

Gene Selection in Cancer Classification using PSO/SVM and GA/SVM Hybrid Algorithms

Enrique Alba, José García-Nieto, Laetitia Jourdan and <u>El-Ghazali Talbi</u>

Outline

- Motivations & Objectives
- Gene Selection and Classification. Methodology
- Algorithms Descriptions. Operators and Details
- Datasets
- Experimental Results and Comparisons
- Conclusions and Further Work

- Microarray experiments produce gene expression patterns that provide information about cell function
- Allowing to analyze thousands of genes (Breast cancer 24481, Lung 12533, ...)
- However, expression data are highly redundant and noisy (most of genes are believed to be uninformative)
- Large number of genes and small number of samples
- Extracting and analyzing information from large datasets is highly complex
- Reduction techniques improving the learning accuracy are critically important (Data mining + Metaheuristics)

- Distinguish (Classify) tumor samples from normal ones (2 classes)
- Discover reduced subsets with informative genes, achieving high accuracies
- Geometric PSO (GPSO) for feature selection
- Classification with Support Vector Machines
- Algorithms comparisons. GPSO vs. GA
- Experimentation using 6 public cancer datasets

Feature Selection (FS) I

- FS can reduce the dimensionality of the datasets
- Two models of FS: Wrapper and Filter

Depending on whether the selection is coupled with a learning scheme or not

 Support Vector Machines (SVM), a wrapper method was used in this work.

Advantageous since the features are selected by optimizing the discriminate power of the induction algorithm used

FS problem definition

Given a set of features $F=\{f_1,...,f_i,...,f_n\}$, find a subset $F'\subseteq F$, that maximizes a scoring function $\Theta:\Gamma\to G$ such that

$$F' = argmax_{G \subset \Gamma} \{ \Theta(G) \},$$

where Γ is the is the space of all possible feature subsets of F and G a subset of Γ

Feature Selection (FS) II

- Evaluation of solutions by means of SVM to assess the quality of the gene subset represented
- After this, 10-Fold Cross Validation is applied to calculate the rate of correct classification
- Fitness Aggregative Function (minimization):

$$fitness(x) = \alpha \cdot (100/accuracy) + \beta \cdot \#features$$

- Adapted initialization method:
 - ☐ The population (swarm) was divided into four subsets of individuals (particles), such that:

 - 20% of individuals → 2N genes
 - 30% of individuals → 3N genes
 - 40% of individuals randomly

N = 4 in experiments

FS Methodology

Geometric PSO

- Based on Poli & Moraglio 2006, a new binary representation PSO algorithm
- Provide support for more representations: continuous, permutations,...
- Using Metric Space frameworks: Hamming, Euclidean, Manhattan
- Operators
 - Movement by Three Parent Geometric Crossover
 - Without velocity factor
 - Application of Mutation (BitFlip)
 - Adaptation of Three Parent Saving Pattern for FS

Geometric PSO

Pseudocode

```
1: S \leftarrow SwarmInitialization()
2: while not stop condition do
       for each particle x_i of the swarm S do
          evaluate(x_i)
          if fitness(x_i) is better than fitness(h_i) then
             h_i \leftarrow x_i
                                                                  Canonical PSO
          end if
          if fitness(h_i) is better than fitness(g_i) then
             g_i \leftarrow h_i
9:
10:
          end if
11:
       end for
       for each particle x_i of the swarm S do
12:
13:
          x_i \leftarrow 3PMBCX((x_i, w_1), (g_i, w_2), (h_i, w_3))
14:
          mutate(x_i)
15:
       end for
                                                                            Movement
16: end while
                                                  Three Parent Geometric Crossover
17: Output: best solution found
```

Genetic Algorithm

- Generational evolution
- Elitist
- Operators:
 - Deterministic tournament Selection
 - Subset Size-Oriented Common Feature Crossover Operator (SSOCF)
 - Uniform Mutation (bitflip)

SSOCF

Data Sets

Kent Ridge Bio-medical Data Set Repository

http://sdmc.lit.org.sg/GEDatasets/Datasets.html

ALL-AML Leukemia.	7129 gene	expression	levels and	72 samples
-------------------	-----------	------------	------------	------------

- Breast Cancer. 24481 gene expression levels and 97 samples
- Colon Tumor.2000 gene expression levels and 62 samples
- Lung Cancer. 12533 gene expression levels and 181 samples
- Ovarian Cancer. 15154 gene expression levels and 162 samples
- Prostate Cancer. 12600 gene expression levels and 136 samples

