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ABSTRACT
We propose an algorithm for selecting and clustering
genes according to their time-course or dose–response
profiles using gene expression data. The proposed
algorithm is based on the order-restricted inference
methodology developed in statistics. We describe the
methodology for time-course experiments although it is
applicable to any ordered set of treatments. Candidate
temporal profiles are defined in terms of inequalities
among mean expression levels at the time points. The
proposed algorithm selects genes when they meet a
bootstrap-based criterion for statistical significance and
assigns each selected gene to the best fitting candidate
profile. We illustrate the methodology using data from a
cDNA microarray experiment in which a breast cancer
cell line was stimulated with estrogen for different time
intervals. In this example, our method was able to iden-
tify several biologically interesting genes that previous
analyses failed to reveal.
Contact: peddada@embryo.niehs.nih.gov

INTRODUCTION
A number of methods have been proposed for selecting
genes that exhibit interesting changes in expression
between classes of samples. Depending on the data
available, any of these methods can be employed to select
genes that are differentially expressed across time points.
Examples of these methods include the standard two-
sample t-test and its modifications (Golubet al., 1999;
Long et al., 2001; Tusheret al., 2001) and a confidence
interval method (Chenet al., 1997). A different approach
to the selection of a subset of discriminative genes is the

∗To whom correspondence should be addresed.
† Present address: Amgen Inc. Thousand Oaks, CA 91320, USA.

multivariate genetic algorithm/k-nearest neighbors
methodology (Liet al., 2001a,b).

An important application of microarray technology is to
study patterns of gene expression across a series of time
points or of doses levels. The premise is that genes sharing
similar expression profiles might be functionally related or
co-regulated. Therefore, microarray data may provide in-
sight into gene–gene interactions, gene function and path-
way identification. In toxicogenomics, these studies can
also provide information about the dynamic responses of
cells (tissues) to chemical insults (Hamadehet al., 2001).
We focus on time-course studies although our methodol-
ogy is applicable to dose-response studies as well. None
of the previously mentioned methods, however, take ad-
vantage of the ordering in a time-course study. In contrast
to those methods, explicit use of the temporal ordering
should allow more sensitive detection of genes that dis-
play a consistent pattern over time.

Some authors have developed correlation-based meth-
ods for clustering genes with similar temporal profiles
(Chu et al., 1998; Heyeret al., 1999). Chuet al. (1998)
applied their methodology to select genes from a yeast
cell line into seven temporal patterns of expression. Their
approach pre-identifies a few candidate temporal profiles
along with a sample of three to eight genes per profile.
Using these template genes, they estimate the mean
expression at each time point for each profile. Thus, each
candidate profile is defined by an estimated time-course
curve. Each remaining gene is then either assigned to
one of the candidate profiles or not assigned into any, de-
pending upon the magnitude of the correlation coefficient
between the gene’s experimentally determined profile
and each of the candidate profiles. Heyeret al. (1999),
employing a jack-knifed correlation coefficient, also pro-
posed a procedure for clustering genes from time-course
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Fig. 1. (a) Two genes with similar profiles (maxima at 24 hours)
that may not be clustered together by correlation-based methods.
(b) Two genes with different profiles (monotone versus up–down)
that are likely to be clustered together by correlation-based methods.

experiments. Although their basic procedure did not
require candidate profiles, they describe a modification
where the clustering algorithm is seeded with candidate
profiles.

Correlation-based procedures using candidate profiles
require the scientist to specify expression levels defining
each profile in advance. This requirement means that
researchers must estimate each candidate profile using a
small sample of handpicked genes. More importantly, the
clustering that results depends upon the genes initially
chosen as templates; thus, important genes may be
missed. Furthermore, the sample size for each correlation
coefficient is the number of time points, not the number
of actual observations. The correlation coefficient may
not be a reliable measure of association when an experi-
ment has few time points. Moreover, a large correlation
coefficient does not necessarily indicate two similarly
shaped profiles, nor does a small correlation coefficient
necessarily indicate differently shaped profiles. Figure 1a
and b each shows hypothetical mean expression levels for
two genes at six time points. The two genes in Figure 1a
arguably display similar patterns, in that both attain a peak
value at the 4th time point. Yet their correlation coefficient
is only 0.58, suggesting that they might not be grouped
together by correlation-based methods. On the other hand,
the two genes in Figure 1b display apparently different
patterns over time. One increases monotonically whereas
the other has a peak at the 4th time point, yet they have
a high correlation coefficient of 0.87 and would likely
be clustered together by a correlation-based approach.
Thus, correlation-based methods may either miss some
important genes or cluster genes with different profiles.

