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Abstract

Decoding transcriptional programs governing transcriptomic diversity across human multiple tissues is a major challenge in
bioinformatics. To address this problem, a number of computational methods have focused on cis-regulatory codes driving
overexpression or underexpression in a single tissue as compared to others. On the other hand, we recently proposed a
different approach to mine cis-regulatory codes: starting from gene sets sharing common cis-regulatory motifs, the method
screens for expression modules based on expression coherence. However, both approaches seem to be insufficient to
capture transcriptional programs that control gene expression in a subset of all samples. Especially, this limitation would be
serious when analyzing multiple tissue data. To overcome this limitation, we developed a new module discovery method
termed BEEM (Biclusering-based Extraction of Expression Modules) in order to discover expression modules that are
functional in a subset of tissues. We showed that, when applied to expression profiles of human multiple tissues, BEEM finds
expression modules missed by two existing approaches that are based on the coherent expression and the single tissue-
specific differential expression. From the BEEM results, we obtained new insights into transcriptional programs controlling
transcriptomic diversity across various types of tissues. This study introduces BEEM as a powerful tool for decoding
regulatory programs from a compendium of gene expression profiles.
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Introduction

Predicting cis-regulatory codes governing transcriptional pro-

grams in a specific type of cells has been intensively investigated by

combining microarray gene expression data with cis-regulatory

sequences or related information like ChIP-chip experiments.

Recently, several attempts have been done for identifying tissue-

specific cis-regulatory codes by applying these methods to

microarray data of human multiple tissues in order to understand

their diversity [1–5]. However, since these methods only consider

comparing overexpression and underexpression in a single tissue

with those in the other tissues, single-tissue specific cis-regulatory

codes could only be found; cis-regulatory codes existing across

several tissues were possibly failed to be discovered.

In this paper, to analyze multiple tissue data more efficiently, we

propose a computational method for discovering such cis-

regulatory codes existing in the subset of samples by extending

our previously proposed method called EEM (Extraction of

Expression Modules) [6,7]. EEM combines various kinds of

biological information represented as gene sets with microarray

data to find coherent genes as functional expression modules. An

input gene set is prepared by collecting genes, which are

considered to constitute an expression module, based on prior

biological knowledge, e.g., a TF binding motif. For each gene set,

EEM tests whether it harbors a coherently expressed subset; the

coherent subset is then extracted as an expression module if it is

significant. Although we previously showed that EEM is applicable

a wide range of transcriptome data, EEM also has a limitation.

Since EEM assumes that module genes, i.e., genes belonging to the

same expression module, behave similarly across all samples, EEM

potentially fails to identify an expression module whose module

genes exhibit coherent expression patterns over only a subset of

samples, i.e., sample subgroup-specific expression module. Especially, this

problem should be serious when analyzing a diverse gene

expression data set like a multiple tissue data set.

To overcome this limitation, we have developed an extended

version of EEM termed BEEM (Biclustering-based EEM), which

employs a biclustering algorithm to unravel sample subgroup-

specific expression modules. The biclustering algorithm performs

simultaneous clustering of rows and columns of a gene expression

matrix to identify biclusters, i.e., a subset of genes that exhibit

similar expression patterns across a subset of samples, and vice versa.

While ordinary one-dimensional clustering assumes expression

coherence across all samples as EEM does, a number of

biclustering methods have been introduced for expression data

analysis to relax this assumption [8–10].

In this study, we apply BEEM to an expression data set from

human multiple tissues [1]. By targeting transcriptional modes that

previous approaches cannot cover, BEEM successfully identified

11 sample subgroup-specific expression modules with their
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regulatory motifs. We establish a new module discovery method,

BEEM, which would be suitable for analysis of heterogeneous

transcriptome data.

Results

BEEM Algorithm
EEM, an existing method, assumes that module genes behave

similarly across all samples in the expression profile data. This

assumption is reasonable when the data were derived from focused

experiments and the profiled transcriptome has less diversity.

However, if the data contain heterogeneous transcriptome from a

broad range of samples, an alternative would be more reasonable;

module genes are assumed to be co-regulated in only a subset of

samples. Based on this alternative assumption, BEEM employs a

novel statistic termed the BEEM statistic to evaluate functionality of

an input gene sets as an expression module.

