarded as the burn-in

phase.

3. Methodology B: Active Pathways Under Different

Experimental Conditions

The assumption so far has been that the molecular biological system of interest can

be characterized by a unique regulatory network. What we are actually aiming to

infer, though, are the active parts of this network, which may differ under different

experimental conditions. To illustrate this point, consider a transcription factor

that potentially upregulates a group of genes further downstream in the regulatory

chain. If the experimental conditions are chosen such that the gene coding for this

transcription factor is never expressed itself, then the respective subnetwork will

never be activated and hence cannot be inferred from the data. When aiming to

infer regulatory networks related to an organism’s immune system, we would expect

certain pathways to be activated only upon infection and remain invisible when gene

expression profiles are only taken in the healthy state. In fact, some preliminary

analysis in Werhli21 related to the challenging of macrophages with interferon-

gamma (IFNγ) and viral infection has revealed differences in the active pathways

under the conditions of viral infection, IFNγ treatment, and viral infection plus

IFNγ treatment. This suggests that a regulatory network is not an immutable entity,

but may vary in response to changes in the experimental and/or environmental

conditions.

When aiming to reconstruct a network from gene expression profiles taken under

different experimental conditions, there seem to be two principled approaches we

may pursue. The first is to ignore the changes in the experimental conditions

altogether and merge the data into one monolithic set. The problem with this

approach is that it inevitably blurs the differences between the different conditions

and thereby obscures the biological insight we are aiming to gain; for instance, we

would not be able to tell the difference between the state of a network in infected,

healthy, and IFNγ-treated cells. The second approach is to keep the data obtained

under different conditions separate, and to infer separate regulatory networks active

under these different conditions. While this approach has the potential to reveal the

differences between the regulatory networks in different states, e.g. infection versus

treatment, it will almost inevitably result in a considerable reduction in statisti-

cal power and reconstruction accuracy. Current postgenomic data sets are usually

sparse, e.g. the number of microarray experiments biologists can afford to carry out

is usually limited to the order of a few dozen, which compromises the extent to

which networks can be reconstructed. Breaking a sparse data set up into smaller
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550 A. V. Werhli & D. Husmeier

units will inevitably aggravate this situation and increase the uncertainty about

inferred network structures.

In the present work, we aim to pursue a compromise between the two extreme

procedures described above. The motivation is given by the insight gained from

our earlier study described in Chapter 2 of Werhli.21 Although we found differ-

ences between the active pathways under the different conditions of infection and

treatment with IFNγ, the networks shared considerable features in common. Our

conjecture is that this holds in general, and that a cell’s regulatory networks, while

potentially transitioning between different active states in response to different

external cues, share substantial features owing to a common generic network archi-

tecture. Our objective is to formulate this proposition mathematically so as to

integrate it into the probabilistic modeling process.

As it turns out, this objective can be achieved by a modification of the proba-

bilistic model described in Sec. 2. Recall that the objective of Sec. 2 was the inte-

gration of explicit prior knowledge into the inference scheme by softly constraining

the inferred network to be similar to the a priori known network. In modification of

this scheme, we now propose learning separate regulatory networks from disjunct

gene expression data, but tying these networks together by softly constraining them

to be similar to a shared underlying generic network. This approach overcomes the

rigidity of the first scenario described above, which would obscure the differences

between the network states in different experimental conditions. By sharing infor-

mation between the different network states, the problem of the second scenario

described above is also averted; that is, the statistical power and accuracy of the

reconstruction should be considerably enhanced.

3.1. Probabilistic model

In order to integrate information from I different data sets (D1 . . .DI) obtained

under different experimental conditions, we use the probabilistic graphical model

presented in Fig. 1. Each data set (D1 . . .DI) is associated with its own hyperpa-

rameter (β1, . . . , βI) and network structure (M1, . . . ,MI). The latent graph M⋆,

which is not directly associated with the data, leads to a coupling between the

individual network structures (M1, . . . ,MI) and encourages them to be similar.

Note that Fig. 1 constitutes a hierarchical Bayesian model, in which the βi’s and

M⋆ correspond to hyperparameters that determine the prior distribution on the

network structures Mi’s. Further note that M⋆ is not just a variable, but a com-

plex entity representing a whole network itself. We therefore refer to M⋆ as the

hypernetwork.

The joint probability of the probabilistic graphical model of Fig. 1 is given by

P (M1, . . . ,MI ,D1 . . .DI , β1, . . . , βI ,M
⋆)

=

I
∏

i=1

P (Di|Mi)P (Mi|βi,M
⋆)P (βi)P (M⋆), (16)
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1 2β
2

β
1

1 2

Iβ
I

I

Fig. 1. Probabilistic model for learning active subnetworks under different experimental conditions.
(D1 . . .DI) are data sets obtained under different experimental conditions. Each of these data sets
is associated with its own hyperparameter (β1, . . . , βI) and network structure (M1, . . . ,MI ). The
hypernetwork M⋆ leads to a coupling between the individual network structures (M1, . . . ,MI)
and encourages them to be similar.

where the prior distribution over network structures, P (Mi|βi,M
⋆), takes the form

of a Gibbs distribution:

P (Mi|βi,M
⋆) =

e−βi(|Mi−M⋆|)

Z(βi,M⋆)
. (17)

Recall that the hyperparameter βi corresponds to an inverse temperature in statis-

tical physics, and the term |Mi −M⋆| measures the similarity between the graphs

Mi and M⋆, for instance in terms of the Hamming distance (i.e. the number of

different edges). This scheme introduces a coupling between the individual net-

works Mi: deviations between Mi and M⋆ are penalized, which implies an indirect

penalty for deviations between Mi and Mk, i �= k. The denominator in Eq. (17) is

a normalizing constant, also known as the partition function:

Z(βi,M
⋆) =

∑

Mi∈M

e−βi(|Mi−M⋆|), (18)

where M is the set of all valid network structures. The summation over all possible

models Mi can be performed efficiently using Eq. (11), as discussed in the text

below that equation.