Herein, we propose an alternative methodology to se-
lect and cluster genes using the ideas of order-restricted
inference, where estimation makes use of known inequali-
ties among parameters. The first step is to define potential
candidate profiles of interest and to express them in terms
of inequalities between the expected gene expression lev-
els at various time points. For a given candidate profile,
we estimate the mean expression level of each gene using
the procedure developed in Hwang and Peddada (1994).
The best fitting profile for a given gene is then selected
using the goodness-of-fit criterion and the bootstrap test
procedure developed in Peddadaet al. (2001). A pair of
genesg1 andg2 fall into the same cluster if all the inequali-
ties between the expected expression levels at various time
points are the same, that is, if they follow the same tempo-
ral profile. In this sense, the genes of Figure 1a are similar,
while those of Figure 1b are not. Our procedure is less
restrictive than those that define profiles via pre-specified
expression levels because only the general shape of the
profile is needed.

METHODOLOGY
Suppose a time-course experiment includesT time points
denoted by 1, 2, . . . , T , and at each time point there are
M arrays, each withG genes. LetYigt denote thei th
expression measurement taken on geneg at time point
t . Let Ȳgt denote the sample mean of geneg at time
point t and letȲg = (Ȳg1, Ȳg2, . . . , ȲgT )′. The unknown
true mean expression level of geneg at time pointt is
E(Ȳgt ) = µgt . Inequalities between the components of
µg = (µg1, µg2, . . . , µgT )′ define the true profile for
geneg. Our procedure seeks to match a gene’s true profile,
estimated from the observed data, to one of a specified set
of candidate profiles.

Examples of inequality profiles are given below. For
simplicity, we often drop the subscriptg.

Null profile: C0 = {µ ∈ RT : µ1 = µ2 = · · · = µT }.
Monotone increasing profile (simple order):

C = {µ ∈ RT : µ1 � µ2 � · · · � µT } (1)

(with at least one strict inequality). One may similarly
define amonotone decreasing profile by replacing� by
� in Equation (1).

Up–down profile with maximum at i (umbrella order):

C = {µ ∈ RT : µ1 � µ2 � · · · � µi � µi+1 � · · · � µT }
(2)

(with at least one strict inequality amongµ1 � µ2 �
· · · � µi and one amongµi � µi+1 � · · · � µT ).

Genes satisfying this profile have mean expression
values non-decreasing in time up to time pointi and
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non–increasing thereafter. One may similarly define a
down–up profile with minimum at i .

Cyclical profile with minima at 1, j , and T and maxima at
i and k:

C = {µ ∈ RT : µ1 � µ2 � · · · � µi � µi+1 � · · ·
� µ j � µ j+1 � · · · � µk � µk+1 � · · · � µT }

(3)

(with at least one strict inequality among each monotone
sub-profile). Cyclical profiles may be important in long
time-course experiments where the mean expression value
could oscillate.

Incomplete inequality profiles:

C = {µ ∈ RT : µ1 � µ2 � · · · � µi , µi+1 � · · ·
� µ j , µ j+1 � · · · � µk, µk+1 � · · · � µT } (4)

(with at least one strict inequality among each monotone
sub-profile). Profiles like Equation (4) are useful when
the investigator is unable to specify inequalities between
certain means.

For compactness, we dropµ ∈ RT and the phrase ‘with
astrict inequality’.

DEFINITION 1. Two parameters in a given profile are
said to belinked if the inequality between them is specified
a priori.

