
Moosa et al. BMCMedical Genomics 2016, 9(Suppl 2):47

DOI 10.1186/s12920-016-0204-7

RESEARCH Open Access

Gene selection for cancer classification
with the help of bees
Johra Muhammad Moosa1*, Rameen Shakur2, Mohammad Kaykobad1 and Mohammad Sohel Rahman1

From IEEE International Conference on Bioinformatics and Biomedicine 2015
Washington, DC, USA. 9-12 November 2015

Abstract

Background: Development of biologically relevant models from gene expression data notably, microarray data has
become a topic of great interest in the field of bioinformatics and clinical genetics and oncology. Only a small number
of gene expression data compared to the total number of genes explored possess a significant correlation with a
certain phenotype. Gene selection enables researchers to obtain substantial insight into the genetic nature of the
disease and the mechanisms responsible for it. Besides improvement of the performance of cancer classification, it
can also cut down the time and cost of medical diagnoses.

Methods: This study presents a modified Artificial Bee Colony Algorithm (ABC) to select minimum number of genes
that are deemed to be significant for cancer along with improvement of predictive accuracy. The search equation of
ABC is believed to be good at exploration but poor at exploitation. To overcome this limitation we have modified the
ABC algorithm by incorporating the concept of pheromones which is one of the major components of Ant Colony
Optimization (ACO) algorithm and a new operation in which successive bees communicate to share their findings.

Results: The proposed algorithm is evaluated using a suite of ten publicly available datasets after the parameters are
tuned scientifically with one of the datasets. Obtained results are compared to other works that used the same
datasets. The performance of the proposed method is proved to be superior.

Conclusion: The method presented in this paper can provide subset of genes leading to more accurate classification
results while the number of selected genes is smaller. Additionally, the proposed modified Artificial Bee Colony
Algorithm could conceivably be applied to problems in other areas as well.
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Background
Gene expression studies have paved the way for a

more comprehensive understanding of the transcriptional

dynamics afflicted on a cell under different biological

stresses [1–4]. The application of microarrays as a robust

and amenable system to record transcriptional profiles

across a range of differing species has been growing expo-

nentially. In particular, the evaluation of human expres-

sion profiles in both health and in disease has implications

for the development of clinical bio-markers for diagnosis

as well as prognosis. Hence, diagnostic models from gene
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expression data provide more accurate, resource efficient,

and repeatable diagnosis than the traditional histopathol-

ogy [5]. Indeed, microarray data is now being used in

clinical applications as it is possible to predict the treat-

ment of human diseases by analyzing gene expression

data [2, 6–9]. However, one of the inherent issues with

gene expression profiles are their characteristically high-

dimensional noise, contributing to possible high false pos-

itive rates. This is further compounded during analysis

of such data whereby the use of all genes may poten-

tially hinder the classifier performance by masking the

contribution of the relevant genes [10–15]. This has led

to a critical need for the development of analytical tools

and methodologies which are able to select a small subset
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of genes both from a practical and qualitative perspec-

tive. As a result the selection of discriminatory genes is

essential to improve the accuracy and also to decrease the

computational time and cost [16].

The classification of gene expression samples involves

feature selection and classifier design. However, noisy,

irrelevant, and misleading attributes make the classifica-

tion task complicated, given they can contain erroneous

correlations. A reliable selection method of relevant genes

for sample classification is needed in order to increase

classification accuracy and to avoid incomprehensibility.

The task of gene selection is known as feature selection in

artificial intelligence domain. Feature selection has class-

labeled data and attempts to determine which features

best distinguish among the classes. The genes are consid-

ered to be the features that describe the cell. The goal is

to select a minimum subset of features that achieves max-

imum classification performance and to discard the fea-

tures having little or no effect. These selected features can

then be used to classify unknown data. Feature selection

can thus be considered as a principle pre-processing tool

when solving classification problems [17, 18]. Theoreti-

cally, feature selection problems are NP-hard. Performing

an extensive search is impossible as the computational

time and cost would be excessive [19].

Gene selection methods can be divided into two cate-

gories [20]: filter methods, and wrapper or hybrid meth-

ods. Detail review on gene selectionmethods can be found

in [20–25]. A gene selection method is categorized as a

filter method if it is carried out independently from a clas-

sification procedure. In filter approach instead of search-

ing the feature space, selection is done based on statistical

properties. Due to lower computational time and cost

most previous gene selection techniques in the early era of

microarrays analysis have used the filtermethod.Many fil-

ters provide a feature ranking rather than an explicit best

feature subset. The top ranking features are chosen man-

ually or via cross-validation [26–28] while the remaining

low ranking features are eliminated. Bayesian Network

[29], t-test [30], Information Gain (IG) and Signal-to-

Noise-Ratio (SNR) [5, 31], EuclideanDistance [32, 33], etc.

are the examples of filter methods that are usually consid-

ered as individual gene-ranking methods. Filter methods

generally rely on a relevance measure to assess the impor-

tance of genes from the data, ignoring the effects of the

selected feature subset on the performance of the classi-

fier. This may however result in the inclusion of irrelevant

and noisy genes in a gene subset. Research shows that,

rather than acting independently, genes in a cell interact

with one another to complete certain biological processes

or to implement certain molecular functions [34].

While the filter methods handle the identification of

genes independently, a wrapper or hybrid method on the

other hand, implements a gene selection method merging

with a classification algorithm. In the wrapper methods

[35] a search is conducted in the space of genes, evaluating

the fitness of each found gene subset. Fitness is deter-

mined by training the specific classifier to be used only

with the found gene subset and then approximating the

accuracy percentage of the classifier. The hybrid methods

usually obtain better predictive accuracy estimation than

the filter methods [36–39], since the genes are selected by

considering and optimizing the correlations among genes.

Therefore, several hybrid methods have been imple-

mented to select informative genes for binary and multi-

class cancer classification in recent times [37, 40–50].

However, its computational cost must be taken into

account [39]. Notably, filter methods have also been used

as a preprocessing step for wrapper methods, allowing a

wrapper to be used on larger problem instances.

Recently many diverse population based methods have

been developed for investigating gene expression data to

select a small subset of informative genes from the data

for cancer classification. Over the time a number of vari-

ants and hybrids of Particle Swarm Optimization (PSO)

have been proposed to solve the gene selection problem.

The Combat Genetic Algorithm (CGA) [51, 52] has been

embedded within the Binary Particle Swarm Optimiza-

tion (BPSO) in [44] which serves as a local optimizer

at each iteration to improve the solutions of the BPSO.

The algorithm has succeeded to achieve high classifi-

cation accuracy albeit at the cost of unacceptably large

size of the selected gene set. Although both PSO and

CGA perform well as global optimizer, the proposed algo-

rithm has failed to obtain satisfactory results because of

not considering minimization of selected gene size as

an objective. Also Li et al. [41] presented a hybridiza-

tion of BPSO and Genetic Algorithm (GA). However, its

performance is not satisfactory enough. Shen et al. [40]

discussed incorporation of Tabu Search (TS) in PSO as

a local improvement procedure to maintain the popu-

lation diversity and prevent steering to misleading local

optima. Obtained accuracy by their hybrid algorithm is

sufficient but they did not provide any discussion at all

about the number of genes selected. Again BPSO has

been embedded in TS by Chuang et al. [42] to prevent

TS form getting trapped in local optima which helps in

achieving satisfactory accuracy for some of the datasets.

However, to attain that accuracy their algorithm needs to

select prohibitively high number of genes. An improved

binary particle swarm optimization (IBPSO) is proposed

by Chuang et al. [43] which achieves good accuracy for

some of the datasets but, again, selects high number of

genes. Recently, Mohamad et al. [37] have claimed to

enhance the original BPSO algorithm by minimizing the

probability of gene to be selected, resulting in the selection

of only the most informative genes. They have obtained

good classification accuracy with low number of selected
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genes for some of the datasets. But the number of itera-

tions to achieve the target accuracy is higher than ours,

which will be reported in the Results and discussion

Section of this paper. A simple modified ant colony opti-

mization (ACO) algorithm is proposed by Yu et al. in [53],

which associates two pheromone components with each

gene rather than a single one as follows. One component

determines the effect of selecting the gene whether the

other determines the effect of not selecting it. The algo-

rithm is evaluated using five datasets. It is able to select

small number of genes and accuracy is also reasonable.

Random forest algorithm for classifying microarray data

[54] has obtained good accuracy for some datasets but not

for all. Notably, the number of selected genes by the ran-

dom forest classification algorithm in [54] has been found

to be high for some of the datasets. A new variable impor-

tancemeasure based on the difference of proximity matrix

has been proposed for gene selection using random for-

est classification by Zhou et al. [55]. Although it fails to

achieve the highest accuracy for any dataset, their algo-

rithm is able to select small number of genes and achieve

satisfactory accuracy for all the datasets. Recently, Deb-

nath and Kurita [56] have proposed an evolutionary SVM

classifier that adds features in each generation according

to the error-bound values for the SVM classifier and fre-

quency of occurrence of the gene features to produce a

subset of potentially informative genes.

In this paper, we propose amodified artificial bee colony

algorithm to select genes for cancer classification. The

Artificial Bee Colony (ABC) algorithm [57], proposed by

Karaboga in 2005, is one of the most recent swarm intel-

ligence based optimization technique, which simulates

the foraging behavior of a honey bee swarm. The search

equation of ABC is reported to be good at exploration but

poor at exploitation [58, 59]. To overcome this limitation

we have modified the ABC algorithm by incorporating

the concept of pheromone which is one of the major

components of the Ant Colony Optimization (ACO) algo-

rithm [60, 61] and a new operation in which successive

bees communicate to share their results. Even though

researchers are unable to establish whether such a com-

munication indeed involve information transfer or not, it

is known that foraging decisions of outgoing workers, and

the probability to find a recently-discovered food source,

are influenced by the interactions [62–67]. Indeed, there

is a notable proof that for harvester ants, management

of foraging activity is guided by ant encounters [68–71].

Even the mere instance of an encounter may provide some

information, such as, the magnitude of the colony’s forag-

ing activity, and may therefore influence the probability of

food collection by ants [72–74].

We believe that the selection of genes by our system

provide us some interesting clue towards the importance

and contribution of that set of particular genes for the

respective cancer disease. To elaborate, our system has

identified that for diffuse large B-cell lymphoma (DLBCL)

only three (3) genes are informative enough to decide

about the cancer. Now, this could turn out to be a string

statement with regards to the set of genes identified for a

particular cancer and we believe further biological valida-

tion is required before making such a string claim. We do

plan to work towards validation of these inferences.

