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Abstract
Recently developed gene set analysis methods evaluate differential expression patterns of gene groups instead of
those of individual genes. This approach especially targets gene groups whose constituents show subtle but coordi-
nated expression changes, which might not be detected by the usual individual gene analysis.The approach has been
quite successful in deriving new information from expression data, and a number of methods and tools have been
developed intensively in recent years.We review those methods and currently available tools, classify them accord-
ing to the statistical methods employed, and discuss their pros and cons. We also discuss several interesting
extensions to the methods.
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INTRODUCTION
Since the advent of microarray technology, it has

been of primary interest to identify differentially

expressed genes (DEGs) and elucidate related bio-

logical processes. To this aim, a large number of

statistical methods and tools have been developed in

past decade. The most widely used approach, namely

individual gene analysis (IGA), evaluates the signifi-

cance of individual genes between two groups of

samples compared. IGA typically yields a list of

altered genes from a cutoff threshold. The list is

then investigated with biologically defined gene sets

derived from Gene Ontology or some pathway

databases to assess the enrichment of specific bio-

logical themes in the list. Khatri and Draghici [1] and

Rivals et al. [2] reviewed in detail the methods and

tools for IGA.

The main problems of IGA originate from the use

of the cutoff threshold value. First, the final result of

IGA is significantly affected by the selected threshold,

which is normally chosen arbitrarily [3]. Pan et al. [4],
while analyzing three microarray datasets, showed

that different choices of the threshold value severely

alter the biological conclusions (enrichment of

specific function categories in the gene list).

Second, many genes with moderate but meaningful

expression changes are discarded by the strict cutoff

value, which leads to a reduction in statistical

power [3, 5].

In recent years, gene set analysis (GSA) methods,

free from the problems of the ‘cutoff-based’

methods, has received a great deal of attention

(Figure 1). GSA directly scores pre-defined gene sets

for differential expression and especially aims to

identify gene sets with ‘subtle but coordinated’

expression changes that cannot be detected by IGA

methods. The key principle is that even weak

expression changes in individual genes gathered to

a large gene set can show a significant pattern. From

a biological perspective, GSA methods are promising

because functionally related genes often display a

coordinated expression to accomplish their roles

in the cell. By changing the focus from individual

genes to a set of genes or pathways, the GSA

approach enables the understanding of cellular

processes as an intricate network of functionally
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related components [6]. Indeed, Mootha et al. [7],
whose work has inspired the development of various

GSA methods, developed gene set enrichment

analysis (GSEA) to identify a significantly altered

gene set between microarray samples of diabetic and

normal muscles for which no single gene was found

to be differentially expressed by IGA. They found

that genes involved in oxidative phosphorylation,

whose expression was only modestly decreased in

human diabetic muscle, were correlated with body

aerobic capacity and associated with variations in

human metabolism [7]. Ben-Shaul et al. [5], while
analyzing microarray data from the brains of MPTP-

injected mice, showed that applying the GSA

approach enabled the detection of many GO terms

overlooked by IGA methods.

Another important problem with IGA is that

all the statistical methods applied are based on the

wrong assumption of independent gene (or gene-

group) sampling, which increases false positive

predictions. Some of the GSA methods also address

this issue.

In this review, we compare and discuss the GSA

methods and currently available tools that have

been intensively developed in recent years to guide

researchers to choose appropriate methods and

tools for their own purposes. Additionally, several

interesting extensions and applications of GSA are

discussed. Researchers also may benefit from a recent

review by Dopazo [6].

GSAMETHODSANDTHEIR
NULLHYPOTHESES
Even before the work of Mootha et al. [7], a few

works already applied the concept of cutoff-free

group testing to analyze gene expression data. For

example, Virtaneva et al. [8] prepared several func-

tional categories (gene sets) using a SWISS-PROT

database, calculated scores for the functional cate-

gories from expression data, and applied sample

randomization to assess the significance of each

category. Pavlidis et al. [9] developed a semi-

supervised method to score each pre-defined gene

class, and investigated three metrics: the degree of

co-expression, the significance of expression profiles

in the context of experimental designs and the

learnability of gene class.