DEFINITION 2. For a given profile, a parameter is said
to benodal if it is linked with every other parameter in the
profile.

For example, µi is the only nodal parameter in
Equation (2) while there are no nodal parameters in
Equation (3).

DEFINITION 3. Define the�∞ norm of an estimated
profile as the maximum difference between the estimates
of two linked parameters.

Other norms could replace�∞. Our choice is motivated
by its connection to well-known procedures for order-
restricted inference. For example, Williams’ test for trend
in normal means (Williams, 1977) and Dunnett’s multiple
comparison test procedure (Dunnett, 1955) are based on
�∞ norm. In the case of profile Equation (2),�∞ =
max{µ̂i − µ̂1, µ̂i − µ̂T }, where µ̂ j is an estimate of
µ j , j = 1, 2, . . . , T .

DEFINITION 4. An inequality sub-profile Ci within a
profile C is described by the inequalities between the
components of the sub-vectorµi = (µi1, µi2, . . . , µis ),
where{i1, i2, . . . , is} ⊆ {1, 2, . . . , T }.

The proposed algorithm
STEP 1. Pre-specify a collection of candidate profiles.

Denote these profiles byC1, C2, . . . , C p.

EXAMPLE 2.1. Suppose an experiment consists of four
time points at 1, 2, 3 and 4 hours, and we are interested
in identifying genes belonging to either of the following
profiles:C1 = {µ ∈ RT : µ1 � µ2 � µ3 � µ4}, C2 =
{µ ∈ RT : µ1 � µ2 � µ3 � µ4}.

For each geneg, g = 1, 2, . . . , G, perform the follow-
ing steps.

STEP 2. Obtain the estimates ofµg1, µg2, . . . , µgT
under each of the candidate profilesC1, C2, . . . , C p using
Hwang and Peddada (1994). See the Appendix for details.

EXAMPLE 2.1 (CONTINUED). Suppose the sample
mean expression levels of a gene at the four time points
are 0.2, 0.4, 0.8, and 0.5, respectively. Assume the sample
sizes are equal for all time points.

Estimation under C1 Sinceµ2 is the only nodal parame-
ter in C1, we first estimateµ2. Maintaining all the known
inequalities in C1 and assigning arbitrary inequalities
where they are unknown, we takeµ4 � µ1 � µ3 � µ2.
Using formula (A2) in the appendix, we obtain̂µ2 = 0.6.
Now estimateµ3 and µ4, nodal parameters in the sub-
profile µ4 � µ3 � µ2, andµ1, a nodal parameter in the
sub-profileµ1 � µ2. Using Equation (A3) and (A4) in
the appendix, we obtain̂µ1 = 0.2, µ̂3 = 0.6, µ̂4 = 0.5.

Estimation under C2 In this case,µ̂1 = 0.2, µ̂2 =
0.4, µ̂3 = 0.8, µ̂4 = 0.5.

STEP 3. For eachCi , i = 1, 2, . . . p, compute�g(i)∞ . Let
r be such that�g(r)∞ = maxi �

g(i)∞ .

EXAMPLE 2.1 (CONTINUED). Here�
g(1)∞ = 0.4, �

g(2)∞ =
0.6, hence�g(r)∞ = 0.6 andr = 2.

STEP 4 (BOOTSTRAP NULL DISTRIBUTION).
Assuming that the true means and variances are the
same at every time point, drawN bootstrap samples.
Each bootstrap sample is obtained as follows. Combine
the actual observations from all the time points into a
vector of lengthMT and drawT simple random samples
with replacement, each of sizeM . Repeat Steps 2 and
3 for each bootstrap sample. This results in a bootstrap
distribution for maxi �

g(i)∞ , which is used for testing

H0 : µ ∈ C0, Ha : µ ∈
p⋃

i=1

Ci (5)
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Fig. 2. Estimated profiles of the selected top 50 genes. Curves represent order-restricted estimates of mean log expression ratios. Vertical
lines correspond to the six time points.