During the last decade, several algorithms have been

developed depending on different intelligent behaviors

of honey bee swarms [57, 75–85]. Among those, ABC

is the one which has been most widely studied on and

applied to solve the real world problems, so far. Compre-

hensive study on ABC and other bee swarm algorithms

can be found in [86–89]. The algorithm has the advan-

tage of sheer simplicity, high flexibility, fast convergence,

and strong robustness which can be can be used for solv-

ing multidimensional and multimodal optimization prob-

lems [90–92]. Since the ABC algorithm was proposed in

2005, it has been applied in many research fields, such as

flow shop scheduling problem [93, 94], parallel machines

scheduling problem [95], knapsack problem [96], travel-

ing salesman problem [97], quadratic minimum spanning

tree problem [98], multiobjective optimization [99, 100],

generalized assignment problem [101], neural network

training [102], and synthesis [103], data clustering [104],

image processing [105], MR brain image classification

[106], coupled ladder network [107], wireless sensor net-

work [108], vehicle routing [109], nurse rostering [110],

computer intrusion detection [111], live virtual machine

migration [112], etc. Studies [86, 113] have indicated that

ABC algorithms have high search capability to find good

solutions efficiently. Besides, excellent performances has

been reported by ABC for a considerable number of prob-

lems [98, 100, 114]. Karaboga and Basturk [113] tested

for five multidimensional numerical benchmark functions

and compared the ABC performance with that of Differ-

ential Evolution (DE), Particle SwarmOptimization (PSO)

and Evolutionary Algorithm (EA). The study concluded

that ABC gets out of a local minimummore efficiently for

multivariable and multimodal function optimization and

outperformed DE, PSO and EA.

However, it has been observed that the ABC may occa-

sionally stop proceeding toward the global optimum even

though the population has not converged to a local opti-

mum [86]. Research [58, 59, 115] shows that the solution

search equation of ABC algorithm is good at exploration

but unsatisfactory at exploitation. For the population

based algorithms the exploration and the exploitation

abilities are both necessary features. The exploration abil-

ity refers to the ability to investigate the various unknown

regions to discover the global optimum in solution space,

while the exploitation ability refers to the ability to apply

the knowledge of the previous good solutions to find
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better solutions. The exploration ability and the exploita-

tion ability contradict to each other, so that the two

abilities should be well balanced to achieve good per-

formance on optimization problems. As a result, several

improvements of ABC have been proposed over the time.

Baykasoglu et al. [101] incorporated the ABC algorithm

with shift neighborhood searches and greedy randomized

adaptive search heuristic and applied it to the generalized

assignment problem. Pan et al. [93] proposed a Discrete

Artificial Bee Colony (DABC) algorithm with a variant

of iterated greedy algorithm with total weighted earli-

ness and tardiness penalties criterion. Li et al. [116] used

a hybrid Pareto-based ABC algorithm to solve flexible

job shop-scheduling problems. In the proposed algorithm,

each food sources is represented by two vectors, the

machine assignment and the operation scheduling. Wu et

al. [117] combined Harmony Search (HS) and the ABC

algorithm to construct a hybrid algorithm. Comparison

results show that the hybrid algorithm outperforms ABC,

HS, and other heuristic algorithms. Kang et al. [118] antic-

ipated a Hooke Jeeves Artificial Bee Colony algorithm

(HJABC) for numerical optimization. HJABC integrates

a new local search named ‘modus operandi’ which is

based on Hooke Jeeves method (HJ) [119] with the basic

ABC. Opposition Based Lévy Flight ABC is developed by

Sharma et al. [120]. Lévy flight based random walk local

search is proposed and incorporated with ABC to find the

global optima. Szeto et al. [109] proposed an enhanced

ABC algorithm. The performance of the new approach is

tested on two sets of standard benchmark instances. Sim-

ulation results show that the newly proposed algorithm

outperforms the original ABC and several other existing

algorithms. Chaotic Search ABC (CABC) is introduced

by Yan et al. [121] to solve the premature convergence

issue of ABC by increasing the number of scout and

rational using of the global optimal value and chaotic

Search. Again a Scaled Chaotic ABC (SCABC) method is

proposed in [106] based on fitness scaling strategy and

chaotic theory. Based on the Rossler attractor of chaotic

theory a novel Chaotic Artificial Bee Colony (CABC) is

developed in [122] to improve the performance of ABC.

An Improved Artificial Bee Colony (IABC) algorithm is

proposed in [123] to improve the optimization ability of

ABC. The paper introduces an improved solution search

equation in employee and scout bee phase using the best

and the worst individual of the population. In addition,

the initial population is generated by the piecewise logis-

tic equation which employs chaotic systems to enhance

the global convergence. Inspired by Differential Evolu-

tion (DE), Gao et al. [124] proposed an improved solution

search equation. In order to balance the exploration of the

solution search equation of ABC and the exploitation of

the proposed solution search equation, a selective prob-

ability is introduced. In addition, to enhance the global

convergence, when producing the initial population, both

chaotic systems and opposition based learning methods

are employed. Kang et al. [91] proposed a Rosenbrock

ABC (RABC) algorithm which combines Rosenbrock’s

rotational direction method with the original ABC. There

are two alternative phases of RABC: the exploration phase

realized by ABC and the exploitation phased completed

by the Rosenbrock method. Tsai et al. [125] introduced

the Newtonian law of universal gravitation in the onlooker

phase of the basic ABC algorithm in which onlookers

are selected based on a roulette wheel to maximize the

exploitation capacity of the solutions in this phase and the

strategy is named as Interactive ABC (IABC). The IABC

introduced the concept of universal gravitation into the

consideration of the affection between employed bees and

the onlooker bees. The onlooker bee phase is altered by

biasing the direction towards random bee according to its

fitness. Zhu and Kwong [115] utilized the search infor-

mation of the global best solution to guide the search

of ABC to improve the exploitation capacity. The main

idea is to apply the knowledge of the previous good solu-

tions to find better solutions. Reported results show that

the new approach achieves better results than the orig-

inal ABC algorithm. Banharnsakun et al. [126] modified

the search pattern of the onlooker bees such that the solu-

tion direction is biased toward the best-so-far position.

Therefore, the new candidate solutions are similar to the

current best solution. Li et al. [58] proposed an improved

ABC algorithm called I-ABC, in which the best-so-far

solution, inertia weight, and acceleration coefficients are

introduced to modify the search process. The proposed

method is claimed to have an extremely fast convergence

speed. Gbest guided position update equations are intro-

duced in Expedited Artificial Bee Colony (EABC) [127].

Jadon et al. [128] proposed an improved ABC named as

ABC with Global and Local Neighborhoods (ABCGLN)

which concentrates to set a trade off between the explo-

ration and exploitation and therefore increases the con-

vergence rate of ABC. In the proposed strategy, a new

position update equation for employed bees is intro-

duced where each employed bee gets updated using best

solutions in its local and global neighborhoods as well

as random members from these neighborhoods. With a

motivation to balance exploration and exploitation capa-

bilities of ABC, Bansal et al. [129] presents an self adaptive

version of ABC named as SAABC. In this adaptive ver-

sion, to give more time to potential solutions to improve

themselves, the parameter ‘limit’, of ABC is modified self

adaptively based on current fitness values of the solutions.

This setting of ‘limit’ makes low fit solutions less stable,

which helps in exploration. Also to enhance the explo-

ration, number of scout bees are increased. To achieve

an improved ABC based approach with better global

exploration and local exploitation ability, a novel heuristic
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approach named PS-ABC is introduced by Xu et al. [112].

The method utilizes the binary search idea and the Boltz-

mann selection policy to achieve the uniform random ini-

tialization and thus to make the whole PSABC approach

have a better global search potential and capacity at the

very beginning. To obtain more efficient food positions

Sharma et al. [130] introduced two new mechanisms for

the movements of scout bees. In the first method, the

scout bee follows a non-linear (quadratic) interpolated

path while in the second one, scout bee follows Gaussian

movement. The first variant is named as QABC, while

the second variant is named as GABC. Numerical results

and statistical analysis of benchmark unconstrained, con-

strained and real life engineering design problems indicate

that the proposedmodifications enhance the performance

of ABC. In order to improve exploitation capability of

ABC a new search pattern is proposed by Xu et al.

[131] for both employed and onlooker bees. In the new

approach, some best solutions are utilized to accelerate

the convergence speed. A solution pool is constructed by

storing some best solutions of the current swarm. New

candidate solutions are generated by searching the neigh-

borhood of solutions randomly chosen from the solution

pool. Kumar et al. [97] added crossover operators to the

ABC as the operators have a better exploration property.

Ji et al. [96] developed a new ABC algorithm combining

chemical communication way and behavior communica-

tion way based on researches of entomologists. The new

ABC algorithm introduces a novel communication mech-

anism among bees. In order to have a better coverage

and a faster convergence speed, a modified ABC algo-

rithm introducing forgetting and neighbor factor (FNF)

in the onlooker bee phase and backward learning in the

scout bee phase is proposed by Yu et al. [108]. Bansal

et al. [132] introduced Memetic ABC (MeABC) in order

to balance between diversity and convergence capability

of the ABC. A new local search phase is integrated with

the basic ABC to exploit the search space identified by

the best individual in the swarm. In the proposed phase,

ABC works as a local search algorithm in which, the step

size that is required to update the best solution, is con-

trolled by Golden Section Search (GSS) [133] approach.

In the memetic search phase new solutions are gener-

ated in the neighborhood of the best solution depending

upon a newly introduced parameter, perturbation rate.

Kumar et al. [134] also proposed memetic search strat-

egy to be used in place of employed bee and onlooker

bee phase. Crossover operator is applied to two randomly

selected parents from current swarm. After crossover

operation two new offspring are generated. The worst par-

ent is replaced by the best offspring, other parent remains

same. The experimental result shows that the proposed

algorithm performs better than the basic ABC without

crossover in terms of efficiency and accuracy. Improved

onlooker bee phase with help of a local search strategy

inspired by memetic algorithm to balance the diversity

and convergence capability of the ABC is proposed by

Kumar et al. [135]. The proposed algorithm is named

as Improved Onlooker Bee Phase in ABC (IOABC). The

onlooker bee phase is improved by introducing modified

GSS [133] process. Proposed algorithm modifies search

range of GSS process and solution update equation in

order to balance intensification and diversification of local

search space. Rodriguez et al. [95] combined two signifi-

cant elements with the basic scheme. Firstly, after produc-

ing neighboring food sources (in both the employed and

onlooker bees phases), a local search is applied with a pre-

defined probability to further improve the quality of the

solutions. Secondly, a new neighborhood operator based

on the iterated greedy constructive-destructive procedure

[136, 137] is proposed. For further discussion please refer

to the available reviews on ABC [138]. Several algorithms

have been introduced that incorporates idea of ACO or

PSO in bee swarm based algorithms. But our approach

is unique and different from others. Hybrid Ant Bee

Colony Algorithm (HABC) [139] considers pheromone

for each candidate solution. On the other hand we incor-

porated pheromone for each gene (solution components).