The BEEM statistic is calculated using a biclustering algorithm,

ISA (Iterative Signature Algorithm) [10]. ISA takes as input an

expression matrix and a seed gene set, and searches for a bicluster;

ISA assumes a bicluster as a subset of genes which exhibits higher

or lower expression than a predefined threshold across a subset of

samples, and vice versa. Starting with a seed gene set, all samples are

scored by average expression values for this gene set and those

samples are chosen for which the score exceeds a predefined

threshold (the Ts parameter, see Materials and Methods). In the

same way, all genes are scored regarding the selected samples and

a new set of genes is selected based on another threshold (the Tg

parameter, see Materials and Methods). The entire procedure is

repeated until the set of genes does not change anymore. Although

another biclustering algorithm can be employed in BEEM, we

chose ISA because it starts a search from a seed set as well as EEM

does, and we can easily combine ISA and the EEM approach.

Another important advantage is that ISA is significantly fast

compared to other biclustering algorithms [11], and tolerable for

screening hundreds of gene sets.

Let E denote an input expression matrix whose rows and

columns index genes and samples, respectively. We then define

EM , a submatrix of E whose rows correspond to expression

profiles of the members of an input gene set M. Employing ISA,

BEEM tests whether EM harbors any significantly large bicluster.

To prepare a seed gene set for ISA, BEEM first extracts a

maximal-sized coherent subset in M, denoted as Mc, based on the

EEM algorithm. Note that we do not care whether DMcD is

significant; hence, the possibility is opened that BEEM captures

gene sets that EEM misses. Next, using Mc as the seed set, BEEM

finds a bicluster from E. Let B denote a gene set that constitutes

the bicluster (or simply a biclustered gene set ) in E. (Note that DBD is

constant when the Tg parameter is fixed; see below). The

intersection B\M then constitutes a biclustered gene set in EM

and we define DB\M D as the BEEM statistic. A series of these steps

are illustrated in Figure 1.

It should be noted that BEEM extracts a bicluster from E (not

EM ). The reasons why we take this indirect strategy are: 1)

Applying ISA to a relatively small matrix, EM in our case, leads to

unstable solutions and iterative calculation often does not

converge. 2) When we apply ISA to EM with equal-sized input

gene sets, the size of extracted biclustered gene sets are constant.

Therefore, in this case, the size of the biclustered gene sets then

cannot be used as a measure of strength of the association between

the input gene setM and the identified bicluster in EM . Hence, we

decided to apply ISA to E for controlling the size of the biclustered

gene set, i.e., DBD; DB\M D reflects strength of the association

between M and the identified bicluster in EM .

BEEM calculates a p-value for representing the statistical

significance of the BEEM statistic, DB\M D; if the p-value is smaller

than the prespecified cutoff value, we assume that M harbors an

expression module and extracts B\M as the expression module.

Note that results of BEEM depend on combinations of two

parameter values, Tg and Ts and the type of targeted biclusters,

i.e., upregulated and downregulated biclusters. Therefore, for each

gene set, we run BEEM with various settings and chose the result

which scores the most significant p-value. The final p-value is

reported after correcting multiplicity of the hypothesis testings. In

Materials and Methods, we describe the ISA algorithm used in

BEEM and the detail of p-value calculation for the BEEM statistic.

Comparison with Other Methods
To characterize the performance of BEEM, we compared the

performance of BEEM with those of two other methods based on

different approaches. One of the two methods is EEM, which

targets expression coherence across all samples. The other method

targets single sample-specific expression. Although a number of

methods taking the single sample-targeting approach have been

proposed, we focused on a hypergeometric test-based method by

Segal et al. [12]. Unlike BEEM and EEM, since Segal’s method

tests over and underexpression of a gene set in each sample, it does

not explicitly assign a single p-value to the gene set. To make

comparison easier, we thus reformulated Segal’s method by

combining statistical meta-analysis so that each gene set can obtain

a single p-value, which is used for testing whether the gene set is

over or underexpressd in any samples. As a representative of single

sample-targeting methods, we employed this reformulated method

termed SSA (Single Sample Analysis) for the benchmark test.

Performance evaluation on simulated data. First, we

performed a benchmark test using simulated data. A set of

simulated data consists of an expression matrix and a gene set

library containing positive and negative gene sets. We assume that

the expression matrix harbors a number of expression modules

and a positive gene set in the gene set library has a significant

Figure 1. The biclustering pipeline in BEEM. 1) From the input
expression matrix E, a submatrix EM is extracted, which corresponds to
the expression profiles of an input gene set M . 2) EEM is then applied
to EM in order to obtain Mc , a maximal-sized coherent gene subset of
M , without statistical evaluation of its size. 3) Using Mc as a seed gene
set, we apply ISA to E, to obtain a bicluster (denoted by the red
rectangle) and its biclusted gene set B. 4) Finally, the intersection of B
and M is obtained and used for statistical evaluation of the biclustered
gene set in EM .
doi:10.1371/journal.pone.0010910.g001
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overlap with any of the expression modules. To generate the input

data set, we used different models assuming different types of

expression modules described below. Since each model has

arbitrary parameters, we tested a number of data sets using

several different parameter settings. By applying BEEM, EEM and

SSA to each of the simulated input data sets, we calculated

sensitivities and false positive ratios over the whole range of

significance cutoffs, and computed the Area Under the receiver

operating characteristic Curves (AUCs). Since the AUC assesses

the overall discriminative ability of the methods at determining

whether a given gene-set is associated with an expression module,

we assume it as a measure of the performance in this benchmark

test. To reduce sampling variance, the results were obtained by

averaging 20 Monte Carlo trials.