Thereafter, various GSA methods have been

developed (Table 1) based on different null hypoth-

eses and statistical methods [3, 10–13]. Tian et al. [10]
classified two kinds of null hypotheses for testing the

coordinated association of gene sets with a pheno-

type of interest. The first type hypothesizes the same

level of association of a gene set with the given

phenotype as the complement of the gene set

(say, Q1). The second type only considers the

genes within a gene set and hypothesizes that there

is no gene in the gene set associated with the

phenotype (say, Q2). The methods based on Q1

and Q2 were termed competitive and self-contained,
respectively by Geoman and Buhlmann [11].

IGA GSA

Gene expression data

Some tens to hundreds of genes

Gene selection (t-test, 
ANOVA, SAM, etc)

Find enriched biological 
themes

Biological interpretation

Gene expression data Gene set database

Assess gene sets 
directly

Biological interpretation

Figure 1: A schematic diagram comparing gene set analysis (GSA) with individual gene analysis (IGA). IGA is a two-
step process which first selects some tens to hundreds of genes by an arbitrarily chosen cutoff and then, from the
selected genes, infers the biological meaning of the gene expression data. In contrast, GSA is single-step process
which in advancepreparesgene sets fromdiverse sources as a testablehypothesis and thendirectly infers thebiological
meaning of gene expression data by applying either a sample or a gene randomization test.
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According to this classification, Catmap [3],

PAGE [14], T-profiler [15], ErmineJ [16] and Q1

test of Tian etal. [10] are competitive methods, while

the global test of Goeman et al. [17, 18], SAFE

[19], Q2 test of Tian et al. [10], PLAGE [20],

the multivariate approach of Kong et al. [21] and

SAM-GS [22] are self-contained methods (Table 1).

The competitive methods test the relative enrich-

ment of DEGs in a gene set compared with the

background set, and target gene sets with coordi-

nated expression changes. However, this feature

of relativism can cause the peculiar behavior of a

‘zero-sum game’ [23, 24]. For example, in an

extreme case where all the genes are down-regulated

under an experimental condition, some gene sets

can be considered up-regulated by the background

distribution. Moreover, most of the competitive

methods suffer from the invalid assumption

of independent gene sampling [11]. On the other

hand, the self-contained methods use only the

information contained in the given gene set. They

provide very powerful predictions due to the strong

hypothesis of Q2. However, in this case only a single

DEG can make the whole gene set significant so that

the gene sets may not be ‘enriched’ with DEGs.

In this sense, self-contained methods target a larger

class of DEG sets than those targeted by competitive

methods.

INTERPRETING GSEA
PROCEDURE
Unlike the methods described above, the widely

known GSEA [7] tests another kind of hypothesis

that ‘none of the gene sets considered is associated

with the phenotype’ (say, Q3). The object Q3

validates is the entire dataset, and it tests whether the

dataset contains any gene set that is associated with

Table 1: Cutoff-free gene set analysismethods

Authors Year Name Statistical test Self-contained versus
competitive

Gene versus ample
randomization

Reference

Virtaneva et al. 2001 sample randomization self-contained sample [8]
Pavlidis et al. 2002 gene randomization competitive gene [9]
Mootha et al. 2003 GSEA sample randomization mixed sample [7]
Breslin et al. 2004 Catmap gene randomization competitive gene [3]
Goeman et al. 2004 globaltest sample randomization self-contained sample [17]
Smid et al. 2004 GO-Mapper z-test competitive gene [38]
Volinia et al. 2004 GOAL gene randomization competitive gene [39]
Barry et al. 2005 SAFE sample randomization competitive sample [19]
Beh-Shaul et al. 2005 Kolmogorov^Smirnov test competitive gene [5]
Boorsma e al. 2005 T-profiler t-test competitive gene [15]
Kim et al. 2005 PAGE z-test competitive gene [14]
Lee et al. 2005 ErmineJ sample randomization competitive gene [16]
Subramanian et al. 2005 GSEA sample randomization mixed gene [25]
Tian et al. 2005 Q1, Q2 gene or sample randomization competitive or

self-contained
gene or sample [10]

Tomfohr et al. 2005 PLAGE sample randomization self-contained sample [20]
Edelman et al. 2006 ASSESS sample randomization competitive sample [28]
Kong et al. 2006 Hotelling’sT squared self-contained sample [21]
Nam et al. 2006 ADGO z-test competitive gene [29]
Saxena et al. 2006 AE sample randomization competitive sample [31]
Scheer et al. 2006 JProGO Fisher’s exact test,

Kolmogorov^Smirnov test,
t-test, unpaired Wilcoxon’s test

competitive gene [40]