Our approach to find neighboring solution is different

from basic ABC. But HABC follows the same neighbor

production mechanism as basic ABC. In our algorithm

pheromone deposition is done after each bee stage. While

selecting a potential candidate solution we depend on its

fitness, but HABC selects a candidate depending upon

its pheromone value. Most importantly in our algorithm

scout bees make use of the pheromone while exploring

to find new food source. Ji et al. [96] proposed an arti-

ficial bee colony algorithm merged with pheromone. In

this paper scouts are guided by pheromone along with

some heuristic information while we only make use of

pheromone. The paper updates pheromone only in the

employed bee stage while we update pheromone in all the

bee stages. Pheromone laying is done by depositing a pre-

defined constant amount. But amount of pheromone we

have deposited is a function of fitness measures. Kefayat

et al. [140] proposed a hybrid of ABC and ACO. Inside

loop contains the ABC and outside loop is ACO with-

out any modification. ABC is applied in the inner loop to

optimize a certain constraint (source size) for each ant.

Zhu et al. [115] uses ABC in a problem with continuous

space. We indirectly guide scout through the best found

solutions whether this paper guides the employed and

onlooker bees.

Methods
Gene expression profiles provide a dynamic means to

molecularly characterise the state of a cell and so has

great potential as clinical diagnostic and prognostic tool.
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However, in comparison to the number of genes involved

which often exceeds several thousands, available training

datasets generally have a fairly small sample size for clas-

sification. Hence, inclusion of redundant genes decreases

the quality of classification thus increasing false positive

rates. To overcome this problem one of the approaches

in practice is to search for the informative genes along

with applying a filter beforehand. Use of confidently pre-

filtering makes it possible to get rid of the majority

of redundant noisy genes. Consequently, the underlying

method to search the informative genes becomes easier

and efficient with respect to time and cost. Finally, to eval-

uate the fitness of the selected gene subset a classifier is

utilized. The selected genes are used as features to classify

the testing samples. The inputs and outputs of the method

are:
• Input: G = {G1,G2, . . . ,Gn}, a vector of vectors,

where n is the number of genes and

Gi = {gi,1, gi,2, . . . , gi,N } is a vector of gene expressions

for the ith gene where N is the sample size. So, gi,j is

the expression level of the ith gene in the jth sample.
• Output: R = {R1,R2, . . . ,Rm}, the indices of the

genes selected in the optimal subset. Wherem is the

selected gene size.

The gene selection method starts with a preprocessing

step followed by a gene selection algorithm. Finally the

classification is done. In what follows, we will describe

these steps in detail.

Preprocessing

To make the experimental data suitable for our algorithm

and to help the algorithm run faster the preprocessing

step is incorporated. The preprocessing step contains the

following two stages:

• Normalization
• Prefilter

Normalization Normalizing the data ensures the alloca-

tion of equal weight to each variable by the fitness mea-

sure. Without normalization, the variable with the largest

scale will dominate the fitness measure [141]. Therefore,

normalization reduces the training error, thereby prov-

ing the accuracy for the classification problem [142]. The

expression levels for each gene are normalized at this step

to [0, 1] using the standard procedure which is shown in

Eq. 1 below.

x = lower+

[

upper − lower ×
value − value_min

value_max − value_min

]

(1)

Here, among all the expression levels of the gene in

consideration, value_max is the maximum original value,

value_min is the minimum original value, upper (lower)

is 1 (0) and x is the normalized expression level. So for

all gene after normalization, value_max will be 1 and

value_min will be 0.

Prefilter Gene expression data are characteristically

multi faceted given the inherent biological complexity

such networks reside in. The huge number of genes

causes great computational complexity in wrapper meth-

ods when searching for significant genes. Before applying

other search methods it is thus prudent to reduce gene

subset space by pre-selecting a smaller number of infor-

mative genes based on some filtering criteria. Several filter

methods have been proposed in the literature which can

be used to preprocess data. These include Signal-to-Noise

Ratio (SNR) and Information Gain (IG) [5, 31], t-test [30],

Bayesian Network [29], Kruskal-Wallis non-parametric

analysis of variance (ANOVA) algorithm [143–145], F-

test (ratio of in between group variance to within group

variance) [146, 147], BW ratio [148], Euclidean Distance

[32, 33], etc. After the prefilter stage, we get a ranking of

the genes based on the applied statistical methods.

Because of the nature of gene expression data the

selected statistical method should be able to deal with

high dimensional small sample sized data. According

to the assumption of the data characteristics two types

of filtering methods exist, namely, parametric and non

parametric. Both types of filtering techniques have been

employed individually in our proposed algorithm for the

sake of comparison. Among many alternatives, in our

work, Kruskal Wallis [143–145] and F-test [146, 147] are

employed individually to rank the genes. Notably, the

former is a non parametric method and the latter is a

parametric one.

Kruskal Wallis (KW) The Kruskal-Wallis rank sum test

(named after William Kruskal and W. Allen Wallis) is an

extension of theMann-Whitney U orWilcoxon Sum Rank

test [149, 150] for comparing two or more independent

samples that may have different sample sizes [143–145].

The Kruskal-Wallis rank sum test (KWRST) is the non-

parametric equivalent to the one-way Analysis of Variance

(ANOVA). It compares several populations on the basis

of independent random samples from each population

by determining whether the samples belong to the same

distribution. Assumptions for the Kruskal-Wallis test are

that within each sample, the observations are independent

and identically distributed and the samples are indepen-

dent of each other. It makes no assumptions about the

distribution of the data (e.g., normality or equality of vari-

ance) [151, 152]. According to the results found by Deng

et al. [153], the assumption about the data distribution

often does not hold in gene expression data. The Kruskal-

Wallis test is in fact very convenient for microarray data
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because it does not require strong distributional assump-

tions [154], it works well on small samples [155], it is

suited for multiclass problems, and its p-values can be

calculated analytically. The Kruskal-Wallis test is utilized

to determine p-values of each gene. The genes are then

sorted in increasing order of the p-values. The lower the p-

value of a gene, the higher the rank of the gene. The steps

of the Kruskal-Wallis test are given below:

Step 1 For each gene expression vector Gi,

Step 1.a We rank all gene expression levels across all

classes. We Assign any tied values the

average of the ranks they would have

received if they had not been tied.

Step 1.b We calculate the test statistics Ki for gene

expression vector Gi of the i
th gene, which is

given by Eq. 2 below:

Ki =
12

N(N + 1)

Ci
∑

k=1

nik

(

r̄ik −
(N + 1)

2

)2

(2)

Here, for the ith gene,

N is the sample size,

Ci is the number of different classes,

nik is the number of expression levels that are

from class k, and
r̄ik is the mean of the ranks of all expression

level measurements for class k.
Step 1.c If ties are found while ranking data in the ith

gene, correction of ties must be done. For

this correction, Ki is divided by:

(1 −

∑Ti
j=1 t

3
j −tj

N3−N
), where Ti is the number of

groups of different tied ranks for the ith gene

and tj is the number of ties within group j.

Step 1.d Finally the p-value for the ith gene, pi is
approximated by Pr(χ2

Ci−1 ≥ Ki), where

χ2
Ci−1 refers to the critical chi-square value.

To compute the p-values, necessary
functions of the already implemented

package from https://svn.win.tue.nl/trac/

prom/browser/Packages/Timestamps/

Trunk/src/edu/northwestern/at/utils/math/

are incorporated in our method.

Step 2 After the p-values for all the genes are calculated,
we rank each gene Gi according to pi. The lower

the p-value of a gene, the higher is its ranking.

Kruskal-Wallis is used as a preprocessing step in many

gene selection algorithms [156–158]. Kruskal-Wallis test

is utilized to rank and pre-select genes in the two-stage

gene selection algorithm proposed by Duncan et al. [158].

In the proposed method the number of genes selected

from the ranked genes is optimized by cross-validation on

the training set. Wang et al. [157] applied Kruskal-Wallis

rank sum test to rank all the genes for gene reduction.

Obtained results from their study indicate that gene rank-

ing with Kruskal-Wallis rank sum test is very effective. To

select an initial informative subset of tumor related genes

Kruskal-Wallis rank sum test is utilized by Wang et al.

[156].

Besides applying Kruskal-Wallis in prefiltering stage the

use of the algorithm for gene selection is also well stud-

ied [159, 160]. Chen et al. [160] studied application of

different test statistics including Kruskal-Wallis for gene

selection. Lan et al. [159] applied Kruskal-Wallis to rank

the genes. Finally the top ranked genes are selected as

features for the target task classifier. The proposed filter

is claimed to be suitable as a preprocessing step for an

arbitrary classification algorithm.

Like many other non-parametric tests Kruskal-Wallis

uses data rank rather than raw values to calculate the

statistic. However, by ranking the data some information

about the magnitude of differences between scores is lost.

For this reason a parametric method called F-test has

been applied separately from Kruskal-Wallis to prefilter

the genes. Notably, replacing original scores with ranks

does not naturally lead to performance reduction; it rather

can result in a better performance at best and a slight

degradation at worst.

F-test Another approach to identify the genes that are

correlated to the target classes from gene expression data

is by using the F-test [146, 147]. F-test is one of the most

widely used supervised feature selection methods. The

key idea is to find a subset of features, such that the dis-

tances between the data points in different classes are as

large as possible, while the distances between the data

points in the same class are as small as possible in the

data space spanned by the selected features. It uses vari-

ations among means to estimate variations among indi-

vidual measurements. F-score for a gene is the ratio of in

between group variance to within group variance, where

each class label forms a group. The steps to compute the

F-score are given below:

Step 1 For each gene expression vector Gi, we compute

the Fisher score (i.e., F -Score). The fisher score
for the ith gene is given by Eq. 3 below.

Fi =

∑Ci

k=1 n
i
k(μ

i
k − μi)2

∑Ci

k=1 n
i
k(σ

i
k)

2
(3)

Here for the ith gene,

μi is the mean for all the gene expression levels

corresponding to the ith gene,

https://svn.win.tue.nl/trac/prom/browser/Packages/Timestamps/Trunk/src/edu/northwestern/at/utils/math/
https://svn.win.tue.nl/trac/prom/browser/Packages/Timestamps/Trunk/src/edu/northwestern/at/utils/math/
https://svn.win.tue.nl/trac/prom/browser/Packages/Timestamps/Trunk/src/edu/northwestern/at/utils/math/
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μi
k and σ i

k are mean and standard deviation of the

kth class respectively,

Ci is the number of classes, and

nik is the number of samples associated with the

kth class.

Step 2 After computing the Fisher score for each genes,

genes are sorted according to the F - score. The
higher the F -score of a gene, the higher is its rank.

F-test has been proved to be effective for determin-

ing the discriminative power of genes [161]. Use of F-test

either as a sidekick in gene selection [158, 162] or as a

stand-alone gene selection tool [163] both are practiced

in the literature. Duncan et al. [158] used F-test as one

of the ranking schemes to preselect the genes. Guo et al.