STEP 5. Assign geneg to profile Cr if �
g(r)∞ � z∗

α,
where z∗α is the upperαth percentile of the bootstrap

distribution derived in Step 4. If�g(r)∞ � z∗
α or if two

profiles are tied then do not classifyg into any of thep
profiles.

STEP 6. Repeat Steps 2–5 with every gene.

STEP 7 (OPTIONAL). Some genes selected by the
above process may have small mean expression levels
at each time point. Some investigators may want to
restrict attention to those genes that have large expression
levels at one time point at least. If so, we suggest the
following filtering process. If the data are centered, then
for each geneg selected after Step 6, lettg = ∑T

i=1 µ̂2
i ;

alternatively, let

tg =
T∑

i=1

(µ̂i − ¯̂µ)2, where ¯̂µ = 1

T

T∑
i=1

µ̂i .

Large values oftg indicate that the mean expression of
geneg is high for at least one time point. Arrange the
genes in descending order oftg and retain the topR genes.

APPLICATION TO BREAST CANCER CELL
LINE DATA
We illustrate the proposed methodology using log-
transformed relative expression data from Lobenhoferet
al. (2002). In that study, the MCF-7 breast cancer cell
line was treated with 17β-estradiol or ethanol (vehicle
control). Samples were harvested at 1, 4, 12, 24, 36 and
48 hours after treatment. At each time pointM = 8
hybridizations were performed. Each array consisted of
G = 1900 genes. For each gene, we assumed that the
variance of the log relative expression was homoscedastic
over time. For each geneg, we tested Equation (5) where
the alternative hypothesis is the union of the following 10
profiles: monotone decreasing,C1; monotone increasing,
C2; four up–down profiles with maxima at 4, 12, 24, 36
hours,C3–C6, respectively; and 4 down–up profiles with
minima at 4, 12, 24, and 36 hours,C7–C10, respectively.

Using Steps 1–6 withN = 50 000, we obtained 124
genes with ap-value�0.0025. Of these, 10 were clustered
into C1, 14 into C2, four into C3, 31 into C4, 12 into
C5, one intoC7, nine into C8, 34 into C9 and nine into
C10. Applying Step 7 we selected the top 50 genes among
these 124. These 50 genes display nine of the 10 candidate
profiles (Table 1, Fig. 2).
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Table 1. Genes classified according to inequality profile

Clone ID Gene name Functional category Previously identified

Decreasing with maximum at 1 hour
417226 v-myc viral oncogene homolog Transcription/Chromatin Structure Yes

Up–Down with maximum at 4 hours
110022 Cyclin D1 Cell Cycle Yes
428733 Protein kinase C, delta Cellular Signaling Yes
362059 Laminin, alpha 3, kalinin, epilegrin Extracellular Matrix/Cell Structure Yes
417503 EST Unknown Yes
248613 v-myb viral oncogene homolog Transcription/Chromatin Structure No

Up–Down with maximum at 12 hours
563187 CDC6 Cell Cycle Yes
321207 Polymerase (DNA directed), epsilon DNA Replication/Repair Yes
196676 Replication factor C (activator 1) 4 DNA Replication/Repair No

Up–Down with maximum at 24 hours
129140 MAD2L1 Cell Cycle Yes
248008 Deoxythymidylate kinase Cell Cycle Yes
489092 Deoxythymidylate kinase Cell Cycle No
285427 CSE1L Cell Cycle Yes
359119 CDC28 protein kinase 2 Cell Cycle Yes
415639 Serine/threonine kinase 15 Cell Cycle Yes
488059 Tubulin, gamma 1 Cell Cycle Yes
563809 CDC20 Cell Cycle Yes
293274 Cyclin-dependent kinase inhibitor 3 Cell Cycle No
49950 Flap structure-specific endonuclease 1 DNA Replication/Repair Yes
346838 Minichromosome maintenance deficien 3 DNA Replication/Repair Yes
359465 Dihydrofolate reductase DNA Replication/Repair Yes
487757 Ligase I, DNA, ATP-dependent DNA Replication/Repair Yes
49940 Replication factor C (activator 1) 5 DNA Replication/Repair No
52713 Vitronectin Extracellular Matrix/Cell Structure Yes
339075 Karyopherin alpha 2 Protein Degradation/Synthesis/Targeting Yes
136609 v-myb homolog-like 1 Transcription/Chromatin Structure Yes
198205 v-myb homolog-like 2 Transcription/Chromatin Structure Yes
229509 coagulation factor V Miscellaneous No
200573 EST Unknown Yes
366842 EST Unknown No