Al-Shahrour et al. 2007 Fatiscan Fisher’s exact test,
hypergeometric test

competitive gene [41]

Backes et al. 2007 GeneTrail Fisher’s exact test,
hypergeometric test,
sample randomization

competitive gene or sample [42]

Cavalieri et al. 2007 Eu.Gene Analyzer Fisher’s exact test, sample
randomization

competitive gene or sample [43]

Dinu et al. 2007 SAM-GS sample randomization self-contained sample [22]
Efron et al. 2007 GSA sample randomization mixed sample [26]
Newton et al. 2007 Random set z-test competitive gene [44]
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the phenotype, while Q1 and Q2 validate the

significance of individual gene sets. The approach of

GSEA utilizes a competitive statistic (Kolmogorov–

Smirnov statistic) as a ‘score function’, if not as a test

statistic, to represent the relative enrichment of

DEGs in each gene set. Then, it tests the significance

of the entire dataset by applying sample permutation

to the scores. GSEA is considered a competitive

method relative to individual gene sets, but is

considered a self-contained method relative to the

entire dataset (set of gene sets). Two ways to

calculate the P-value from the sample permutation

follow:

(1) For each observed score of a gene set, count the

number of sample permutations for which a gene

set with a better score than the observed is found.

(2) For N sample permutations, count the numbers

of gene sets that have a better score than a given

threshold for the real dataset and permuted

datasets, say k0 and k1, . . . ,kN, respectively, and
then, the number of cases for which ki� k0,
i¼ 1,2, . . . ,N.

The first method assigns P-values to each gene

set, while the second method assigns P-values only
to the entire dataset. The original GSEA method

focuses on the highest-scoring single gene set so that

the above two methods coincide, and hence the

P-value can be given to both the highest-scoring

gene set and the entire dataset. In subsequent works,

however, only the first method was used to derive

multiple significant gene sets [25, 26]. An interesting

analog of GSEA in a self-contained analysis of a gene

set is suggested by Geoman and Buhlmann [11].

They applied the second type of P-value calculation

to assess the significance of the gene set, and not of its

constituents. In spite of the complicated interpreta-

tion of the P-value in the GSEA procedure, their

method seems to provide a legitimate approach for

identifying subtle but coordinated expression

changes without violating the dependence of gene

expression.

Many other highly sensitive methods are based on

the invalid assumption of independent gene sampling

for Q1 or on the strong Q2 hypothesis, and hence

may not be directly compared with GSEA. Not-

withstanding, improvements in the statistical power

of GSEA have been achieved by combining various

competitive score functions to the GSEA procedure.

Originally, Mootha et al. [7] used an un-weighted

Kolmogorov–Smirnov statistic, but they later

improved it [25] by weighting each gene by the

correlation with the phenotypes to prevent gene sets

clustered in the middle of the ordered gene list from

getting high scores [24]. Efron and Tibshirani [26]

introduced five test statistics for a GSEA algorithm—

mean, mean.abs, maxmean, GSEA and GSEA.abs—

to test five simulated conditions and concluded that

the maxmean statistic is the only method with

consistently low P-values in all situations.

There have been some criticisms of GSEA.

Damian and Gorfine [24] illustrated two examples

in which the GSEA procedure seemed to behave

peculiarly: the enrichment score can be influenced

by the size of a gene set and by the presence or

absence of lower-ranking sets. Surely, those two

peculiar behaviors stem from the competitive nature

of the GSEA procedure. The first example simply

shows the typical properties of statistical scores that

usually depend on the number of samples. Virtaneva

et al. [8], Tian et al. [10] and Lee et al. [16] devised
gene set scores that do not depend on the size of

gene sets, and which one to use may depend on the

preference of the user. However, it should be noted

that subtle but coordinated expression changes are

detectable only by taking into account the number

of genes.

METHODS FOR P-VALUE
CALCULATION
Many authors have discussed the differences between

gene and sample randomization in inferring the sta-

tistical significance of gene set scores. Among them,

Tian et al. [10] and Goeman and Buhlman [11]

discussed the issue most comprehensively. Two

different opinions exist on the gene versus sample

randomization for calculating P-values. One group

suggests that both gene and sample randomizations

should be used because they test two different but

complementary null hypotheses [10]. The other

group insists that only sample randomization should

be used to avoid inherent problems of the gene

randomization method [11, 12, 22].