[163] proposed a privacy preserving algorithm for gene

selection using F-criterion. The proposed method can be

used in other feature selection problems. Au et al. [162]

implemented F-test as a criterion function in their pro-

posed algorithm to solve the problem of gene selection.

Cai et al. [164] pre-selected top 1,000 genes from each

dataset according to Fisher’s ratio. To guide the search

their method evaluated discriminative power of features

independently according to Fisher criterion. Salem et al.

[165] reduced the total number of genes in the input

dataset to a smaller subset using F-score.

The F-score is computed independently for each gene,

which may lead to a suboptimal subset of features. Gen-

erally, the F-test is sensitive to non-normality [166, 167].

Thus the preferred test to use with microarray data is the

Kruskal-Wallis test rather than the F-test since the para-

metricity assumption of data distribution often does not

hold for gene expression data [153].

Pre-selection of genes The top ranked genes will enter

the next phase. After the genes are ranked according to the

statistical method in use, we need to calculate the number

of genes to nominate for the next stage. There could be

two ways to determine the number of genes to be selected

in this stage.

Select according to p In this approach we predetermine

a threshold and select all the genes that have

statistics calculated by Kruskal-Wallis (F-test) below

(above) the threshold. This approach generally tends

to select comparatively large number of genes [157].

To determine a suitable threshold value we have con-

ducted scientific parameter tuning in the range of

[0, 1]. The analysis is presented in the Additional

file 1.

Select according to n Another approach is to select a

predetermined number of top ranked genes. The

number of genes selected from the ranked genes can

be either fixed or optimized by cross-validation on

the training set. EPSO [37] empirically determined a

fixed number (500) and used it for all the datasets.

Also several other works in the literature used this

approach to preselect genes [41, 53, 156, 158, 168].

Li et al. [41] selected 40 top genes with the highest

scores as the crude gene subset using Wilcoxon sum

rank test. Yu et al. [53] presented detail information

about top 10 marker genes. InitiallyWang et al. [156]

selected 300 top-ranked genes by KWRST. Duncan

et al. [158] considered a set of values for number of

top-ranked genes. Based on Fisher’s ratio top 1000

genes are selected by Zhou et al. [168]. But the prob-

lem in this approach is that different datasets have

different sizes. So a fixed value might not be optimal

for all the datasets. Determining a value that is good

for all the datasets is not possible. So in this article

we have selected a percentage of top ranked genes.

As a result number of genes selected will depend

on the original size of the dataset. Therefore, when

the percentage is set to 0.1, only the top 10% from

the ranked genes are supplied to the next stage. We

have scientifically tuned the parameter in the range

of [0, 1]. The analysis is presented in the Additional

file 1.

Gene selection

After the preprocessing step only the most informative

genes are left. Now they are fed to the search method to

further select a smaller subset of informative genes. In

this paper as the search method we have used the modi-

fied artificial bee colony (mABC) algorithm as described

below.

Artificial Bee Colony The Artificial Bee Colony (ABC)

algorithm is one of the most recent nature inspired opti-

mization algorithms based on the intelligent foraging

behavior of honey bee swarm. ABC algorithm has been

proposed by Karaboga in [57] and further developed in

[113]. Excellent performances have been exhibited by the

ABC algorithm for a considerable number of problems

[90–92, 98, 100, 114].

In the ABC algorithm, foraging honey bees are catego-

rized into three groups, namely, employed bees, onlooker

bees and scout bees. Each category of honey bees symbol-

izes one particular operation for generating new candidate

solution. Employed bees exploit the food sources. They

bring nectar from different food sources to their hive.

Onlooker bees wait in the hive for the information on food

sources to be shared by the employed bees and search for

a food source based on that information. The employed

bees whose food sources have been exhausted become

scouts and their solutions are abandoned [57]. Then the

scout bees search randomly for new food sources near the

hive without using any experience. After the scout finds a
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new food source, it becomes an employed bee again. Every

scout is an explorer who does not have any guidance while

looking for a new food, i.e., a scout may find any kind of

food sources. Therefore, sometimes a scout might acci-

dentally discover a more rich and entirely unknown food

source.

The position of a food source is a possible solution to the

optimization problem and the nectar amount of the food

source represents the quality of the solution. The bees

act as operators over the food sources trying to find the

best one among them. Artificial bees attempt to discover

the food sources with high nectar amount and finally the

one with the highest nectar amount. The onlookers and

employed bees carry out the exploitation process in the

search space and the scouts control the exploration pro-

cess. The colony consists of equal number of employed

bees and onlooker bees. In the basic form, the num-

ber of employed bees is equal to the number of food

sources (solutions) thus each employed bee is associated

with one and only one food source. For further discus-

sion please refer to the available reviews on ABC [138].

The pseudo-code of the ABC algorithm is presented in

Algorithm 1.

Algorithm 1: Artificial Bee Colony Algorithm

1 initialize population

2 repeat

3 send the employed bees onto the food sources

and evaluate their fitness (nectar amounts)

4 for each employed bees do

5 produce a new solution and determine its

fitness

6 apply greedy selection between new solution

and current solution
7 end

8 evaluate the probability values of the food sources

9 for each onlooker bees do

10 select a food source depending on their

fitness

11 produce a new solution and calculate its

fitness

12 apply greedy selection between new solution

and current solution
13 end

14 abandon a position if the food source is

exhausted by the bees

15 send the scout bees to the solution space for

discovering new food sources randomly for the

abandoned positions

16 memorize the best food source found so far

17 until the stopping criteria are met;

Modified ABC algorithm The search equation of ABC

is reported to be good at exploration but poor at exploita-

tion [59]. As a result, several improvements of ABC have

been proposed over the time [96, 97, 106, 108, 111, 112,

120–122, 124, 125, 127–132, 134]. In employed bee and

onlooker bee phase, new solutions are produced by means

of a neighborhood operator. In order to enhance the

exploitation capability of ABC, a local search method is

applied to the solution obtained by the neighborhood

operator with a certain probability in [95]. To overcome

the limitations of the ABC algorithm, in addition to the

approach followed in [95], we have further modified it by

incorporating two new components in it. Firstly, we have

incorporated the concept of pheromone which is one of

the major components of the Ant Colony Optimization

(ACO) algorithm [60, 61]. Secondly we have introduced

and plugged in a new operation named Communica-

tion Operation in which successive bees communicate

with each other to share their results. Briefly speaking,

the pheromone helps minimizing the number of selected

genes while the Communication Operation improves the

accuracy. The algorithm is iterated forMAX_ITER times.

Each iteration gives a global best solution, gbest. Finally,

the gbest of the last iteration, i.e., the gbest with maximum

fitness is the output of a single run. It is worth-mentioning

that finding a solution with 100% accuracy is not set as the

stopping criteria as further iterations can find a smaller

subset with the same accuracy. Ideally, a gene subset con-

taining only one gene with 100% accuracy is the best

possible solution found by any algorithm. The proposed

modified ABC is given in Algorithm 11 and the flowchart

can be found in Fig. 1. The modified ABC algorithm is

described next.

Food source positions The position of the food source

for the ith bee Si, is represented by vector Xi =

{x1Xi
, x2Xi

, . . . , xnXi
}, where n is the gene size or dimension of

the data, xdXi
∈ {0, 1}, i = 1, 2, . . . ,m (m is the population

size), and d = 1, 2, . . . , n. Here, xdXi
= 1 represents that the

corresponding gene is selected, while xdXi
= 0 means that

the corresponding gene is not selected in the gene subset.

Pheromone We have incorporated the concept of

pheromone (borrowed form ACO) to the ABC algorithm

as a guide for exploitation. ACO algorithms are stochas-

tic search procedures. The ants’ solution construction

is guided by heuristic information about the problem

instance being solved and (artificial) pheromone trails,

which real ants use as communication media [169] to

exchange information on the quality of a solution compo-

nent. Pheromone helps selecting the most crucial genes.

The quantity of pheromone deposited, which may depend

on the quantity and quality of the food, guides other ants
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Fig. 1 The flowchart of the modified Artificial Bee Colony (mABC) algorithm
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to the food source. Accordingly, the indirect communica-

tion via pheromone trails enables the ants to find shortest

paths between their nest and food sources [169]. The

gene subset carrying significant information will occur

more frequently. Thus the genes in that subset will get

reinforced simultaneously which ensures formation of a

potential gene subset. The idea of using pheromone is to

keep track of the components that are supposed to be

good because they were part of a good solution in pre-

vious iterations. Because of keeping this information we

need less iterations to achieve a target accuracy. Thus,

computational time is also reduced.

Pheromone update The (artificial) pheromone trails are

a kind of distributed numeric information [170] which is

modified by the ants to reflect their experience accumu-

lated while solving a particular problem. The pheromone

values are updated using previously generated solutions.

The update is focused to concentrate the search in regions

of the search space containing high quality solutions.

Solution components which are part of better solutions

or are used by many ants will receive a higher amount of

pheromone, and hence, will be more likely to be used by

the ants in future iterations of the algorithm. It indirectly

assumes that good solution components construct good

solutions. However, to avoid the search getting stuck all

pheromone trails are decreased by a factor before getting

reinforced again. This mimics the natural phenomenon

that, because of evaporation, the pheromone disappears

over time unless they are revitalized by more ants. The

idea of incorporating pheromone is to keep track of fitness

of previous iterations.

The pheromone trails for all the components are rep-

resented by the vector P = {p1, p2, · · · , pn}, where pi
is the pheromone corresponding to the ith gene and n

is the total number of genes. To update the pheromone

pi corresponding to the ith gene, two steps are followed:

pheromone deposition, and pheromone evaporation.

After each step of update, if the pheromone value

becomes greater (less) than tmax (tmin), then the value

of pheromone is set to tmax (tmin). Use of tmax, tmin

is introduced in the Max-Min Ant System (MMAS) pre-

sented in [61] to avoid stagnation. The value of tmin is set

to 0 and will be kept same throughout. But the value of

tmax is updated whenever new global best, gbest solution

is found.

Pheromone deposition After each iteration the bees

acquire new information and update their knowl-

edge of local and global best locations. The best posi-

tion found so far by the ith bee is known as the pbesti
and the best position found so far by all the bees,

i.e., the population, is known as the gbest. After each

bee completes its tasks in each iteration, pheromone

laying is done. The bee deposits pheromone using

its knowledge of food locations gained so far. To lay

pheromone, the ith bee uses its current location (Xi),

the best location found by the bee so far (pbesti), and

the best location found so far by all the bees (gbest).

This idea is adopted from Particle Swarm Optimiza-

tion (PSO) metaheuristic [171], where the local and

global best locations are used to update the velocity

of the current particle. We have also used the cur-

rent position in pheromone laying to ensure enough

exploration though in MMAS [61] only the cur-

rent best solution is used to update the pheromone.