The hyperparameter βi can be interpreted as a factor that indicates the strength

of the influence of the hypernetwork M⋆ relative to the data. For βi → 0, the prior

distribution defined in Eq. (17) becomes flat and uninformative about the network

structure. Conversely, for βi → ∞, the prior distribution becomes sharply peaked,

forcing the network structure Mi to be equal to the hypernetwork M⋆.
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3.2. MCMC sampling scheme

Our goal is to sample all network structures Mi, all of the hyperparameters βi, and

the hypernetwork M⋆ from the posterior distribution. In order to achieve this objec-

tive, we propose new structures Minew
from the proposal distribution Qi(Minew

|

Miold), new hyperparameters from the proposal distribution Ri(βinew
|βiold), and a

new hypernetwork from the proposal distribution W (M⋆
new|M

⋆
old). We then accept

these moves according to the standard Metropolis–Hastings update rule10 with the

following acceptance probability:

A = min

{

I
∏

i=1

P (Di,Minew
, βinew

,M⋆
new)Qi(Miold |Minew

)Ri(βiold |βinew
)

P (Di,Miold , βiold ,M⋆
old)Qi(Minew

|Miold)Ri(βinew
|βiold)

×
W (M⋆

old|M
⋆
new)

W (M⋆
new|M

⋆
old)

, 1

}

. (19)

For symmetric proposal distributions Ri(βinew
|βiold) and W (M⋆

new|M
⋆
old), this

expression simplifies to

A = min

{

I
∏

i=1

P (Di,Minew
, βinew

,M⋆
new)Qi(Miold |Minew

)

P (Di,Miold , βiold ,M⋆
old)Qi(Minew

|Miold)
, 1

}

. (20)

The prior distribution P (M⋆) can be chosen according to Eq. (5) so as to include

explicit biological prior knowledge. However, for the sake of simplicity of the expo-

sition and in order to focus on the coupling aspects of the proposed method, we

assume that both prior distributions P (βi) and P (M⋆) are uniform; this leads to

the following expression:

A = min

{

I
∏

i=1

P (Di|Minew
)P (Minew

|βinew
,M⋆

new)Qi(Miold |Minew
)

P (Di|Miold)P (Miold |βiold ,M⋆
old)Qi(Minew

|Miold)
, 1

}

, (21)

where we have expanded the joint probability according to the conditional inde-

pendence relations shown in Fig. 1. Note that Mi’s, as opposed to M⋆, need to be

proper DAGs. For this reason, we include the corresponding Hastings factor — the

last term in the equation — as it is not necessarily equal to one. In our simula-

tions, to be discussed below, we have used edge-based proposal moves: the creation,

deletion, and reversal of an edge. When enforcing these moves to be valid, that is,

to lead to proper DAGs, the two proposal probabilities do not necessarily cancel

out and therefore have to be explicitly computed; see Husmeier et al.4 for further

details.

In order to increase the acceptance probability and, hence, mixing and conver-

gence of the Markov chain, we break the move up into submoves. First, we propose

new structures for each of the networks Mi in turn, while keeping all of the other

variables fixed. The new structures are accepted with the following acceptance
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probabilities:

A(Minew
|Miold) = min

{

P (Di|Minew
)P (Minew

|βi,M
⋆)Qi(Miold |Minew

)

P (Di|Miold)P (Miold |βi,M⋆)Qi(Minew
|Miold)

, 1

}

= min

{

P (Di|Minew
)e−βi(|Minew

−M⋆|)Qi(Miold |Minew
)

P (Di|Miold)e−βi(|Mi
old

−M⋆|)Qi(Minew
|Miold)

, 1

}

,

(22)

where Eq. (17) has been used. Next, we propose new values for the trade-off hyper-

parameters βi. Each of the trade-off hyperparameters is accepted with the following

acceptance probability:

A(βinew
|βiold) = min

{

P (Mi|βinew
,M⋆)

P (Mi|βiold ,M⋆)
, 1

}

= min

{

e−βinew
(|Mi−M⋆|)Z(βiold ,M⋆)

e−βi
old

(|Mi−M⋆|)Z(βinew
,M⋆)

, 1

}

. (23)

Finally, a new hypernetwork is proposed and accepted with the following acceptance

probability:

A(M⋆
new

|M⋆
old

) = min

{

I
∏

i=1

P (Mi|βi,M
⋆
new

)

P (Mi|βi,M⋆
old

)
, 1

}

= min

{

I
∏

i=1

e−βi(|Mi−M⋆
new

|)Z(βi,M
⋆
old

)

e−βi(|Mi−M⋆
old

|)Z(βi,M⋆
new

)
, 1

}

. (24)

To illustrate the plausibility of this sampling scheme, consider the sampling of

the hyperparameters βi according to Eq. (23). We would assume that, for a net-

work Mi which consistently differs from the hypernetwork M⋆, the corresponding

hyperparameter βi should be driven to small values (indicating weak coupling);

while conversely, βi should be driven to large values (indicating strong coupling)

when a network Mi is consistently similar to M⋆. This is indeed the case. In the

first scenario, |Mi −M⋆| tends to be large, and high values of βi are repressed by

the exponential term in Eq. (23). In the second scenario, |Mi−M⋆| becomes small,

and the exponential term tends toward a constant, indiscriminative with respect to

selecting βi. Note, however, that the partition function Z(βi,M
⋆) is a monotoni-

cally decreasing function in βi, as seen from Fig. 2. This monotonicity provides a

penalty for small values of βi, driving βi up to high values, as expected.