According to Goeman and Buhlman [11], gene

randomization is problematic because the roles of

samples and genes in classical statistical tests are

reversed, which makes the interpretation of the

P-value unclear. More importantly, the condition of

independent gene sampling is not satisfied by the

correlation structures among functionally related
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genes. In particular, the latter problem has well

been recognized by many researchers [3, 8, 10, 12,

13, 16, 19–21, 25, 27]. Indeed, Breslin et al. [3],

Delongchamp et al. [27], Kim et al. [13] and Geoman

and Buhlmann [11] using real or carefully designed

simulated datasets showed that a gene set with

highly correlated genes tends to show a much

smaller P-value than that without correlation, which

increases false positive predictions. For this reason,

the current consensus favors sample randomization

over gene randomization as the more appropriate

statistical test.

However, sample randomization is not without a

problem. First, it requires a certain level of sample

replicates to attain deep levels of significance, but this

condition often is not met in many datasets such as

time-series data or those designed to investigate the

effects of diverse drugs in multiple conditions. For

this reason, Subramanian et al. [25] included the gene

randomization option in their GSEA program and

suggested using gene randomization to generate

hypothesis when the number of samples is small.

The second problem is that sample randomiza-

tion methods often identify too many gene sets as

significant when there are many DEGs in the dataset

[10, 11, 26]. From sample randomization, one or

only a few DEGs in a gene set can easily reject the

strong hypothesis Q2, and the original purpose of

GSA, i.e. discovering significant patterns represented

simply by a set may not be fulfilled. This is clearly

observed in the following simulation study.

A SIMULATION STUDY:
COMPARISONOF Q1,
Q2 ANDQ3
This study compares the distribution of P-values
obtained from the three hypotheses Q1, Q2 and Q3

on simulated data. We generated expression profiles

of 2000 genes with two sample groups, each having

20 samples. The expression values were sampled

from a standard normal distribution in both groups.

For 600 randomly selected genes (30%), we added

a random value between 0.5 and 1 to the second

group to generate DEGs. The genes were divided

into 100 gene sets, each of which contained 20

genes. To compare the difference of the three

hypotheses, we commonly used the average t-statistic in
a gene set as the score function [10]. Since the DEGs

were chosen uniformly at random, no gene sets were

expected to be ‘enriched’ with DEGs. Indeed, the

competitive method (Q1) recognized no DEG

sets so the P-values were distributed uniformly

(Figure 2). However, the self-contained method

(Q2) detected most of the gene sets (83%) as

differentially expressed with a P-value cutoff of

0.05. The mixed approach, GSEA exhibited an

intermediate performance.

From this result, we confirmed the criterion for

choosing a statistical method for GSA. If the purpose

is to find gene sets relatively enriched with DEGs,

a competitive method based on Q1 should be used.

However, if the purpose is to find gene sets clearly

separated between the two sample groups, a

self-contained method based on Q2 should be

selected. Our group prefers the mixed approach

(Q3) to avoid the clear drawbacks of the other

methods, but recommends using all the methods

simultaneously, if possible, with biological analyses.

CURRENT TOOLSAND
GENE SETDATABASES
Our group reviewed currently available GSA tools

(Table 2), which vary in statistical methods used

(gene or sample randomization), the form of the

provided tool (web server, standalone software,

Excel add-ins, or command line scripts) and the

applicable organisms. Because sample randomization

generally takes much longer computation time

than does gene randomization, most sample

randomization-based methods are offered as standa-

lone programs or command-line scripts, whereas

Gene sets

20 40 60 80 100

P
-v

al
ue

0.0

0.2

0.4

0.6

0.8

1.0
Competitive (Q1)
Self-contained (Q2)
GSEA (Q3)

Figure 2: The P-value distributions of 100 gene sets
for the three GSA approaches on simulated data.10 000
permutations were performed for gene or sample
randomizations on the average t-score.
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gene randomization-based methods are normally

offered as web servers.

In GSA, as important as the algorithms are the

gene sets. They are prepared using diverse sources

of biological knowledge such as the gene ontology

information, cytogenetic bands, pathways such as

KEGG, GenMAPP, and Biocarta, cis-acting regula-

tory motifs and co-regulated genes in a microarray

study. The limitations and challenges of the

information on current annotation databases for

IGA are thoroughly reviewed by Khatri and

Draghici [1] focusing on incomplete knowledge,

time-delayed curation, imprecise or incorrect elec-

tronic annotations, inability to predict new functions

and semantic misclassification of annotations. The

problems are all shared by GSA except for finding

more relevant categories among overlapping gene

sets for which GSA is able to assign different scores.