Up–Down with maximum at 36 hours
264117 Cathepsin D Cell Cycle Yes
150163 Neuropeptide Y receptor Y1 Cellular Signaling Yes
238545 ADP-ribosylation factor-like 3 Cellular Signaling Yes
242182 Protein kinase inhibitor beta Cellular Signaling Yes
509614 High-mobility group protein 1 Transcription/Chromatin Structure Yes
510595 Lactate dehydrogenase A Miscellaneous Yes
470480 Autocrine motility factor receptor Miscellaneous No

Down-Up with minimum at 4 hours
487407 Insulin induced gene 1 Miscellaneous Yes

Down–Up with minimum at 12 hours
361381 Myeloid cell leukemia sequence 1 Apoptosis Yes
145093 Myeloid cell leukemia sequence 1 Apoptosis No
485875 EFEMP1 Extracellular Matrix/Cell Structure Yes
34821 CHRNA 4 Miscellaneous Yes

Down–Up with minimum at 24 hours
359191 Protein kinase H11 Cellular Signaling Yes
180789 Low density lipoprotein-related protein 1 Protein Degradation/Synthesis/Targeting Yes
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Table 1. Continued.

Clone ID Gene name Functional category Previously identified

162479 E74-like factor 3 Transcription/Chromatin Structure Yes
430235 H2B histone family, member Q Transcription/Chromatin Structure Yes
545242 STAT 1 Transcription/Chromatin Structure Yes
268652 p21/CIP 1 Cell Cycle No

Down–Up with minimum at 36 hours
29682 Protein kinase C binding protein 1 Cellular Signaling Yes
365147 v-erb-b2 homolog 2 Cellular Signaling No

The confidence-interval approach of Chenet al.
(1997) identified 105 genes that demonstrated estrogen-
responsive expression (Lobenhoferet al., 2002). Of these
105, 39 were also among our top 50. Most of the 39 genes
selected in common are involved in cell cycle progression
and DNA replication (Lobenhoferet al., 2002), reflecting
the known sensitivity of MCF-7 cells to estrogen.

Most of our 11 newly identified genes also display
typical phenotypes for estrogen-treated MCF-7 cells. For
example, one initial step in DNA replication is the binding
of a complex of proteins (known as replication factor C) to
DNA in order to recruit other proteins necessary for DNA
synthesis. The confidence-interval approach identified
one subunit (replication factor C 3) as being regulated
by estrogen. Our order-restricted-inference approach
identified an additional two components of the complex
(replication factors C 4 and C 5) as having increased
levels of expression at time points when the estrogen-
stimulated cells are undergoing DNA synthesis. Another
interesting observation was the decreased expression of
cyclin-dependent kinase inhibitor 1A (p21 and Cip1), as
shown previously by Prallet al. (2001). This inhibitory
gene not only functions in the cell cycle at the transition
from the G1 into the S phase (during which genome repli-
cation occurs) but also in the process of DNA synthesis.
Therefore, the fact that estrogen induces MCF-7 cells
to divide supports the finding that a gene that inhibits
this process would be repressed. Finally, several genes
were represented by two different spots (clones) on the
microarray chips. Using the confidence-interval approach,
deoxythymidylate kinase (248008) and myeloid cell
leukemia sequence 1 (361381) were seen to be regulated
by estrogen. Interestingly, the order-restricted-inference
approach not only identified these genes as exhibiting
altered expression in the presence of estrogen but also
identified them based on two different spots that represent
the same genes (Clone IDs 489092 and 145093; Table 1).
These findings illustrate that our methodology can iden-
tify genes whose estrogen responses are biologically
interpretable.