4. Data

4.1. Cytometry data

Sachs et al.22 have applied intracellular multicolor flow cytometry experiments to

measure protein concentrations related to the Raf pathway. Raf is a critical signal-

ing protein involved in regulating cellular proliferation in human immune system

J.
 B

io
in

fo
rm

. 
C

o
m

p
u
t.

 B
io

l.
 2

0
0
8
.0

6
:5

4
3
-5

7
2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 F

U
N

D
A

C
A

O
 U

N
IV

E
R

S
ID

A
D

E
 D

O
 R

IO
 G

R
A

N
D

E
 o

n
 1

1
/2

0
/1

4
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n

ly
.



554 A. V. Werhli & D. Husmeier
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Fig. 2. Partition function example. The figure shows a plot of the partition function Z(βi,M
⋆) as

a function of the hyperparameter βi for a fixed hypernetwork M⋆, chosen to be the gold standard
Raf network of Fig. 3.

Fig. 3. Raf signaling pathway. The graph shows the currently accepted Raf signaling network, taken
from Sachs et al.22 Nodes represent proteins, edges represent interactions, and arrows indicate the
direction of signal transduction.

cells. The deregulation of the Raf pathway can lead to carcinogenesis, and this

pathway has therefore been extensively studied in the literature22,23; see Fig. 3 for

a representation of the currently accepted gold standard network. In our experi-

ments, we used five data sets with 100 measurements each, obtained by randomly

sampling subsets from the original observational (i.e. unintervened) data of Sachs

et al.22 This subsampling was motivated by the fact that we wanted to investigate

the learning performance on sample sizes typical of current microarray experiments,

which do not provide the abundance of experimental conditions that one gets from
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cytometry experiments. Details about how we standardized the data can be found

in Werhli et al.8

4.2. Synthetic data

A simple synthetic way of generating data from the gold standard network of Fig. 3

is to sample them from a linear Gaussian distribution. The random variable Xi

denoting the expression of node i is distributed according to

Xi ∼ N

(

∑

k

wikxk, σ2

)

, (25)

where N(.) denotes the normal distribution, the sum extends over all parents of

node i, and xk represents the value of node k. We set the standard deviation to

σ = 0.1, sampled the interaction strength |wik| from the uniform distribution over

the interval [0.5, 2], and randomly varied the sign of wik.

A more realistic simulation more typical of signals measured in molecular biology

is based on treating the interactions in the network as enzyme-substrate reactions in

organic chemistry. From chemical kinetics, it is known that the concentrations of the

molecules involved in these reactions can be described by a system of ordinary dif-

ferential equations (ODEs).24,25 Assuming equilibrium and adopting a steady-state

approximation, it is possible to derive a set of closed-form equations that describe

the product concentrations as nonlinear (sigmoidal) functions of combinations of

substrates. However, instead of solving the steady-state approximation to ODEs

explicitly, we approximate the solution with a qualitatively equivalent combination

of multiplications and sums of sigmoidal transfer functions. The resulting sigma-pi

formalism has been implemented in the software package Netbuilder,26,27 which

we have used for simulating the data from the Raf signaling pathway, displayed

in Fig. 3.

We used the same amount of data as for the flow cytometry experiments and

created five simulated data sets with 100 measurements each. To model the stochas-

tic influences, all nodes were subjected to additive Gaussian noise with zero mean

and standard deviation equal to 0.1. More details about the generation of these

data can be found in Werhli et al.8

4.3. Biological prior knowledge

We extracted biological prior knowledge from the Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway database.28–30 KEGG pathways represent the

current knowledge of the molecular interaction and reaction networks related to

metabolism, other cellular processes, and human diseases. As KEGG contains differ-

ent pathways for different diseases, molecular interactions, and types of metabolism,

it is possible to find the same pair of genesa in more than one pathway. We therefore

aWe use the term “gene” generically for all interacting nodes in the network. This may include
proteins encoded by the respective genes.
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extracted all pathways from KEGG that contained at least one pair of the 11

proteins/phospholipids included in the Raf pathway. We found 20 pathways that

satisfied this condition. From these pathways, we computed the prior knowledge

matrix, introduced in Sec. 2.1, as follows. Define by Mij the total number of times

a pair of genes i and j appears in a pathway, and by mij the number of times the

genes are connected by a (directed) edge in the KEGG pathway. The elements Bij

of the prior knowledge matrix are then defined by

Bij =
mij

Mij
. (26)

If a pair of genes is not found in any of the KEGG pathways, we set the respective

prior association to Bij = 0.5, implying that we have no information about this

relationship.

4.4. Simulating different active pathways

To simulate active pathways under different experimental conditions, we combined

five individual data sets as follows. For the synthetic data, three of the data sets

were generated from the gold-standard Raf regulatory network, shown in Fig. 3.

A fourth data set was generated from a slightly modified version of this network,

in which the following four edges had been deleted: PKC → Raf, PKC → PKA,

PKA → MEK, and PLCg → PIP2. An illustration of this network is shown in

Werhli21 and the supplementary material of Werhli et al.8 The deletion of these

edges corresponds to changes in the active subpathways under different external

conditions, as described above. As a fifth data set, we included a purely random

data set. This corresponds to either a drastic change of the external conditions that

deactivates the whole pathway, or to a flawed experiment that has corrupted the

data. We want to investigate whether the proposed method succeeds in identifying

this outlying data set and prevents it from adversely affecting the overall inference.