Experiments

- Configurations
 - □ SVM: Linear Kernel using the libsvm library
 - Metaheuristics parameters

PSO		GA		
Parameter	Value	Parameter	Value	
Swarm size	40	Population size	40	
Number of generations	100	Number of generations	100	
Neighborhood size	20	Probability of crossover	0.9	
Probability of mutation	0.1	Probability of mutation	0.1	
(w1, w2, w3)	(0.33, 0.33, 0.34)	-	-	

Executions

□ Two algorithms: GPSO (MALLBA Library), GA (Paradiseo Framework) and six datasets

IEEE CEC 2007 - Singapore

□ 10 independent runs each one

12/16

Results

Performance Analysis

Both algorithms obtain acceptable results in few iterations

Dataset	GPSO	GA	Huerta et al.	Juliusdoti r et al.	Deb et al.	Guyon et al.	Yu et al.	Liu et al.	Shen et al.
Leukemia	97.38(3)	97.27(4)	100(25)	-	100(4)	100(2)	87.44(4)	-	-
Breast	86.35(4)	95.86(4)	-	-	-	-	79.38(67)	-	-
Colon	100(2)	100(3)	99.41(10)	94.12(37)	97(7)	98(4)	93.55(4)	85.48(-)	94(4)
Lung	99.00(4)	99.49(4)	-	-	-	-	98.34(6)	-	-
Ovarian	99.44(4)	98.83(4)	-	-	-	-	-	99.21(75)	-
Prostate	98.66(4)	98.65(4)	-	88.88(20)	-	-	-	-	-

- Algorithm Robustness
 - ☐ The total accuracy and the number of selected features in all the cases didn't deviate from each other by more than 5.5

Dataset		PSO_{SVM}		GA_{SVM}			
Dataset	Best	Mean	Std Dev.	Best	Mean	Std Dev.	
Leukemia	100(3)	97.38(3)	3.80	100(4)	97.27(4)	3.82	
Breast	90.72(4)	86.35(4)	4.11	100(4)	95.86(4)	5.33	
Colon	100(2)	100(2)	0.0000	100(3)	100(3)	0.0000	
Lung	99.44(4)	99.00(4)	0.50	100(4)	99.49(4)	0.41	
Ovarian	100(4)	99.44(4)	0.38	100(4)	98.83(4)	3.18	
Prostate	100(4)	98.66(4)	1.14	100(4)	98.65(4)	3.24	

Examples of Selected Gene Subsets

Dataset		PSO_{SVM}	GA_{SVM}		
Leukemia	100(3)	U39226_at, L12052_at,	100(4)	Z26634_at, HG870-HT870_at	
Leukenna		X99101_at		X52005_at, L02840_at	
Breast	90.72(4)	NM_012269, NM_002850	100(4)	NM_005014, AF060168	
Dicast		AL162032, AB022847		NM_021176, NM_013242	
Colon	100(2)	U29092, M55543	100(3)	M90684, M94132	
Colon				X62025	
Lung	99.44(4)	31820_at, 33389_at	100(4)	31573_at, 33226_at	
Lung		39057_at, 40772_at		36245_at, 37076_at	
Ovarian	100(4)	MZ49.784115, MZ3546.2884	100(4)	MZ420.40671, MZ825.16557	
Ovarian		MZ4362.0866, MZ9159.3641		MZ1024.6857, MZ1166.0749	
Prostate	100(4)	35106_at, 35869_at	100(4)	41447_at, 34299_at	
Trostate		36754_at, 37107_at		39556_at, 39813_s_at	

Conclusions

- Two hybrid algorithms for gene selection and classification of high dimensional DNA Microarray were presented
- New algorithm GPSO for feature selection was applied
- GPSOsvm vs. GAsvm were experimentally assessed on six wellknown datasets
- Results of 100% accuracy and few genes per subset (3 and 4)
- Use of adapted initialization method
- Use of adapted operators for FS (3PMBCX & SSOCF)
- Biological analysis of selected gene subsets

Further Work

- Develop and test new combinations of other metaheuristic algorithm with classification methods (KNN,...)
- Use of Multiobjective approaches
- Application of Parallel approaches
- Gene selection and classification of new real datasets

Thanks! & Questions