Only the components which are selected in the

corresponding solutions get reinforced. Hence, the

pheromone deposition by the ith bee utilizes Eq. 4

below:

pd(t + 1) = pd(t) × w + (r0 × c0 × fi × xdXi
)

+ (r1 × c1 × pfi × xdpbesti)

+ (r2 × c2 × gf × xdgbest)

(4)

Here, d = 1, 2, · · · , n (n is the number of genes),

w is the inertia weight,

fi is the fitness of Xi,

pfi is the fitness of pbesti,

gf is the fitness of gbest,

xdXi
is selection of dth gene in Xi,

xdpbesti is selection of dth gene in pbesti,

xdgbest is selection of dth gene in gbest,

c0, c1, and c2 determines the contribution of fi, pfi,

and gf respectively,

and r0, r1, r2 are random values in the range of [0, 1],

which are sampled from a uniform distribution.

Here we have, c0 + c1 + c2 = 1 and c1 = c2.

So the individual best and the global best influence

the pheromone deposition equally. The value of c0
is set from experimental results presented in the

Additional file 1.

The inertia weight is considered to ensure that

the contribution of global best and individual best

is weighed more in later iterations when they con-

tainmeaningful values. To update the value of inertia

weight w, two different approaches have been con-

sidered. One approach updates the weight so that an

initial large value is decreased nonlinearly to a small

value [37].

w(t + 1) =
(w(t) − 0.4) × (MAX_ITER − iter)

MAX_ITER + 0.4

(5)

Here, MAX_ITER is the maximum number of

iteration and iter is the current iteration.
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Another approach is to update the value randomly

[172].

w =
(1 + r5)

2
(6)

Here, r5 is a random value in the range of [0, 1],

which is sampled from a uniform distribution. Per-

formance evaluation of each of these two approach is

presented in the Additional file 1.

Pheromone evaporation At the end of each iteration,

pheromones are evaporated to some extent. The

equation for pheromone evaporation is given by

Eq. 7:

pi(t + 1) = pi(t) × ρ (7)

Here, (1 − ρ) is the pheromone evaporation coef-

ficient and pi is the pheromone corresponding to the

ith gene and n is the total number of genes. pi(t) rep-

resents pheromone value of the ith gene after (t−1)th

iteration is completed.

Finally, note that, the value of tmax is updated when-

ever a new gbest is found. The rationale for such a change

is as follows. Over time, as the fitness of gbest increases

it also contributes more in the pheromone deposition,

which may lead the pheromone values for some of the fre-

quent genes to reach tmax. At that point, the algorithm

will fail to store further knowledge about those particular

genes. So we need to update the value of tmax after a new

gbest is found. This is done using Eq. 8 below.

tmax(g + 1) = tmax(g) × (1 + ρ × gf ) (8)

Here, tmax(g) represents the value of tmaxwhen the gth

global best is found by the algorithm.

Communication operator We have incorporated a new

operator simulating the communication between the ants

in a trail. Even though researchers are unable to establish

whether such a communication indeed involves informa-

tion transfer or not, it is known that foraging decisions of

outgoing workers, and their probability to find a recently

discovered food source, are influenced by the interactions

[62–67]. In fact, there is a large body of evidence empha-

sizing the role of ant encounters for the regulation of for-

aging activity particularly for harvester ants [62, 68–71].

Even themere instance of an encountermay provide infor-

mation, such as the magnitude of the colony’s foraging

activity, and therefore may influence the probability of

food collection in ants [72–74].

At each step bees gain knowledge about different

components and store their findings by depositing

pheromone. After a bee gains new knowledge about the

solution components, it share its findings with the succes-

sor. So an employed bee gets insight of which components

are currently exhibiting excellent performance. Thus a bee

obtains idea about food sources from its predecessor. A

gene is selected in the current bee if it is selected in its pre-

decessor and pheromone level is greater than a threshold

level.

With probability r4 the following communication oper-

ator (Eqs. 9 and 10) is applied to each employed bee.

The value of r4 is experimentally tuned and the results are

presented in the Additional file 1.

xdXi
= xdXi−1

× zpd (9)

Where, for ith bee

i > 1,

d = 1, 2, · · · , n (n is the number of genes), and

zpd =

{

1, if pd > tmax
2

0, otherwise
(10)

The procedure Communicate(i) to apply the communi-

cation operator on ith bee is presented in Algorithm 2.

Algorithm 2: Communicate(i)

1 for d=1 to n do

2 if pd > tmax
2 then

3 zpd = 1

4 else

5 zpd = 0

6 end

7 xdXi
= xdXi−1

× zpd
8 end

Initialization Pheromone for all the genes are ini-

tialized to tmax. For all the bees food positions are

selected randomly. To initialize the ith bee, the function

initRandom(Si), given in Algorithm 3, is used. Here we

have used a modified sigmoid function that was intro-

duced in [37] to increase the probability of the bits in a

food position to be zero. The function is given in Eq. 11

below. It allows the components with high pheromone

values to get selected.

sigmoid(x) =
1

1 + e−x
(11)

Here, x ≥ 0 and sigmoid(x) ∈ [0, 1]

Employed bee phase

To determine a new food position the neighborhood

operator is applied to the current food position. Then

local search is applied with the probability probLS to

the new food position to obtain a better position by

exploitation. As local search procedures, Hill Climbing

(HC), Simulated Annealing (SA), and Steepest Ascent

Hill Climbing with Replacement (SAHCR) are consid-

ered. Then greedy selection is applied between the newly
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Algorithm 3: initRandom(Si)

1 for i=1 to n do

2 r3=random number in the range of [ 0, 1]

3 if r3 > sigmoid(pj) then

4 x
j
Xi

= 1

5 else

6 x
j
Xi

= 0

7 end

8 end

found neighbor and the current food position. The per-

formance and comparison among different local search

methods are discussed in the Additional file 1. In each iter-

ation the value of gbest, and pbesti are updated using the

Algorithm 4.

Algorithm 4: UpdateBest(Si)

1 if fitness(Si) > fitness(pbesti) then

2 pbesti = Si;

3 end

4 if fitness(Si) > fitness(gbest) then

5 gbest = Si;

6 end

Onlooker bee phase

At first a food source is selected according to the good-

ness of the source using a selection procedure. As the

selection procedure, Tournament Selection (TS), Fitness-

Proportionate Selection (FPS), and Stochastic Universal

Sampling (SUS) have been applied individually and the

results are discussed in the Additional file 1. To deter-

mine a new food position the neighborhood operator is

applied to the food position of the selected bee. Then local

search is applied with the probability probLS to exploit

the food position. As local search methods Hill Climbing,

Simulated Annealing, and Steepest Ascent Hill Climbing

with Replacement are compared. Then greedy selection is

applied between the newly found neighbor and the cur-

rent food position. In each iteration the value of gbest, and

pbesti are updated using the Algorithm 4.

Selection procedure In the onlooker bee phase, an

employed bee is selected using a selection procedure for

further exploitation. As has been mentioned above, tour-

nament selection, fitness-proportionate selection, and

stochastic universal sampling have been applied individu-

ally as the selection procedure.

Tournament selection In this method the fittest individ-

ual is selected among the t individuals picked from

the population randomly with replacement [173],

where t ≥ 1. Value of t is set to 7 in our algo-

rithm. This selection procedure is simple to imple-

ment and easy to understand. The selection pressure

of the method directly varies with the tournament

size. With the increase of the number of competi-

tors, the selection pressure increases. So selection

pressure can easily be adjusted by changing the tour-

nament size. If the tournament size is larger, weak

individuals have a smaller chance to be selected. The

pseudocode is given in Algorithm 5.

Algorithm 5: TorunamentSelection()

1 Best = individual picked at random

2 for i from 2 to t do

3 Next = individual picked at random

4 if fitness(Next) > fitness(Best) then

5 Best = Next

6 end

7 end

8 return Best

Fitness-proportionate selection In this approach, indi-

viduals are selected in proportion to their fitness

[173]. Thus, if an individual has a higher fitness, its

probability of getting selected is higher. In fitness-

proportionate selection which is also known as

roulette wheel selection, even the fittest individual

may never be selected. In basic ABC, roulette wheel

or fitness-proportionate selection scheme is incor-

porated. The analogy to a roulette wheel can be

envisaged by imagining a roulette wheel in which

each candidate solution represents a pocket on the

wheel; the size of the pockets are proportionate to

the probability of selection of the solution. Select-

ing N individuals from the population is equivalent

to playing N games on the roulette wheel, as each

candidate is drawn independently. The pseudocode

is given in Algorithm 6.

Stochastic universal sampling One variant of fitness-

proportionate selection is called stochastic universal

sampling, which is proposed by James Baker [174].

Where FPS chooses several solutions from the pop-

ulation by repeated random sampling, SUS uses a

single random value to sample all of the solutions by

choosing them at evenly spaced intervals. This gives

weaker members of the population (according to

their fitness) a chance to be chosen and thus reduces

the unfair nature of fitness-proportional selection
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Algorithm 6: FitnessProportionateSelection()

1 f1 = fitness(S1)

2 for i from 2 to N do

3 fi = fitness(Si)

4 fi = fi + fi−1

5 end

6 r = random number in the range [ 0, fN ]

7 for i from 2 to t do

8 if fi−1 < r ≤ fi then

9 return Si
10 end

11 end

12 return S1

methods. In SUS, selection is done in a fitness-

proportionate way but biased so that fit individuals

always get picked at least once. This is known as

a low variance resampling algorithm. SUS is used

in genetic algorithms for selecting potentially use-

ful solutions for recombination. The method has

become now popular in other venues along with

evolutionary computation [173]. The pseudocode is

given in Algorithm 7.

Algorithm 7: StochasticUniversalSampling(Ns)

1 f1 = fitness(S1)

2 index = 0

3 for i from 2 to N do

4 fi = fitness(Si)

5 fi = fi + fi−1

6 end

7 r = random number in the range [0,
fN
Ns
]

8 for i from 2 to Ns do

9 while findex < r do

10 index = index + 1

11 end

12 r = r + fN/Ns

13 ini = index

14 end

15 q = random number in the range [0,Ns]

16 return Sinq

Other methods like roulette wheel can have bad

performance when a member of the population has

a really large fitness in comparison with other mem-

bers. SUS starts from a small random number, and

chooses the next candidates from the rest of popula-

tion remaining, not allowing the fittest members to

saturate the candidate space.

Scout bee

If the fitness of a bee remains the same for a prede-

fined number (limit) of iterations, then it abandons its

food position and becomes a scout bee. In basic ABC,

it is assumed that only one source can be exhausted

in each cycle, and only one employed bee can become

a scout. In our modified approach we have removed

this restriction. The scout bees are assigned to new

food positions randomly. While determining components

to form a new food position the solution component

with higher pheromone values have higher probability

of being selected. The value of limit is experimentally

tuned and discussed in the Additional file 1. The variable

triali contains the number of times the fitness remains

unchanged consecutively for the ith bee. The procedure

initRandom(Si) to assign new food positions for scout

bees is given in Algorithm 3. In each iteration the value of

gbest, and pbesti are updated using the Algorithm 4.