We are also interested in whether the proposed method can distinguish between

the data from the gold standard and the modified Raf regulatory network. All of

the synthetic data were taken from Werhli et al.,8 where each subset contained

100 exemplars. For the cytometry data, we took four subsets of unintervened data,

randomly selected from the data in Sachs et al.22 and preprocessed as described

in Werhli et al.8 Each subset contained 20 measurements. To these data sets, we

added a fifth data set of equal size, consisting of pure noise.

5. Evaluation Criteria

As described in Sec. 1, not all of the edge directions in a Bayesian network can

always be inferred, which may lead to a partially directed graph. We compared

the performance of Bayesian networks with graphical Gaussian models (GGMs), as

proposed by Schäfer and Strimmer,31 with the regularization approach described in

Schäfer and Strimmer.32 Note that GGMs are undirected graphs; hence, the network
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reconstruction methods that we compared may lead to undirected, directed, or par-

tially directed graphs. To assess the performance of these methods, we applied two

different criteria. The first approach, referred to as undirected graph evaluation

(UGE), discards the information about the edge directions altogether. To this end,

the original and learned networks are replaced by their skeletons, where a skeleton

is defined as the network in which two nodes are connected by an undirected edge

whenever they are connected by any type of edge. The second approach, referred

to as directed graph evaluation (DGE), compares the predicted network with the

original directed graph. A predicted undirected edge is interpreted as the superpo-

sition of two directed edges, pointing in opposite directions. The application of any

of the network reconstruction methods considered in our study leads to a matrix

of scores associated with the edges in a network. For Bayesian networks sampled

from the posterior distribution with MCMC, these scores are the marginal poste-

rior probabilities of the edges. For GGMs, these are partial correlation coefficients.

Both scores define a ranking of the edges. This ranking defines a receiver operator

characteristics (ROC) curve, where the relative number of true-positive (TP) edges

is plotted against the relative number of false-positive (FP) edges. The results are

shown in Fig. 4.

6. Results A: Integrating Prior Knowledge

The objective of our first study was the assessment of the method proposed in

Sec. 2, where the objective is the integration of biological prior knowledge into

the inference scheme. Figure 4 shows the ROC curves for four different network

reconstruction methods: using the prior knowledge from KEGG only, according to

Eq. (26); learning Bayesian networks and graphical Gaussian models from the pro-

tein concentration data alone; and using the proposed Bayesian inference scheme

for integrating prior knowledge and data. The figure also distinguishes between

learning the skeleton of the graph only (UGE) and considering the direction of the

edges also (DGE). Recall that larger areas under the ROC curves indicate a better

prediction performance overall, although the slope on the left is also of interest, as

we are usually interested in keeping the number of false positives bounded at low

values. The figure suggests that the systematic integration of prior knowledge with

the proposed Bayesian inference scheme leads, overall, to a considerable improve-

ment in the prediction performance over the three alternative schemes based on

either the data or the prior knowledge from KEGG alone.

There are various interesting trends to be noted, though. For learning the skele-

ton of the graph (UGE), the improvement obtained on the real cytoflow data is

more substantial than on the synthetic data (see left panel of Fig. 4). This is a con-

sequence of the fact that on the synthetic data, Bayesian networks without prior

knowledge already show a strong performance on learning the skeleton of the net-

work, leaving not much room for further improvement. On the cytoflow data, on

the other hand, the performance is much poorer; consequently, the integration of
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Fig. 4. Reconstruction of the Raf signaling pathway. The figure evaluates the accuracy of inferring
the Raf signaling network from cytometry data (bottom row) and from simulated Netbuilder data
(top row), each combined with prior information from KEGG. This evaluation was carried out
twice: with and without taking the edge direction into account (UGE: undirected graph evalua-
tion; DGE: directed graph evaluation). Four machine learning methods were compared: Bayesian
networks without prior knowledge (BNs); graphical Gaussian models without prior knowledge
(GGMs); Bayesian networks with prior knowledge from KEGG (BN-Prior), where the hyperpa-
rameters β0 and β1 were sampled from the posterior distribution with the MCMC scheme discussed
in Sec. 2.2; and prior knowledge from KEGG only (PriorOnly). In the latter case, the elements of

the prior knowledge matrix (introduced in Sec. 2.1) were computed from Eq. (26). The ROC curves
presented are the mean ROC curves obtained by averaging the results over five different data sets.

prior knowledge leads to a more substantial improvement. When taking the edge

directions into consideration (DGE), the proposed Bayesian integration scheme

outperforms all other methods on the synthetic data (see Fig. 4, top right). This

result is consistent with what has been discussed in Sec. 1: when learning Bayesian

J.
 B

io
in

fo
rm

. 
C

o
m

p
u
t.

 B
io

l.
 2

0
0
8
.0

6
:5

4
3
-5

7
2
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 F

U
N

D
A

C
A

O
 U

N
IV

E
R

S
ID

A
D

E
 D

O
 R

IO
 G

R
A

N
D

E
 o

n
 1

1
/2

0
/1

4
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n

ly
.



Bayesian Integration of Prior Knowledge and Different Experimental Conditions 559

networks from nondynamical noninterventional data (as considered here) without

prior knowledge, there is inherent uncertainty about the direction of edges owing to

intrinsic symmetries within network equivalence classes (see Sec. 1). These symme-

tries are broken by the inclusion of prior knowledge — hence, the improvement in

the prediction performance. This improvement is also observed on the real cytoflow

data (Fig. 4, bottom right), but to a lesser extent. Although the area under the

ROC curve related to the Bayesian integration scheme exceeds that of all other

ROC curves, the prediction based on prior knowledge alone shows a steeper slope

in the very left region of the false-positive axis. This implies that for very high

values of the threshold on the edge scores, a network learned from prior knowledge

alone is more accurate than a network learned with any of the three methods that

make use of the data. While the resulting network itself would not be particularly

interesting — it would only contain a very small number (3 or 4) of the highest

scoring edges — this observation is nevertheless interesting and can be explained

as follows. The discrepancy between the UGE and DGE scores indicates that the

Bayesian network learns the skeleton of the graph more accurately than the direc-

tion of the interactions, with some of the edge directions systematically inverted.