A simulation experiment
We investigated the false positive rate of our procedure
using a small simulation study. To generate unpatterned
null data, we created 48 new observations for each gene
by randomly assigning the 48 original observations (with
replacement), eight to each of the six time points. By this
device, we generated 1900 genes whose true underlying
profiles lack any systematic pattern. Our simulations
suggest that our methodology provides fairly accurate type
I error rates and tends to be conservative for smaller levels
of significance. For example, corresponding to a nominal
level of 0.0025, our estimated Type I error was 0.0005;
and, for a nominal level of 0.05, our estimated Type I error
was 0.049.

DISCUSSION
In studies where experimental conditions have an inherent
ordering, making use of ordering information can improve
inference. In microarray experiments, the ability to exploit
ordering information may be especially valuable because
genes whose expression levels change in concert through
time may be components of the same cellular process
or may share regulatory elements. Yet, virtually none of
the commonly used methods for analysis of microarray
data take account of time ordering. Those researchers
who have recognized the importance of time-course infor-
mation (Chuet al., 1998; Heyeret al., 1999) developed
procedures based on correlation coefficients, an approach
fundamentally different from ours. We have proposed an
algorithm based on the statistical theory of order-restricted
inference that makes explicit use of ordering information
when selecting differentially expressed genes. Our ap-
proach selects genes whose expression levels through time
are both significantly different from the null profile and
similar to one of a set of pre-identified candidate profiles.
Consequently, selected genes are naturally clustered into
classes with similarly shaped profiles.

Our methodology is general and enjoys several desirable
properties. First, the estimated mean expression levels,
subject to an inequality profile, satisfy certain optimality
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properties discussed in Hwang and Peddada (1994).
In particular, the estimatoruniversally dominates the
unrestricted maximum likelihood estimator. Secondly,
genes are selected into clusters based in part on a
statistical significance criterion. Groupings obtained using
unsupervised methods such as cluster analytic algorithms
cannot make claims about Type I error rates. A related
and important feature of our procedure is that it can select
genes with subtle but reproducible expression changes
over time and, hence, uncover some genes that may not be
detectable by other approaches. Our example illustrated
this feature with respect to the approach of Chenet al.
(1997).

Both our procedure and correlation-based procedures
require that investigators pre-specify a set of candidate
profiles. What exactly is required of the candidate profiles,
however, differs sharply between the two approaches.
With our procedure, one need only describe the shapes
of profiles in terms of mathematical inequalities; whereas,
with the correlation-based procedures, one must specify
numerical values at each time point for each candidate
profile. Since exact values at time points are rarely known
a priori, correlation-coefficient-based procedures often
use averages from selected small subsets of genes to
establish candidate profiles. Those genes that establish the
profiles are essentially exempted from the analysis, and
they may be the only genes representing their profiles. Our
candidate profiles are specified without reference to data
from the study, and a candidate profile may turn out to
be represented by no genes. In fact, no genes in the top
50 of our example followed the monotone non-decreasing
profile. Thus, our methodology is much less restrictive
than the correlation-coefficient-based alternative.

Kerr and Churchill (2001) have advocated investigating
the reliability of clustering results from microarray stud-
ies. Although we have not formally examined the reliabil-
ity of our clustering results in that sense, one can conceive
of embedding our procedure into a general bootstrapping
framework similar in spirit to their approach.

Investigators might be interested in distinguishing more
subtle patterns than considered here. For example, Chuet
al. (1998) display two candidate profiles (Early I and Early
II in their Figure 4(b) that rise to a maximum at 7 hours
and then decrease. Thus, both are up–down profiles with
a maximum at 7 hours and would not be distinguished by
the candidate profiles that we have described. These two
profiles differ, however, in that one rises rapidly after the
first time point then more slowly to the peak whereas the
other exhibits a rapid rise after the second time point. Our
approach could be adapted to distinguish such sub-profiles
by imposing order restrictions on suitable differences
among mean expression levels.

Although the procedure that we described is designed
for genes with a constant variance through time, it can

be generalized to handle situations when the variances
change or are subject to order restrictions themselves.
In such situations, the estimation of mean gene expres-
sion outlined in this paper may be modified along the
lines of Shi (1994). The required modifications to the
bootstrap described in Step 4 remain a subject for future
investigation.