Local search

To explore nearby food sources the basic ABC algo-

rithm applies a neighboring operator to the current

food source. But in our algorithm we have applied

local search to produce a new food position form

the current one. In the employed bee and onlooker

bee stages, local search is applied with the probabil-

ity probLS to increase the exploitation ability [95]. The

value of probLS is scientifically tuned in the Additional

file 1. As has already been mentioned above, as the

local search procedures, Hill Climbing (HC), Simu-

lated Annealing (SA), and Steepest Ascent Hill Climb-

ing with Replacement (SAHCR) have been employed

as the local search procedure. Depending upon the

choice HillClimbing(S) or SimulatedAnnealing(S) or

SteepestAscentHillClimbingWithReplacement(S) is called

form the method LocalSearch(S). The performance

assessment between different local searches and the

parameter tuning of the local search methods are dis-

cussed in the Additional file 1.

Hill climbing Hill climbing is an optimization technique

which belongs to the family of local search methods.

The algorithm, starting from an arbitrary solution,

iteratively tests new candidate solutions in the region

of the current solution, and adopt the new ones if

they are better. This enables to climb up the hill

until local optima is reached. The method does not

require to know the strength or direction of the gra-

dient. Hill climbing is good for finding a local optima

but it is not necessarily guaranteed to find the global

optima. To find a new candidate solution we have

applied random tweak to the current solution. The

pseudocode is given in Algorithm 8.
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Algorithm 8: HillClimbing(S)

1 repeat

2 R = Tweak(S)

3 if fitness(R) > fitness(S) then

4 S = R

5 end

6 until the stopping criteria are met;

7 return S

Simulated annealing Annealing is a process in metal-

lurgy where molten metals are slowly cooled to make

them reach a state of low energy where they are

very strong. Simulated annealing is an analogous

optimization method for locating a good approxima-

tion to the global optima. It is typically described

in terms of thermodynamics. Simulated annealing is

a process where the temperature is reduced slowly,

starting from mostly exploring by random walk at

high temperature eventually the algorithm does only

plain hill climbing as it approaches zero temperature.

The random movement corresponds to high tem-

perature. Simulated annealing injects randomness to

jump out of the local optima. At each iteration the

algorithm selects the new candidate solution proba-

bilistically. So the algorithmmay sometimes go down

hills. The pseudocode is given in Algorithm 9.

Algorithm 9: SimulatedAnnealing(S)

1 initilaize t

2 best = S

3 repeat

4 R = Tweak(S)

5 r= a random number in the range of [ 0, 1]

6 if fitness(R)> fitness(S) or r<e
fitness(R)−fitness(S)

t then

7 S = R

8 end

9 t = t − 2 × schedule

10 if fitness(S)> fitness(best) then

11 best = S

12 end

13 until the stopping criteria are met;

14 return S

Steepest ascent hill climbing with replacement This

method samples all around the original candidate

solution by tweaking n times. Best outcome of the

tweaks is considered as the new candidate solution.

The current candidate solution is replaced by the

new one rather than selecting the best one between

the new candidate solution and the current solu-

tion. The best found solution is saved in a separate

variable. The pseudocode is given in Algorithm 10.

Algorithm10: SteepestAscentHillClimbingWithReplace−

ment(S)

1 best = S

2 repeat

3 R = Tweak(S)

4 for nt − 1 times do

5 W = Tweak(S)

6 if fitness(W)> fitness(R) then

7 R = W

8 end

9 end

10 S = R

11 if fitness(S)> fitness(best) then

12 best = S

13 end

14 until the stopping criteria are met;

15 return S

Neighborhood operator In the solution we need only

the informative genes to be selected. So we discard the

uninformative ones from the solution. By this way we will

get a small set of informative genes. To find a nearby

food position we first find the genes which are selected

in the current position. A number of selected genes (at

least one) are dropped from the current solution. We

get rid of the genes which tend to appear less potential.

If the current solution has zero selected genes then we

rather select a possibly informative gene. The parame-

ter nd determines the percentage of selected genes to be

removed. The value of nd is experimentally tuned in the

Additional file 1.

Let Xe = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0} is

a candidate solution with gene size, n = 20 and the num-

ber of selected gene is 10 (ten). So if nd = 0.3 we will

randomly pick 3 (three) genes which are currently selected

in the current candidate solution (Xe) and change them

to 0. Let the indices 2 (two), 8 (eight), and 15 (fifteen) are

randomly selected. So x2Xe
, x8Xe

, and x15Xe
will become zero.

Nearby food position (Xn
e ) of the current candidate solu-

tion (Xe), found after applying the neighborhood operator

will be Xn
e = {0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0}

(changes are shown in boldface font). Please note that we

adopt zero-based indexing.

Tweak operator The tweak operation is done by the

method Tweak(S). Here, one of the genes is picked ran-

domly and selection of that gene is flipped. So if the gene is
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selected, after tweak it will be dropped and vice versa. For

example let Xe = {0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1,

0, 0} is a candidate solution with gene size, n = 20

and the number of selected gene is 10 (ten). Let ran-

domly the index 6 (six) is selected. So the tweaked

food position (Xt
e) of the current candidate solution

(Xe), found after applying the tweak operator will

be Xt
e = {0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0}

(change is shown in boldface font). Please note that we

adopt zero-based indexing.

Fitness Our fitness function has been designed to con-

sider both the classification accuracy and the number of

selected genes. The higher the accuracy of an individual

the higher is its fitness. On the other hand small number

of selected genes yields good solution. So if the percent-

age of genes that are not selected is higher the fitness will

be higher. The value n−nsi
n gives the percentage of genes

that are not selected in Si. The tradeoff between weight

of accuracy and selected gene size is given by w1. Higher

value of w1 means accuracy is prioritized more than the

selected gene size. So, finally the fitness of the ith bee (Si)

is determined according to Eq. 12.

fitness(Si) = w1 × accuracy(Xi) + (1 − w1) ×
n − nsi

n
(12)

Here, w1 sets the tradeoff between the importance of

accuracy and selected gene size, Xi is the food position

corresponding to Si, accuracy(Xi) is the LOOCV (Leave

One Out Cross Validation) classification accuracy using

SVM (to be discussed shortly), and nsi is the number of

currently selected genes in Si.

Accuracy To assess the fitness of a food position we need

the classification accuracy of the gene subset. The predic-

tive accuracy of a gene subset obtained from the modified

ABC is calculated by an SVM with LOOCV (Leave One

Out Cross Validation). The higher the LOOCV classifi-

cation accuracy, the better the gene subset. SVM is very

robust with sparse and noisy data. SVM has been found

suitable for classifying high dimensional and small-sample

sized data [142, 175]. Also SVM is reported to perform

well for gene selection for cancer classification [20, 176].

The noteworthy implementations of SVM include

SVMlight [177], LIBSVM [178], mySVM [179], and BSVM

[180, 181]. We have included LIBSVM as the implemen-

tation of SVM. For a multi-class SVM, we have utilized

the OVO (“one versus one") approach, which is adapted

in the LIBSVM [178]. The replacement of dot product

by a nonlinear kernel function [182] yields a nonlinear

mapping into a higher dimensional feature space [183].

A kernel can be viewed as a similarity function. It takes

two inputs and outputs how similar they are. There are

four basic kernels for SVM: linear, polynomial, radial

basic function (RBF), and sigmoid [184]. The effective-

ness of SVM depends on the selection of kernel, the

kernel’s parameters, and the soft margin parameter C.

Uninformed choices may result in extreme reduction of

performance [142]. Tuning SVM is more of an art than an

exact science. Selection of a specific kernel and relevant

parameters can be achieved empirically. For the SVM,

the penalty factor C and Gamma are set to 2000, 0.0001,

respectively as adopted in Li et al. [41]. Use of linear and

RBF kernel and their parameter tuning is discussed in the

Additional file 1.

As classifier for both binary class and multi class gene

selection methods, use of SVM is present in [23, 37, 41,

42, 45, 54, 153, 157, 164, 165, 185–200].

Cross-validation is believed to be a good method for

selecting a subset of features [201]. LOOCV is in one

extremity of k-fold cross validation, where k is chosen as

the total number of examples. For a dataset with N exam-

ples, N numbers of experiments are performed. For each

experiment the classifier learns on N − 1 examples and

is tested on the remaining one example. In the LOOCV

method, a single observation from the original sample is

selected as the validation data, and the remaining obser-

vations serve as training data. This process is repeated so

that each observation in the sample is used once as the

validation data. So every example is left out once and a

prediction is made for that example. The average error

is computed by finding number of misclassification and

used to evaluate the model. The beauty of the LOOCV is

that despite of the number of generations it will generate

the same result each time, thus repetition is not needed.

Pseudocode for the modified ABC algorithm Finally,

the pseudocode of our modified ABC algorithm used in

this article is given in Algorithm 11 and the flowchart of

the proposed gene selection method using Algorithm 11

is given in Fig. 1.

Results and discussion
The algorithm is iterated for MAX_ITER times to obtain

an optimal gene subset. Then the gene subset is classi-

fied using SVM with LOOCV to find the accuracy of the

subset which gives the performance outcome of a sin-

gle run. Now to find the performance of our approach

and to tune the parameters the algorithm is run multiple

times (at least 15 times). Finally the average of accuracy

along with the number of selected genes from all the runs

for a single parameter combination presents the perfor-

mance of that parameter combination. In this section the

performance of our method will be presented using ten

publicly available datasets. Different parameters are tuned

to enhance the performance of the algorithm using one

of the datasets. Parameter tuning and the contribution
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Algorithm 11:modifiedArtificial BeeColonyAlgorithm

// initialization
1 for i=1 to n do
2 pi = tmax;
3 end
4 for i=1 to N do
5 initRandom(Si);
6 end
7 PS = N ;
8 repeat

// Employed Bee Phase
9 for i = 1 to PS do

// produce a new solution using
the neighborhood operator

10 E = Neighbor(Si);
// apply local search with

probability probLS
11 E′ = LocalSearch(E);
12 if fitness(E′) > fitness(Si) then
13 Si = E′;
14 end
15 Communicate();
16 UpdateBest(Si);
17 LayPheromone;
18 end

// Onlooker Bee Phase
19 for i = 1 to PS do

// select a bee index using the
selection procedure

20 j = Selection();
// produce a new solution using

the neighborhood operator

form the selected bee

21 O = Neighbor(Si) ;

// with probability probLS

apply local search

22 O′ = LocalSearch(O);

23 if fitness(O′) > fitness(Si) then

24 Si = O′;

25 end

26 UpdateBest(Si);

27 LayPheromone;

28 end

// Scout Bee Phase

29 for i = 1 to PS do

30 if triali > limit then

31 initRandom(Si);

32 UpdateBest(Si);

33 LayPheromone;

34 end

35 end

36 Evaporate Pheromone;

37 until the stopping criteria are met;

38 Gene subset corresponding to gbest is the optimal

subset found by the algorithm

of different parameters are discussed in the Additional

file 1. Comparison with previous methods that used the

same datasets is discussed in this section. We have also

presented comparison between different known heuristics

methods in this section. Four different parameter settings

according to different criteria have been proposed in this

paper. Performance comparison for all the parameter set-

tings is given in this section. In all cases the optimal results

(maximum accuracy and minimum selected gene size) are

highlighted using boldface font.