A possible explanation is errors in the gold standard network.

The recent literature describes evidence for a negative feedback loop between

Raf and ERK via MEK. Active Raf phosphorylates and activates MEK, which

in turn activates ERK. This corresponds to the directed regulatory path shown

in Fig. 3. However, through a hypothesized negative feedback mechanism involving

ERK, Raf is phosphorylated on inhibitory sites, generating an inactive, desensitized

Raf. Details can be found in Dougherty et al.23 This feedback loop is not included

in the gold standard network reported by Sachs et al.,22 shown in Fig. 3. Such as-

yet unaccounted feedback loops, as suggested in Dougherty et al.,23 could explain

systematic deviations between the predicted and the gold standard network, not

only because the structure of a Bayesian network is constrained to be acyclic, but

also because we ultimately do not have a reliable gold standard to assess the quality

of the predictions. This example points to a fundamental problem inherent in any

evaluation based solely on real biological data, and illustrates clearly the advantage

of our combined evaluation based on both laboratory and simulated data.

It is obviously of interest to investigate the accuracy of the inference of the

hyperparameters β0 and β1, especially as this inference depends on the partition

function Z of Eq. (6), which can only be computed approximately (see Eq. (11)). To

this end, we repeated the MCMC simulations for a large set of fixed values of β0 and

β1, selected from the grid [0, 20]× [0, 20]. For each pair of fixed values (β0, β1), we

sampled Bayesian networks from the posterior distribution with MCMC, and eval-

uated the network reconstruction accuracy using the evaluation criteria described

in Sec. 5. We compared these results with the proposed Bayesian inference scheme,

where both hyperparameters and networks are simultaneously sampled from the

posterior distribution with the MCMC scheme discussed in Sec. 2.2. The results

are shown in Fig. 5. The gray shading of the contour plots indicates the network
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560 A. V. Werhli & D. Husmeier

Fig. 5. Learning the hyperparameters associated with the prior knowledge from KEGG on simu-
lated Netbuilder data and real flow cytometry data. The MCMC simulations described in Sec. 2.2
were repeated twice: for a large set of fixed values of the hyperparameters β0 and β1, and with
the hyperparameters sampled from the posterior distribution with MCMC, using Eqs. (14) and
(15). The gray shading of the contour plots represents the mean area under the ROC curve
(AUC value) — averaged over five different data sets — as a function of the fixed values of the
hyperparameters β0 and β1. The black dots show the values of these hyperparameters that were
sampled in the MCMC simulations. The top row shows the results obtained on the simulated data.
The bottom row shows the results obtained on the real flow cytometry protein concentrations.
The left column shows the results for the directed graph evaluation (DGE), while the column on
the right shows the results obtained when ignoring edge directions and only taking the skeleton
of the network into account (UGE: undirected graph evaluation).

reconstruction accuracy in terms of DGE and UGE, obtained from the synthetic

(top panels) and real cytometry data (bottom panels). The black dots show the

hyperparameter values sampled with the MCMC simulations. While the distribu-

tion of β0, the hyperparameter associated with the non-edges, is fairly peaked, the

distribution of β1, the hyperparameter associated with the edges, is rather diffuse.
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This diffusion is particularly noticeable on the synthetic data. However, even on the

real cytometry data, the distribution of β1 has a long tail, with values being sampled

across the whole permissible spectrum. An inspection of the prior knowledge matrix

B extracted from KEGG according to Eq. (26) reveals that the prior knowledge

associated with the energy function E1 — Eq. (4) — accounts for only 25% of the

true edges in the gold standard network of Fig. 3, while the prior knowledge associ-

ated with the energy function E0 — Eq. (3) — accounts for 92% of the non-edges.

Consequently, it appears that E0 captures more relevant information for network

reconstruction than E1, which is reflected by the tighter distribution of the respec-

tive hyperparameter. The location of the sampled values of the hyperparameters

β0 and β1 falls into the region of high network reconstruction scores. This suggests

that the proposed Bayesian sampling scheme succeeds in finding hyperparameter

values that lead to a high network reconstruction accuracy. A certain deviation

from the optimal reconstruction would be expected owing to the approximation

made for computing the partition function (see Eq. (11)). However, this deviation

is small for both scores (UGE and DGE) on the synthetic data, and for the UGE

score on the cytometry data. A noticeable deviation occurs for the DGE score on

the cytometry data, though (see Fig. 5, bottom left panel). This deviation indicates

a systematic mismatch between the DGE score and the posterior probability of the

hyperparameters, which suggests that the cytometry data do not support all of

the edge directions in the gold standard network of Fig. 3. Two possible explana-

tions are either wrong edge directions in the gold standard network or the existence

of as-yet unaccounted feedback loops, in confirmation of what has been discussed

above.

7. Results B: Integrating Data Under Different Experimental

Conditions

The objective of our second simulation study was the assessment of the method pro-

posed in Sec. 3, where the aim is the integration of disjunct data sets corresponding

to different experimental conditions.