Table 2: Gene set analysis tools

Name Organisma ApplicationType URL Reference

ADGO H, M, R,Y Web server http://array.kobic.re.kr/ADGO [29]
ASSESS H, M, R Octave/Java standalone http://people.genome.duke.edu/�jhg9/assess/ [28]
Babelomics H, M, R, DM, S, C Web server http://www.babelomics.org [45]
Catmap H Perl script http://bioinfo.thep.lu.se/catmap.html [3]
ErmineJ H, M, R Java standalone http://www.bioinformatics.ubc.ca/ermineJ/ [16]
Eu.Gene

Analyzer
H, M, R,Y Windows/Unix standalone http://www.ducciocavalieri.org/bio/Eugene.htm [43]

FatiScan H, M, R,Y, B, D,
G, C, A, S, DM

Web server http://fatiscan.bioinfo.cipf.es/ [41]

GAZER H, M, R,Y Web server http://integromics.kobic.re.kr/GAzer/index.faces; [13]
GeneTrail H, M, R,Y, SA,

CG, AT
Web server http://genetrail.bioinf.uni-sb.de/ [42]

Global test NA R package http://bioconductor.org/packages/2.0/bioc/html/globaltest.html [17]
GOAL H, M Web server http://microarrays.unife.it [39]
GO-Mapper H, M, R, Z, DM,Y Windows standalone,

Perl script
http://www.gatcplatform.nl/ [38]

GSA H R package http://www-stat.stanford.edu/�tibs/GSA/ [26]
GSEA H Java standalone, R package http://www.broad.mit.edu/gsea/ [25]
JProGO Various prokaryotes Web server http://www.jprogo.de/ [40]
MEGO H Windows standalone http://www.dxy.cn/mego/ [46]
PAGE H, M, R,Y Python script From the author (kimsy@kribb.re.kr) [14]
PLAGE H, M Web server http://dulci.biostat.duke.edu/pathways/ [20]
SAFE NA R package http://bioconductor.org/packages/2.0/bioc/html/safe.html [19]
SAM-GS NA Windows Excel Add-In http://www.ualberta.ca/�yyasui/homepage.html [22]
T-profiler Y, CA Web server http://www.t-profiler.org/ [15]

aH:Homosapiens; M:Musmusculus; R:Rattusnorvegicus;Y:Sacchaomycescerevisiae; B:BosTaurus; D:Danielrerio; G:Gallusgallus; C:Caenorhabditiselegans;
A: Arabidopsis thaliana; DM: Drosophila melanogaster; Z: Zebra fish; CA: Candida albicans; SA: Staphylococcus aureus; CG: Corynebacterium glutamicum;
AT: Arabidopsis thaliana.

Table 3: Gene set databases

Name Organisma Gene sets Web address Reference

ASSESS H Cytogenetic, pathway, motif http://people.genome.duke.edu/�jhg9/assess/genesets.shtml [28]
ErmineJ H, M, R GO http://www.bioinformatics.ubc.ca/microannots/ [16]
GAzer H, M, R,Y GO, composite GO, InterPro,

Pathways, TFBS
http://integromics.kobic.re.kr/GAzer/document.jsp [13]

GSA H Tissue, cellular processes, cytobands,
chromosome arms, 5Mb chromosomal
tiles, cancer module

http://www-stat.stanford.edu/�tibs/GSA/ [26]

MSigDb H Cytobands, curated pathways, motif,
computed

http://www.broad.mit.edu/gsea/msigdb/msigdb_index.html [25]

PLAGE H, M KEGG and BioCarta pathways http://dulci.biostat.duke.edu/pathways/misc.html [20]

aH:Homo sapiens; M:Musmusculus; R: Rattus norvegicus;Y: Saccharomycescerevisiae.
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Table 3 shows currently downloadable gene set

databases. Among them, GAzer [13] provides gene

sets for four species, ErmineJ [16] for three

species and the other three for human species only

[25, 26, 28]. Molecular Signatures Database

(MSigDB v2.1) provides 3337 gene sets in four

categories: chromosomal locations, curated gene

sets from canonical pathways and chemical and

genetic perturbations, motif gene sets and computa-

tionally defined gene sets. GAzer provides gene

sets for three GO categories, three composite GO

categories [29], InterPro protein domain gene sets,

pathway gene sets and transcription factor-binding

site gene sets.