Datasets

Brief attribute summary of the datasets are presented

in Table 1. The datasets contains both binary and multi

class high dimensional data. The online supplement to the

datasets [192] used in this paper is available at http://www.

gems-system.org. The datasets are distributed as Matlab

data files (.mat). Each file contains a matrix, the columns

consist of diagnosis (1st column) and genes, and the rows

are the samples.

Optimized parameter values

While selecting the optimized parameter setting (Table 5)

we have considered other factors besides the obtained

performance.

After analyzing the results (Table S3 in Additional file 1),

we have decided to use 0.5 as the value of r4 in our final

experiments. Probability value of 0.7 for local search has

been used to ensure that too much exploitation is not

done despite that the value of 1.0 gives the highest accu-

racy (Table S5 in Additional file 1). The value of nd is set

to 0.035 as it demonstrates a good enough accuracy with

tolerable gene set size among all the values considered

for the parameter (Table S6 in Additional file 1). Popula-

tion size is kept at 25 which shows an acceptable level of

accuracy (Table S9 in Additional file 1). We have selected

SAHCR as the local search method at the onlooker bee

stage and SA at the employed bee stage to ensure both

exploration and exploitation. The value 12 is set as iter-

ation count of SAHCR as it shows acceptable accuracy

(Table S19 in Additional file 1). The value is kept small

because increased iteration count increases the algorithm

running time. The value 9 is considered as the final value

for number of tweaks in SAHCR (Table S20 in Additional

file 1). The value 0.065 is selected as the percentage of

genes to be preselected in the preprocessing stage despite

that the value 0.03 gives the best accuracy (Table S21

in Additional file 1). This is done because choosing 0.03

might possess the risk of discarding informative genes in

the prefiltering step for other datasets. The value 0.6 is set

for c0 as it shows good results (Table S23 in Additional

file 1). The obtained accuracy is highest for the limit value

100 (Table S25 in Additional file 1). But high value of limit

may result in less exploration. Thus, we recommend limit

http://www.gems-system.org
http://www.gems-system.org
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Table 1 Attributes of the datasets used for experimental evaluation

Name of the dataset Sample size Number of genes Number of classes Reference

9_Tumors 60 5,726 9 [209]

11_Tumors 174 12,533 11 [196]

Brain_Tumor1 90 5,920 5 [210]

BrainTumor2 50 10,367 4 [211]

DLBCL 77 5,469 2 [212]

Leukemia1 72 5,327 3 [5]

Leukemia2 72 11,225 3 [213]

Lung_Cancer 203 12,600 5 [214]

Prostate_Tumor 102 10,509 2 [215]

SRBCT 83 2,308 4 [216]

= 35 for this parameter setting after considering the exper-

imental outcomes. Among TS and FPS, TS is considered

as the selection method.

The optimized parameter values are listed in Table 2.

From the obtained results (Table 7) we can conclude

Table 2 Optimized parameter values after tuning

Parameter Optimized value

probLS 0.7

ρ 0.8

w 1.4

w1 0.85

thn 0.065

sahc_iter 12

sahc_tweak 9

sa_iter 14

t 5

schedule 0.5

tmax 5

tmin 0

c0 0.6

MAX_ITER 20

limit 35

nd 0.035

PS 25

r4 0.5

lse SA

lso SAHCR

Selection method Tournament selection

kernel Linear

wt Equation 5

uph True

prefilter Kruskal-Wallis

that the algorithm performs consistently for all datasets

based on the standard deviation for accuracy (maximum

0.01) and number of selected gene (maximum 5.64) for

optimized parameter settings. Our algorithm in fact has

achieved satisfactory accuracy even for the default param-

eter settings albeit with a high standard deviation for the

number of selected genes for most of the cases. The main

reason for high standard deviation in the selected gene

size for the default parameter setting can be attributed to

the high default value of c0 and low default value of limit.

The Fig. 2 shows the distribution of obtained accu-

racy in optimized parameter settings for the dataset

9_Tumors and 11_Tumors. For all other datasets our

method obtained 100% accuracy in all the runs. The hor-

izontal axis represents the accuracy and the vertical axis

represents the percentage of time corresponding accuracy

is obtained among all the runs. Similarly the Fig. 3 repre-

sents the distribution of selected gene size in optimized

parameter settings for all the datasets. The horizontal axis

represents the selected gene size and the vertical axis rep-

resents the percentage of time corresponding gene size is

obtained among all the runs.

Comparison with different metaheuristics

To compare our method with different metaheuristics we

have considered ABC, GA, and ACO. In Additional file 1

performance of GA and ACO respectively for different

parameter combination is discussed. Finally, the tuned

parameter values are considered to run the experiments

for comparing with our proposed method. For ABC, opti-

mized parameter values found for mABC are considered

(Table S31 in Additional file 1). Table 3 shows compar-

ison between our work and the evolutionary algorithms

in consideration. For this comparison we have consid-

ered the 9_Tumors dataset. The results are presented in

Table 3. From the results we can see that ABC performs

significantly better than GA and ACO. Our experimen-

tal results support the study done by Karaboga et al. [86].

Finally, from Table 3 we can see that our proposed mABC
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Fig. 2 Distribution of classification accuracy using first (optimized) parameter setting for the dataset a 9_Tumors; b 11_Tumors

performs better than other metaheuristics in considera-

tion according to both the constraints.

Comparison with existing methods

Table 4 shows comparison between our work and other

works in literature including EPSO for the datasets

9_Tumors, 11_Tumors, Brain_Tumor1, Brain_Tumor2,

DLBCL, Leukemia1, Leukemia2, Lung_Cancer, Prostate_

Tumor, and SRBCT. The optimized parameter setting

listed in Table 2 are used to run the algorithm for at least

15 times. Obtained accuracy (both average and best) by

our approach for all the datasets are better or at least equal

to the accuracy achieved by EPSO.

For 9_Tumors, with the optimized parameter values,

our algorithm has achieved 100% accuracy in 32.7% runs

(Fig. 2a). Average accuracy obtained by this work for this

dataset is significantly better than EPSO. Also number

of selected genes to achieve the accuracy is remarkably

lower than EPSO. Our method selected at least 73.28%

less genes than other methods. It may appear that the rea-

son for exceptionally better performance for 9_Tumors

dataset is that the parameter values are optimized spe-

cially for this dataset. But even the worst performances

for both default and optimized parameter values (Table 7)

by this work are better than that of EPSO. For the dataset

11_Tumors, in 23.8% runs our method obtained the

highest (100%) accuracy (Fig. 2b). The average accuracy

obtained by our approach is better than other methods.

The average no. of selected genes size is significantly

better than previous methods. Our approach obtained

at least 40.36% less gene than previous methods. For

Brain_Tumor1, and Brain_Tumor2 the obtained accuracy

is better than EPSO and other methods with 100% accu-

racy in all the runs. But the number of selected gene on

average is little higher than EPSO. For DLBCL both our

works and EPSO have achieved 100% accuracy with 0

standard deviation. But on average number of selected

gene is smaller in our algorithm though the best result

by both the approaches are the same. For Leukemia1,

and Leukemia2 our method has achieved highest (100%)

accuracy like EPSO. But our obtained marginally larger

amount of genes than EPSO in the best obtained result

for Leukemia1 (2 more). And for Leukemia2 our proposed

method selected same number of genes as EPSO in the

best obtained result. Also for Leukemia2 dataset, aver-

age number of genes selected is smaller in this work. For

Lung_Cancer dataset, our algorithm achieved the high-

est (100%) accuracy which is better than other methods.

But the selected gene size for both the best and the

average result is little higher than EPSO. For the dataset

Prostate_Tumor, this work has exhibited better perfor-

mance according to accuracy. Our method has obtained

highest (100%) accuracy with zero standard deviation

which is the best accuracy obtained so far by anymethods.

But average number of selected genes is little higher in our

method though best selected gene size is same as EPSO.

For SRBCT our method has shown better performance

in all cases (according to both accuracy and the number

of selected genes for both optimized and default param-

eter values). For this dataset best result achieved by our

method selected only 5 genes (better than EPSO) while

obtained 100% accuracy (same as EPSO). Even the worst

results obtained by our algorithm in optimized parameter

setting (Table 2) is better than the best result achieved by

EPSO. Also our method exhibits more consistent perfor-

mance according the lower standard deviation than EPSO

for both accuracy (maximum 0.01) and selected gene size

(maximum 5.64) for most of the datasets. So, in summary,

for all the datasets gained accuracy and standard devia-

tion of accuracy by our method is better or equal to the

accuracy obtained by EPSO. However, for some cases the

number of selected genes is a little higher. To obtain the

stated results we have used only 20 iterations while EPSO

used 500 iterations [37].

Further tuning of parameters

Tuning with full factorial combination would have allowed

us to find the best parameter settings. But it will

require enormous computational time. To demonstrate

this hypothesis we have done the experiments using

another two parameter settings (Table 5) formed from

two different viewpoints. While selecting the optimized
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Fig. 3 Distribution of number of times selected gene size fall in a specific range using the first (optimized) parameter setting a 9_Tumors; b
11_Tumors; c Brain_Tumor1; d Brain_Tumor2 e Leukemia1; f Leukemia2; g DLBCL; h Lung_Cancer; i Prostate_Tumor; j SRBCT
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Table 5 All the proposed parameter values after tuning

Parameter First Second Third

probLS 0.7 0.4 0.7

ρ 0.8 0.8 0.8

w 1.4 1.4 1.4

w1 0.85 0.85 0.85

thn 0.065 0.03 0.03

sahc_iter 12 16 16

sahc_tweak 9 15 15

hc_iter N/A 10 N/A

sa_iter 10 N/A N/A

t 5 N/A N/A

schedule 0.5 N/A N/A

tmax 5 5 5

tmin 0 0 0

c0 0.6 0.5 0.5

MAX_ITER 20 20 20

limit 35 100 100

nd 0.035 0.02 0.035

PS 25 40 40

r4 0.5 0.7 0.7

lse SA HC SAHCR

lso SAHCR SAHCR SAHCR

Selection method Tournament selection Tournament selection Stochastic universal sampling

kernel Linear Linear Linear

wt Equation 5 Equation 5 Equation 5

uph True True True

prefilter Kruskal-Wallis Kruskal-Wallis Kruskal-Wallis

parameter setting (Table 2) we have considered many

other factors besides the performance. So, we have config-

ured two other parameter settings where the performance

is considered as the major criterion of value selection

along with running time. The last parameter settings

(given in Table 5) is created after further tuning is done.