7.1. Inferring the hyperparameters

Figure 6 shows various MCMC trace plots obtained on the linear Gaussian data,

where the columns refer to different simulations. The first row shows trace plots

of the log-likelihood,b while the remaining rows show trace plots of the hyper-

parameters βi associated with the different data sets. The question of interest is

whether the proposed method can identify the corrupted data set (pure noise),

bBy “likelihood”, we refer to the expression in Eq. (16), which strictly speaking should be called
the joint probability of the probabilistic model defined in Fig. 1.
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Fig. 6. MCMC trace plots for Gaussian data. The columns represent different simulations. The first
row shows trace plots of the log-likelihood of Eq. (16), while the remaining rows show trace plots
of the hyperparameters βi associated with the five different data sets used. These data sets are of
a different nature. Random: Corrupted data consisting of pure noise. True: Data sets generated

from the gold standard Raf network, shown in Fig. 3. Modified: Data generated from the modified
Raf network, in which four edges had been deleted, as described in the text. Note that insufficient
convergence of the MCMC simulation represented by the first column is clearly indicated by the
low likelihood scores (top row). The columns on the right show trace plots of MCMC simulations
with significantly improved convergence; however, mixing problems are still evident, as indicated
by the transitions between alternate stretches of high and low values of the hyperparameters β0

and β1. All MCMC simulations were run for 5 × 105 Metropolis–Hastings steps.

and distinguish between the data generated from the true network and those

generated from the modified network. The first simulation (column 1) fails in

this respect. In fact, the value of the hyperparameter βrand associated with the

corrupted data consistently exceeds the values of the other hyperparameters. How-

ever, the log-likelihood is consistently low, suggesting that the MCMC simulations

have not yet converged. This conjecture is corroborated by the second simula-

tion, which shows a behavior similar to the first simulation at the beginning,

but then undergoes a sharp phase transition, during which βrand is suddenly sup-

pressed while the other hyperparameters shoot up to high values. A concomitant

transition in the log-likelihood indicates that the Markov chain is escaping from
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Fig. 7. MCMC trace plots for Netbuilder data. The graphs correspond to those of Fig. 6, but were
obtained on the nonlinear synthetic data rather than the Gaussian data. See the caption of Fig. 6
for further details.

a metastable low-probability state in which it was trapped. The two remaining

simulations, corresponding to columns 3 and 4 of Fig. 6, show a better conver-

gence from the outset, with βrand being consistently suppressed, and the hyper-

parameter associated with the modified network taking on values below those of

the hyperparameters associated with the true network. A similar behavior can be

found in Fig. 7, which was obtained from four MCMC simulations on the nonlinear

synthetic data.

Figure 8 shows the estimated posterior distributions of the five hyperparame-

ters for the best-converged MCMC simulations on both the linear and nonlinear

synthetic data. These plots suggest that the proposed method succeeds in iden-

tifying the corrupted data, whose associated hyperparameter is significantly sup-

pressed, as well as the data generated from the modified network. In the latter case,

the distribution of the respective hyperparameter is shifted to lower values than

the distributions of the hyperparameters associated with the true network. The

amount of shift varies between the two data sets, which we suspect is more related

to different degrees of convergence of the Markov chains than intrinsic differences

between the linear and nonlinear data. The upshot of this study is that the proposed
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Fig. 8. Posterior distributions of the hyperparameters. These figures show the posterior distri-
butions of the five hyperparameters β1, . . . , β5, estimated with a kernel estimator applied to the
samples obtained from the MCMC simulations with the best convergence characteristic, that is,
column 3 in Fig. 6, and column 3 in Fig. 7. (a) Linear Gaussian data. (b) Nonlinear data generated
with Netbuilder. The different line styles correspond to the different data types, as described in
the text and the caption of Fig. 6. Note that the figure shows the qualitatively correct behavior
of the hyperparameter distributions. The distribution of β1, which is associated with the random
data, is centered on small values close to zero. The hyperparameters β2, β3, and β4, which are
associated with the true data, have a broad distribution reaching up to very large values. The
distribution of β5, which is associated with the modified network, is expected to lie between these
two distributions, and this is in fact borne out in our simulations. However, there is some dis-
agreement between the two panels with respect to the exact format of the latter distribution;
this disagreement is most likely a consequence of the poor mixing and insufficient convergence
of the Markov chains. If the MCMC simulations were to be run until proper convergence (at
increased computational costs), one would expect that the discrepancies between the two panels
would disappear.

method works successfully, but convergence problems of the MCMC simulations can

become an issue. One problem in our first set of simulations was that we initialized

all networks as empty graphs. This gives the hyperparameter associated with the

corrupted data a certain “headstart”: high-scoring networks inferred from the cor-

rupted data will only contain a few edges, as there are no true associations between

randomized nodes. This makes these networks similar to the hypernetwork (which

was initialized as an empty graph), explaining the high value of βrand at the begin-

ning of some of our simulations. A better strategy is to pretrain the individual

networks, e.g. using a greedy optimization, and setting the hypernetwork to their

consensus network. While this has led to a modest improvement, there is still con-

siderable scope for the development of more efficient MCMC sampling schemes, as

discussed in Sec. 8.
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7.2. Network reconstruction