In conclusion, we believe that methods of analysis that
exploit the ordering of treatments to improve estimation
will become increasingly valuable for time-course and
dose–response microarray experiments. Our approach
based on order-restricted inference should improve
gene selection and clustering whenever treatments are
inherently ordered.
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APPENDIX: ESTIMATION OF PARAMETERS
(HWANG AND PEDDADA, 1994)
There are two types of profiles, those with at least one
nodal parameter and those with no nodal parameters. We
first describe estimation for the former.

(A) PROFILES WITH AT LEAST ONE NODAL
PARAMETER

For a geneg at time t , supposeȲt is the sample mean

based onnt observations. We assume that Var(Ȳt ) = σ2

nt
.

Repeat Steps A1–A4 described below until all parameters
are estimated.

Estimation of nodal parameters in a given
inequality profile

STEP A1. Supposeµt is a nodal parameter in the pro-
file. Maintaining all the known inequalities and assigning
arbitrary inequalities among those parameters where the
inequalities are unknown, one obtains a non-decreasing
order of the form Equation (1). Fori = 1, 2, . . . , T , let
the ordered true means be denoted byµ(i) where,µ(1) �
µ(2) � · · · � µ(T ), and the corresponding sample means
and sample sizes be denoted byȲ(i), andn(i), respectively.
Thus, for somes, µt ≡ µ(s).

EXAMPLE A1. Consider a profile with four parameters
such thatµ1 � µ2 � µ3 � µ4. Here the only nodal
parameter isµ2. Inequalities betweenµ1, µ3 and between
µ1, µ4 are unknown. To estimateµ2, we may arrange
the four parameters asµ4 � µ1 � µ3 � µ2. Thus
µ4 ≡ µ(1), µ1 ≡ µ(2), µ3 ≡ µ(3), µ2 ≡ µ(4).

STEP A2. Estimate the nodal parameterµt ≡ µ(s)
using the following formula:

µ̂t ≡ µ̂(s) = min
r�s

max
q�s

r∑
k=q

n(k)Ȳ(k)

r∑
k=q

n(k)

(A1)

In the example, the estimate ofµ2 ≡ µ(4) is

µ̂2 ≡ µ̂(4) = max
q�4

4∑
k=q

n(k)Ȳ(k)

4∑
k=q

n(k)

(A2)

STEP A3. Once a parameter is estimated, in all future
calculations replace its sample meanȲ by its estimated
value µ̂ from Step A2, and its sample sizen by B, where
B → ∞.

Estimation of non-nodal parameters
STEP A4. To estimate a non-nodal parameterµt , iden-

tify the largest sub-profile havingµt as a nodal parameter.
Using the data corresponding to the sub-profile, estimate
µt by applying Steps A1–A3.

EXAMPLE A1 (CONTINUED). The largest sub-profile
in which µ3 is nodal is also the largest in whichµ4 is
nodal:µ4 � µ3 � µ2. Henceµ3 andµ4 are estimated
using formulae derived from (A1):

µ̂3 = min

{
max

{
Ȳ3,

n3Ȳ3 + n4Ȳ4

n3 + n4

}
, µ̂2

}
,

µ̂4 = min

{
Ȳ4,

n3Ȳ3 + n4Ȳ4

n3 + n4
, µ̂2

}
(A3)

Note thatµ1 is nodal in the sub-profileµ1 � µ2. Hence,
from (A1) we deduce:

µ̂1 = min{Ȳ1, µ̂2} (A4)

(B) PROFILES WITH NO NODAL PARAMETERS

STEP B1. Identify the largest sub-profile with at least
one nodal parameter. Estimate all parameters of the sub-
profile using Steps A1–A4.

STEP B2. Identify the next largest sub-profile contain-
ing at least one nodal parameter. Using Steps A1–A4, es-
timate all parameters in the sub-profile. Repeat Step B2
until all parameters in the profile are estimated.
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