Comparison between all the parameter settings includ-

ing the default one is given in Table 7. From the obtained

results (Table 7) it is clear that further tuning can improve

results for all the datasets.

Second parameter setting

To propose the second parameter setting we have con-

sidered the performance as the major criterion along

with the running time for selecting parameter values.

High probability of local search increases performance

(Table S5 in Additional file 1). But higher probability will

also result in increased running time and little explo-

ration. So while preparing this parameter combination

we decided to keep the probability low allowing enough

exploration, but other values are selected considering

the performance outcome mainly. The probability value

of 0.4 is selected for local search to prevent too much

exploitation and decrease running time. The value 0.03 is

selected as the percentage of genes to be preselected in

the preprocessing because it gives the best accuracy. The

value 0.6 is set for c0 as it shows the best results. The

obtained accuracy is highest for the limit value 100 which

is selected for this parameter. The value of nd is set to

0.02 as it demonstrates a good enough accuracy. Popula-

tion size is increased to 40 which gives the best accuracy

and small number of selected genes. The value of r4 is

increased to 0.7, as increased application of communi-

cation operator improves the results. HC is selected as

local search method in employed bee stage and SAHCR

is selected as local search method in onlooker bee stage

because this combination needs comparatively less run-

ning time but gives considerably good results. Also the

iteration and tweak count for the local search method
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SAHCR is increased. Themain idea behind proposing this

parameter setting is to improve performance than the pre-

vious parameter setting with decreased running time. So

we have selected low probability of local search but for

other parameters mainly we have selected values which

give best performance.

Third parameter setting

The third parameter settings is proposed after further tun-

ing is done for one of the parameters named “Selection

method". To find if further performance upgrade is possi-

ble by considering new values we have considered another

selection method named Stochastic Universal Sampling

(SUS). The results are given in Table 6. From the results we

can see that the newly considered method SUS performs

better than the others.

So, finally, we have proposed another parameter settings

which considers the performance as the main criterion to

select the parameter values. So, we have kept the proba-

bility of the local search high (0.7). This setup takes the

highest time to run. Because the probability of local search

is kept high and SAHCR is used as local searchmethod for

both the stages. SAHCR as local search for both the stages

performs the best (Table S14 in Additional file 1). SUS is

used as the selection method in onlooker bee stage. Other

parameter values are same as optimized (first) parameter

setting. The parameter settings is given in Table 5.

Comparison between different parameter settings

Comparison between all the parameter settings including

the default one is given in Table 7. For all the parame-

ter settings the best, average, standard deviation (S.D.),

and the worst results are reported. First we will present

the comparison between results achieved by the default

and the first parameter settings. Next we will compare the

results obtained by second and third parameter settings

with the first parameter settings.

In all cases the first parameter setting exhibits better

results according to both accuracy and the number of

selected genes than the default parameter setting. For the

first parameter setting we can conclude that the algo-

rithm performs consistently for all datasets based on

Table 6 Performance outcome for different values of parameter
selection method

Values Accuracy No. of selected gene

Avg. S.D. Avg. S.D.

Fitness proportionate selection 84.2 0.03 41.43 47.47

Tournament selection 84.74 0.03 53.33 53.65

Stochastic universal sampling 85.42 0.03 35.19 5.49

Best results (maximum accuracy and minimum selected gene size) are highlighted
using boldface font

the standard deviation for accuracy (maximum 0.01) and

number of selected gene (maximum 5.64). Our algorithm

in fact has achieved satisfactory accuracy even for the

default parameter setting albeit with a high standard devi-

ation for the number of selected genes for most of the

cases. The main reason for high standard deviation in the

selected gene size for the default parameter setting can be

attributed to the high default value of c0 and low default

value of limit.

The best, average, worst, and standard deviation

obtained using the first, second, and third parameter set-

tings for all the datasets are given in Table 7. Now we

will present comparison between these parameter set-

tings. For the 9_Tumors dataset, best obtained accuracy

for all the parameter settings is same (100% accuracy).

But the selected gene size (21) for the best results are

same for newly proposed two parameter settings which

is better (30% lower) than the selected gene size (30)

obtained by the proposed first parameter settings. For

the 11_Tumors dataset obtained average accuracy by third

parameter setting is better than other parameter settings.

Best obtained accuracy by all three parameter setting is

100%. But selected gene size for best result is better in

the second parameter settings. Also the second parame-

ter setting selected lower (at least 9.18% lower) number

of genes on average than others. Second and third pro-

posed parameter settings selected much lower (at least

33.89% lower) number of genes on average than the first

parameter setting for this dataset. For all other datasets

obtained accuracy by all three parameter settings in all

the runs is 100%. For the dataset Brain_Tumor1, the best

and the average number of selected genes are better for

the third parameter setting. Last two parameter settings

obtained at least 33.61% lower selected genes size than

the average number of selected genes by the first param-

eter setting. The average number of selected genes by the

third parameter setting is better (5.54% lower) than the

average number of genes selected by the second parame-

ter setting. And the maximum number of selected genes

(13) is same for the last two parameter settings. For the

dataset Brain_Tumor2, minimum (6) and maximum (9)

number of selected genes are same for the second and

third parameter settings. But selected gene size on average

is smaller (1.61% lower) for the third parameter settings

than the average selected gene size by the second param-

eter settings. For both the second and third parameter

settings selected gene size on average is lower (at least

28.99% lower) than that of first parameter setting. For

the dataset DLBCL, minimum number of selected gene

size (3) is same for all three parameter settings. But aver-

age selected gene size obtained by the last two parameter

combinations are at least 11.11% lower than the average

selected gene size obtained by the first parameter set-

ting. The maximum number of genes selected (4) by the
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second and the third parameter settings are same. But on

average selected gene size by the third parameter setting is

7.5% lower than the average number of genes selected by

the second parameter setting. For the Leukemia1 dataset,

best minimum number of selected genes (3) is obtained

by the third parameter setting. On average the last two

proposed parameter settings selected at least 22.4% lower

number of genes than the first parameter setting. Also the

average number of genes selected by the third parame-

ter setting is 12.05% lower than the average number of

selected genes by the second parameter setting. For the

dataset Leukemia2, minimum number of selected genes

(3) by both the second and the third parameter setting

is same, which is better than the minimum number of

selected genes (4) by the first parameter setting. Also the

maximum number of selected genes (5) by the second

and the third parameter setting are the same, which is

lower than the maximum number of genes selected (8) by

the first parameter setting. Average number of selected

genes by the second and third parameter settings is at least

35.45% lower than the average selected gene size by the

first parameter setting. But for this datasets the average

number of selected gene size is minimum for the second

parameter setting, which is 4.68% lower than the average

number of selected gene size by the third parameter set-

ting. For the Lung_Cancer dataset, minimum number of

selected genes (9) by the second and the third parameter

settings is 35.71% smaller than the minimum number of

selected genes (14) obtained by the first parameter setting.

Also the maximum number of selected genes (14) by the

second and the third parameter settings is 56.25% lower

than the maximum number of selected genes (32) by the

first parameter setting. Note that the best obtained gene

set size (14) by the first parameter setting for this dataset

is same as the worst obtained gene set size (14) by the last

two proposed parameter combinations. Also the second

and third parameter settings obtained average selected

gene size at least 46.63% smaller than the average number

of selected genes by the first parameter setting. But the

average selected gene size by the second parameter setting

is better (8.12% lower) than the average selected gene size

by the third parameter setting. For the Prostate_Tumor

dataset, the minimum number of selected genes (5) is

same for all the parameter settings. But the worst obtained

gene subset size (8) by the second and the third parame-

ter settings is better (50% lower) than the worst obtained

gene subset size (16) by the first parameter setting. Also

the average number of selected genes by the first param-

eter setting is at least 62.82% higher than the average

number of selected genes by the last two parameter set-

tings. Again the average number of genes selected by the

third parameter setting is better (1.37% lower) than the

average number of genes selected by the second param-

eter setting. For the dataset SRBCT, minimum number

of genes selected (4) by the last two parameter setting is

better than the minimum number of genes selected (5) by

the first parameter setting. The average number of genes

selected by the second and third parameter settings are

at least 23.61% better than the average number of genes

selected by the first parameter setting. Moreover selected

gene size by the third parameter setting is same in all

the run, thus standard deviation is zero. So average num-

ber of selected genes for the third parameter setting is

6.32% lower than the average number of genes selected by

the second parameter setting. For the datasets 9_Tumors,

11_Tumors, Leukemia2, and Lung_Cancer obtained aver-

age number of selected genes is better for the second

parameter setting. In all other cases considering both the

accuracy and the selected gene size the third parameter

setting performed comparatively better.

Conclusions

Microarray technology allows producing databases of

cancerous tissues based on gene expression data [202].

Available training datasets for cancer classification gen-

erally have a fairly small sample size compared to the

number of genes involved and consists of multiclass cate-

gories. The sample size is likely to remain small at least for

the near future due to the expense of microarray sample

collection [203]. The huge number of genes causes grave

computational overhead and poor predictive accuracy in

wrapper methods when searching for significant genes. So

to select small subsets of relevant genes involved in dif-

ferent types of cancer remains a challenge. So we apply a

statistical method in preprocessing step to filter out the

noisy genes. Then a search method is utilized for further

selection of smaller subset of informative genes. Selection

of pertinent genes enable researchers to obtain signifi-

cant insight into the genetic nature of the disease and the

mechanisms responsible for it [183, 204]. Recent research

has demonstrated that one of the most important appli-

cations of microarrays technology is cancer classifica-

tion [205, 206]. Biomarker discovery in high-dimensional

microarray data helps studying the biology of cancer [207].

When a large number of noisy, redundant genes are fil-

tered the performance of cancer classification is improved

[208]. Besides, gene selection can also cut down the cost

of medical diagnoses. We believe that the selection of

genes by our system provide us some interesting clue

towards the importance and contribution of that set of

particular genes for the respective cancer disease. To elab-

orate, our system has identified that for diffuse large B-cell

lymphoma (DLBCL) only three (3) genes are informative

enough to decide about the cancer. Now, this could turn

out to be a string statement with regards to the set of

genes identified for a particular cancer and we believe fur-

ther biological validation is required before making such

a string claim. We do plan to work towards validation of
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these inferences. To this end we believe that our method

presented in this paper is a significant contribution and

would be useful in medical diagnosis as well as for further

research.
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