We are particularly interested in whether the proposed coupling scheme leads to any

improvement in terms of network reconstruction accuracy over the two alternative

approaches described above: learning a single network from a merged, monolithic

data set; and learning separate networks from the individual data sets without cou-

pling. In what follows, we will refer to these methods as the monolithic and the

uncoupled approaches, respectively. To summarize the results succinctly, we take

the area under the ROC curve as a performance criterion, for both the DGE and

the UGE scores, with larger areas indicating a better performance. The results are

shown in Fig. 9. They indicate that the proposed coupling scheme consistently out-

performs the other two approaches. The improvement is most pronounced on the

synthetic Gaussian data. For these data, the control strength parameters associ-

ated with the edges in the regulatory network — wik of Eq. (25) — were different

for each individual data set, which implies that even when the network structure

itself did not change, the nature of the associated regulation processes could vary in

both strength and sign (corresponding to an activation versus an inhibition). This
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Fig. 9. Network reconstruction accuracy. The histograms and the table show a comparison of the
network reconstruction accuracy in terms of AUC (area under the curve) scores for three different
methods: the monolithic approach (black), the uncoupled approach (light gray), and the proposed
Bayesian coupling scheme (dark gray); see the main text for further details. The three panels
correspond to different data sets: linear Gaussian synthetic data (left panel), nonlinear synthetic
data generated with Netbuilder (central panel), and protein concentrations from cytometry exper-
iments (right panel). Each panel contains two histograms, evaluating only the reconstruction of
the skeleton of the graph (UGE score) and additionally taking the edge direction into account
(DGE score).
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explains the poor performance of the monolithic approach, which intrinsically does

not allow for any such variation. The difference in performance is less pronounced

for the nonlinear synthetic data generated with Netbuilder, where only the instan-

tiation of the noise rather than the parameters associated with the edges differed

between different data sets. It appears that the slight performance improvement

obtained with the proposed method is mainly a consequence of the inclusion of

the corrupted data, whose influence is suppressed as a consequence of the adapta-

tion of the associated hyperparameter, as discussed in the previous subsection. For

the cytometry data, the amount of performance improvement achieved with the

proposed method lies between the two synthetic data sets, with the improvement

being more noticeable for the reconstruction of the skeleton of the graph (UGE

score) than the reconstruction of the edge directions (DGE score).

7.3. Convergence of the Markov chains

A possible reason for the occasionally only modest performance improvement of the

proposed method over the two alternative approaches is a lack of convergence of the

MCMC simulations. Convergence problems have already been discussed in Sec. 7.1,

and become more obvious in Fig. 10. The panels in this figure show scatter plots of
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Fig. 10. MCMC convergence indication. Each of the two panels shows a scatter plot of the marginal
posterior probabilities of the edges, obtained from two separate MCMC simulations applied to a
subset of the nonlinear synthetic Netbuilder data. (a) The conventional approach, which aims
to learn a separate Bayesian network from each subset of the data. (b) The proposed method,
whereby Bayesian networks learned from different subsets of the data are coupled. The scatter plot
was obtained from one of these coupled networks, corresponding to one of the Mi’s in Fig. 1. For
the conventional scheme, there is a clear consistency between the results from the two independent
MCMC simulations, that is, there is no indication of any convergence difficulties. For the proposed
coupling scheme, however, the marginal posterior probabilities obtained from the two independent
MCMC simulations differ, which indicates a lack of convergence.
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the marginal posterior probabilities of the edges obtained from two separate MCMC

simulations, started from different initializations. Figure 10(a) was obtained from

the conventional uncoupled MCMC scheme. The marginal posterior probabilities

obtained from two independent simulations are very similar, indicating consistency

of the predictions irrespective of the initialization. However, Fig. 10(b) — obtained

from the proposed coupling scheme — shows a noticeable difference between the

two independent MCMC simulations, which clearly indicates a lack of convergence.

This behavior was found consistently throughout our simulations.

To shed more light on the convergence characteristics, we computed the average

acceptance ratios of the MCMC moves during the whole simulation. Table 1 shows

the acceptance ratios for the conventional scheme without coupling. Table 2 shows

the acceptance ratios for the proposed coupling scheme. A comparison between

Table 1. MCMC acceptance ratios for uncoupled learning
of network structures. This table shows the MCMC accep-
tance ratios (in percent) for the conventional scheme in
which network structures M1 to M5 are learned indepen-
dently from separate data sets. The higher acceptance ratio
in the first row results from the fact that M1 was learned
from random data, where the likelihood surface is relatively
flat. The higher acceptance ratio in the last column results
from the smaller sample size of the cytometry data (20
rather than 100 exemplars), which again leads to a flatter
likelihood surface.

Network Gaussian Netbuilder Cytometry

M1 54.4 54.4 55.9
M2 13.0 13.7 33.9
M3 13.4 15.3 24.9
M4 15.2 15.2 32.0
M5 12.8 13.5 31.6

Table 2. MCMC acceptance ratios for the proposed
Bayesian coupling scheme. This table is to be compared
with Table 1. It shows the MCMC acceptance ratios (in
percent) for learning five network structures M1 to M5

from five separate data sets. As opposed to Table 1, the
networks are coupled via a hypernetwork M⋆ according to
the proposed coupling scheme illustrated in Fig. 1. It is
seen that as a consequence of this coupling, the MCMC
acceptance probabilities have substantially decreased.

Network Gaussian Netbuilder Cytometry

M1 25.6 18.5 0.4
M2 1.2 2.3 14.2
M3 0.3 2.7 2.7
M4 0.05 2.4 13.3
M5 1.2 4.4 1.8
M⋆ 4.5 11.0 10−3
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these two tables suggests that as a consequence of coupling, the acceptance prob-

abilities have significantly decreased. This can be understood intuitively in that

as a result of coupling, a local modification of a network structure is penalized

not only when moving into regions of lower posterior probability, but also when

increasing the difference between the network structures. The result is a higher

rigidity of the Markov chain, which shows poorer mixing and convergence than the

uncoupled scheme. A possible approach to deal with this rigidity is to adopt a sim-

ulated annealing scheme. Alternatively, more sophisticated sampling schemes could

be explored, as briefly discussed below.

