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ABSTRACT

Summary: Cloud computing offers low cost and highly flexible
opportunities in bioinformatics. Its potential has already been
demonstrated in high-throughput sequence data analysis. Pathway-
based or gene set analysis of expression data has received relatively
less attention. We developed a gene set analysis algorithm for
biomarker identification in the cloud. The resulting tool, YunBe, is
ready to use on Amazon Web Services. Moreover, here we compare
its performance to those obtained with desktop and computing
cluster solutions.

Availability and implementation: YunBe is open-source
and freely accessible within the Amazon Elastic MapReduce
service at s3n://Ircv-crp-sante/app/yunbe.jar. Source code and
user’s guidelines can be downloaded from http://tinyurl.com/
yunbedownload.
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1 INTRODUCTION

The complexity and cost associated with recent advances in high-
throughput ‘omic’ technologies have made cloud computing a
cost-effective and powerful resource for bioinformatics. Existing
platforms, such as those offered by Amazon Web Services (AWS),
provide the computing environment, including CPUs, storage,
processing memory, networking and operating systems, required
to deploy computationally expensive algorithms and applications.
Such environments allow users to configure and exploit resources
on a ‘pay as you use’ basis (Fusaro et al., 2011). Although cloud
computing applications are increasingly being made available for
high-throughput DNA sequencing data, there is a need for publicly
available algorithms that can enable other translational biomedical
research applications, such as large-scale gene set analysis of
expression data (Dudley er al., 2010). In this context, expression
data of thousands of genes are mapped to biologically relevant sets of
genes, e.g. curated biological pathways, and differential expression
of such gene sets is estimated across phenotypes. The objective of
our research is 2-fold: (i) to develop a cloud compute version of a
published gene set analysis algorithm (Azuaje ef al. 2010); and (ii)
to perform a comparative analysis of performance across different
computing platforms.

2 ALGORITHM

In our original gene set analysis algorithm, kipuMarkers, there are
two main processing steps (Fig. 1A): expression data overlay and
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pathway scoring. In the overlay task the aim is to map expression
measurements from samples (e.g. patients) onto gene sets (e.g.
molecular pathways) provided by the user. In this step ‘activity
levels’ for each sample-specific pathway are calculated. In the case
considered here, an activity level refers to the mean expression
value observed in a pathway. This is followed by the computation
of a ‘perturbation score’ for each gene set, which is based on the
comparison of differential activity levels across two sample groups
defined in the data (e.g. disease classification).

We developed a cloud compute version of this method, YunBe,
which is written in Java using the MapReduce framework (Fig. 1B).
The overlay step corresponds to a matrix multiplication task: gene
expression data matrix (M) is multiplied by a pathway matrix (N)
to produce a new matrix (K) with samples matched to the pathways
available. Matrix M is uploaded to the Hadoop Distributed File
System (HDFS), while the matrix N is uploaded to a distributed
cache system upon execution. Thus, in each processing iteration,
sample data are ‘multiplied’ by (i.e. mapped to) the entire pathway
collection, one by one. Hence, a mapping task processes two inputs:
samples (from matrix M) and pathways (from matrix N) to produce
a key/value pair, where key is a pathway ID and value is an ‘activity
value’. The ‘reduce’ phase connects all values associated with the
same key (pathway ID), followed by the calculation of ‘perturbation
scores’ and P-values for each pathway as reported in (Azuaje et al.,
2010).

3 DATA AND IMPLEMENTATION

To test YunBe we analyzed published and simulated gene expression
datasets: a human liver gene expression dataset (Schadt et al., 2008)
and synthetic datasets of varying sizes. The liver dataset includes 466
samples from 31842 transcripts and grouped by gender, i.e. two-
class phenotype. To generate the simulated data, we first selected
transcript names lists from the Agilent Whole Human Genome
Oligo Microarray (i.e. 19 634 transcript names). We then randomly
grouped 1000 samples and computed (normally distributed) values
for each transcript in the sample. As gene sets, we used a canonical
pathway list with 880 gene sets from the Molecular Signatures
DataBase (MSigDB) (Subramanian et al., 2005).

Gene expression data, pathways and YunBe Jar files were uploaded
to an Amazon S3 bucket. A job flow was created with Amazon
Elastic MapReduce service (Fig. 1B) with ml.large instance
type. A ml.large instance represented a 64-bit platform with two
virtual cores. Each virtual core has two EC2 Compute Units that
individually equals the CPU capacity of a 1.0-1.2 GHz 2007 Xeon
processor. We compared YunBe’s execution speeds with a program
version running on a computing cluster, which consisted of dual
socket quad-core Intel E5430 Harpertown CPUs. In this analysis,
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Fig. 1. Gene set analysis in the cloud. (A) Analysis pipeline. (B) MapReduce implementation on Amazon EC2. (C) Performance of desktop program, Amazon

EC2-based YunBe and BGI cluster on liver and simulated data.

1,2, 4 and 8 EC2 m1.large instances were compared with 2, 4, 8 and
16 cluster cores running at BGI. We also made comparisons with a
desktop program running on a duo-core Intel E7500 Wolfdale CPU.

4 COMPARATIVE ANALYSIS RESULTS

The desktop computer version of our algorithm required 120 and
173 min (wall clock time) to perform gene set analysis of the
liver and simulated datasets, respectively. In both datasets, YunBe
reduced the execution time from hours to minutes (Fig. 1C). The
execution time was significantly reduced even when using only
two cores. In the case of the liver dataset and in relation to the
desktop implementation, speedups of 10.9 and 24.1 times were
obtained with the Amazon EC2 and BGI cluster, respectively. Major
execution time improvements were also observed on the simulated
dataset: 8.6 and 16.4 faster with Amazon EC2 and BGI cluster,
respectively. Overall, the BGI platform produced faster results than
AWS. This result may be expected due to overheads incurred by the
cloud’s virtualization layer. Another factor to take into account is that
speed also depends on the specific hardware utilized for execution.
Note that in our analyses, we equalized the bit size of computer
architecture (64-bit) and the number of cores between Amazon EC2
and BGI cluster. Nevertheless, other factors, such as memory and
I/O performance, may have influenced our comparison. Moreover,
differences in networking hardware, inter-node communication
and geographical distance should be considered when interpreting
observed differences in speed.

YunBe’s running time scales with nearly linear speedup over the
desktop program performance as the number of cores increases
(Fig. 1C). For instance, on Amazon EC2 and liver data, we obtained
a speedup of 11 and 20 for 2 and 4 virtual cores, respectively.
For the simulated data, the speedup was of 8 and 14 for 2 and
4 cores, respectively. However, such proportional increases were
not observed above eight cores, more significantly on Amazon EC2.

In theory, MapReduce computations are independent, and therefore
the (wall clock) running time should scale linearly with the number
of processor cores available. In practice, the speedup of a program
running on multiple processors may be limited by serial processing
overheads, as described by Amdahl’s law. YunBe analyses on the
AWS are relatively inexpensive. For example, a full analysis of the
liver dataset requiring eight virtual cores was completed for about
US$ 1.7 (~EUR 1.2).

In conclusion, we offer YunBe, a new open-source gene
set analysis tool for the cloud. YunBe is freely available and
ready to run on AWS. We showed how, in comparison to a
desktop implementation, YunBe significantly improves execution
times. YunBe can accelerate pathway-based biomarker identification
through inexpensive and secure distributed computing.
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