WHICHONETOUSE?çA
PRACTICALGUIDELINE
Having discussed the pros and cons of existing GSA

methods, our group now offers a practical guideline

to experimental biologists for selecting an optimal

tool, which of course depends on the type of

experimental data. The first thing to consider is

the type of organism. While most GSA tools

support gene expression data for Homo sapiens, only
a few web servers (Table 2) cover prokaryotes and

many model organisms (e.g. Caenorhabditis elegans,
Arabidopsis thaliana or Drosophila melanogaster). For

rarely supported organisms, few choices exist other

than available tools. For a human gene expression

dataset with an enough number of samples (more

than 10), GSEA is highly recommended because

it is a statistically sound method based on sample

randomization and provides a user-friendly, standa-

lone program. Other similar tools such as GSA by

Efron and Tibshirani [26] and SAFE provide pot-

entially better statistical properties than GSEA, but

they are currently offered as R packages that are

difficult for most experimental biologists with few

bioinformatics skills to use. For mouse, rat or yeast

datasets for which the GSEA program is not

available, web servers such as Babelomics, GAzer or

GeneTrail are recommended. When the number of

samples is small, gene randomization-based tools

such as ErmineJ or GAzer are highly recommended.

EXTENSIONSTOGSA
GSA directly assesses the expression patterns of gene

sets that are defined by shared biological themes

while IGA assesses the significance of individual

genes first and searches for the enriched biological

themes later. In this sense, GSA is regarded as a

theme-based approach. Although GSA is able to

provide new information on subtle but coordinated

expression patterns, it does not provide information

as detailed as IGA. This theme-based approach, how-

ever, has great potential to derive much detailed

information from expression data. Through the

logical operations of gene sets (e.g. intersection)

between different functional classifications, gene sets

can be separated into more specific and smaller groups

of genes, which facilitates a much more detailed

analysis of expression patterns. This approach sub-

stantially complements the weak point of GSA.

Indeed, Nam et al. [29] showed, by intersecting two

GO categories, that a substantial portion of significant

gene sets that have composite themes, can be newly

derived. Jiang and Gentleman [30] additionally

considered the subtracted gene sets between two

gene sets as well as the intersection parts. Investigation

in this direction is demanding and promising.

A second interesting extension is the absolute

enrichment analysis that takes into account both up

and down-regulated genes in calculating enrichment

scores [19, 22, 26, 31]. For example, many enric-

hment scores are functions of the difference of means

between two sample groups, and hence genes altered

in the opposite directions in a gene set will cancel

each other to make the score insignificant. By using

absolute values on the difference of means, gene sets

with bi-directional changes can be identified. This

idea is helpful in identifying homeostatic systems that

have bi-directional expression changes to maintain

the constancy of the system [31]. The maxmean

score suggested by Efron and Tibshirani [26] and

some self-contained methods such as the multivariate

method [21] and SAM-GS [22] also can be used to

identify gene sets with bi-directional changes.

A third extension is the sample-level application

of GSA. Recently, Bild et al. [32] and Potti et al. [33]
developed genomic signatures to identify the activa-

tion status of oncogenic pathways and predict the

sensitivity to individual chemotherapeutic drugs.

Edelman et al. [28] developed a formal statistical

method, named ASSESS (analysis of sample-set

enrichment scores), to measure the enrichment of

each gene set in an individual sample, and suggested

extending their method into personalized identifica-

tion and treatment. PLAGE [20] and domain-

enhanced analysis by Liu et al. [34] also are able to

identify the enrichment of each gene set at the
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individual sample level because they first calculate

gene set scores for each sample. Moreover, after an

adequate normalization of expression data, many

gene-sampling-based methods also can be used to

identify the enrichment of each gene set in

individual samples [10, 14, 16].

Finally, another useful application of GSA is that

the congruency between different datasets on the

same biological question increases much more when

compared at a gene set level than at an individual

gene level. This point was briefly mentioned by Kim

and Volsky [14] and Subramanian et al. [25] and was

later systematically investigated by Cheadle et al. [35]
and Manoli et al. [36]. Additionally, GSA methods

are less sensitive to the pre-processing of microarray

data than are IGA methods [14, 37].
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