8. Conclusion

Our paper complements the work of Imoto et al.11 on improving the reconstruc-

tion of regulatory networks from postgenomic data by the systematic integration

of prior knowledge. The idea is to express the prior knowledge in terms of energy

functions, from which a prior distribution over network structures is obtained in the

form of a Gibbs distribution. The hyperparameters of this distribution represent the

weights associated with the various sources of prior knowledge relative to the data.

We have developed a Bayesian approach to inferring these hyperparameters, based

on MCMC. We have tested the viability of this approach by trying to reconstruct

the Raf pathway from flow cytometry protein concentrations and prior knowledge

from KEGG. As an independent source of validation, we repeated the evaluation on

synthetic data generated from the gold standard network. Our findings suggest that

the Bayesian integration scheme systematically improves the network reconstruc-

tion over approaches that use either the protein concentrations only or the prior

knowledge from KEGG alone. Also, the hyperparameters are sampled in regions

close to those that yield the best possible network reconstruction, suggesting that

the ideal gas approximation made for computing the partition function does not

adversely affect the performance of the scheme. Learning the undirected skeleton

graph from the cytometry data led to results that were systematically better than

those obtained when learning the directed graph from these data, though. This

difference between the directed and undirected graph reconstruction did not occur

on the synthetic data, which suggests that either certain edge directions in the gold

standard network are wrong or certain feedback loops are missing, in corroboration

of the findings reported by Dougherty et al.23

Our simulations did not achieve any improvement in terms of network recon-

struction accuracy over our earlier scheme described in Werhli and Husmeier,19

in which no distinction between present and absent interactions in the network

had been made. This suggests that more flexibility in the presentation of the prior

knowledge does not automatically guarantee a performance improvement. One of

the reasons for this lack of improvement is presumably related to the fact that most

of the useful prior information was contained in the absence of edges, whereas only
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little information was contained in the presence of interactions (as suggested by

Fig. 5). The decision of whether an edge is present or absent depends on the choice

of the threshold, though, which was rather arbitrarily set to a fixed value of 0.5

(see Eqs. (9) and (10)). A different choice of threshold parameter might have led

to a smaller disparity between the two subsets of edges with respect to the infor-

mation content, which suggests that sampling this parameter from the posterior

distribution with MCMC might have led to a clearer performance enhancement.

This further suggests, on a more general basis, that the flexibility and presentation

of the prior knowledge about network structures, e.g. related to the subdivision of

nodes and edges into subgroups, could be included in the MCMC scheme, which

would provide an interesting avenue for future research.

In the present work, we have also proposed a Bayesian coupling scheme for

learning gene regulatory networks from a combination of related data sets, which

were obtained under different experimental conditions and are therefore potentially

associated with different active subpathways. The proposed coupling scheme is a

compromise between two extreme scenarios: (1) learning networks from the differ-

ent subsets separately, whereby no information between the different experiments

is shared; and (2) learning networks from a monolithic fusion of the individual data

sets, which does not provide any mechanism for uncovering differences between the

network structures associated with the different experimental conditions. Our pro-

posed method combines the flexibility of the first approach with the data-merging

aspect inherent in the second approach. The essential idea is that the networks

associated with the different experimental conditions are softly constrained to be

similar, where the strength of this constraint is defined by a hyperparameter that is

automatically inferred from the data. Inference of these hyperparameters as well as

the network structures is carried out in the Bayesian framework by approximately

sampling from the posterior distribution with MCMC.

We have tested the proposed method on three types of data related to the Raf

signaling pathway: two synthetic data sets, generated from the gold standard net-

work, either under a linear Gaussian distribution or under a nonlinear distribution

using Netbuilder; and real protein concentrations from cytometry experiments. Our

results can be summarized as follows. Given sufficient convergence of the MCMC

simulations, a random data set deliberately included with the proper data is clearly

detected. The hyperparameter associated with the random data is automatically

set to very small values; this suggests that the proposed Bayesian coupling scheme

is effective in switching off the influence of corrupted data. A data set generated

from a modified network structure is also automatically detected. The associated

hyperparameter is sampled from a distribution placed between those associated

with the random data and the data from the unmodified network, successfully dis-

tinguishing it from both. In terms of network reconstruction accuracy, the proposed

Bayesian coupling scheme consistently outperformed the two competing approaches.

The performance difference was most noticeable on those synthetic data where the
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individual data sets corresponded to different activation levels of the regulatory

subpathways (owing to different settings of the interaction parameters). The differ-

ence was less pronounced when only adding corrupted data to data from homoge-

neous experimental (cytometry data) or simulation (Netbuilder) conditions.

A problem intrinsic to Method B, the data integration coupling scheme of Sec. 3,

is a deterioration of the convergence and mixing of the Markov chain. In fact, some

of the results presented in the second study, described in Sec. 7, were obtained from

MCMC simulations that had incompletely converged, suggesting that the perfor-

mance improvement achieved with coupling could be further improved upon proper

convergence. Unfortunately, this aspect has to be left to future research; the present

paper was invited to be submitted to a special issue of the journal, which required

the study to be completed by a given deadline. As future research, we will explore

novel proposal moves, which swap substructures between the individual networks

and the hypernetwork, allowing the latter to change in a more systematic way at

(hopefully) a higher acceptance probability. The running of parallel Metropolis-

coupled Markov chains, as described in Geyer33 and Gilks et al.34 and successfully

applied in phylogenetics,35 will also be attempted, especially as it will allow the

exploitation of modern PC clusters, and might offer ways to more efficiently design

highly accepted proposal moves based on information obtained from the whole

population of Markov chains.36
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