The results can be summarized as follows: The first model,

coherent model, assumes that genes that belong to the same

expression module are coherently expressed across all samples.

Such coherent expression modules should be efficiently extracted

by EEM. Expectedly, EEM scores the best performance among

the three methods, while BEEM performs substantially well, as

compared to SSA (Figure 2A). In the other model, bicluster model,

module genes are assumed to be overexpressed in a subset of

samples; since BEEM was developed to target this type of

expression modules, BEEM shows the best performance for this

model. EEM also performs comparably well, but SSA performs

worst again for this model (Figure 2B). Taken together, our results

suggest that BEEM successfully captures sample subgroup-specific

expression modules, while it also shows good performance to some

degree for coherent expression modules, which are most efficiently

captured by EEM.

Performance evaluation on real data. We performed

another benchmark test using real biological data. The input

data also include two types of information: expression data sets

and gene set libraries. The expression data sets were obtained from

two sources. One is a breast cancer data set, to which we applied

EEM in our previous study [6,13]. The other is a human multiple

tissue data set, which has been subjected to a number of single

sample-targeting methods [1–3,5]. In addition to these expression

data sets, we also prepared two permutated expression data sets by

randomly shuffling their gene labels; we used them to evaluate the

false positive rates of the three methods, assuming that they follow

null hypotheses. As input gene sets, we prepared two types of gene

set library: TF binding motif gene sets and curated gene sets.

Based on TRANSFAC data [14], 199 TF binding motif gene sets

are predicted to contain genes that share common TF binding

motifs in their promoters; they can be used to analyze

transcriptional programs. On the other hand, the curated gene

set library contains miscellaneous 1892 gene sets extracted from

original literature [15].

We applied BEEM, EEM and SSA to every combination of

input data sets; i.e., we performed 24 analyses using three

methods, four expression data set, and two gene set libraries. For

each analysis, we counted positive gene sets whose p-values are

smaller than a cutoff value. Note that we tested wide range of

cutoff value for showing the power and false positive rate of each

method. Figure 3 shows the ratios of positive genes set for given p-

value cutoffs (See also Tables S1, S2, S3, S4 in Supplemental Files

for raw p-values). First, we evaluated the false positive rates of the

three methods using the permuted expression data described by

the dashed lines. Although the number of false positives of EEM is

slightly larger than those of others, the false positive rates of the

three methods are satisfactorily controlled. We then compared the

performance by testing which method retrieves more positive gene

sets for a given significance level, i.e., p-value cutoff. When

comparing BEEM to EEM, we found that BEEM outperforms

EEM for the multiple tissue data sets, but EEM identified more

positive gene sets than BEEM in the breast cancer data set. This

result was observed for both of the two gene set libraries and

presumably reflects the properties of the two expression profiles.

The breast cancer data set obtained from tumors of single tissue

origin should have relatively homogenous transcriptomes, and give

a better fit to the coherent model shown in the simulated data test.

On the other hand, the multiple tissue data set from various types

of tissues seems to have more heterogeneous transcriptomes, and

closes to the bicluster model.

Next, we focused on the comparison between BEEM and SSA.

When applied to the breast cancer data set, SSA shows very poor

performance, as compared to BEEM and EEM. This result seems

to be natural by considering a homogenous property of the breast

cancer data. For the multiple tissue data set, the performance of

BEEM depends on the type of input gene set libraries; SSA works

better for the TF binding motif gene set library while BEEM works

better for the curated gene set library. We presume the reason is

that the two gene set libraries have different distribution of gene set

sizes (Figure 4). We observed that the distribution of the number of

genes contained by each of the TF binding motif gene sets is nearly

Figure 2. Comparison of AUCs among BEEM, EEM and SSA using simulated data. The AUCs were computed by applying the three
methods to simulated data generated from two types of models. For each of the two simulation models, various patterns of parameter settings were
examined.
doi:10.1371/journal.pone.0010910.g002
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bell-shape and has a peak in the range from 250 to 300. On the

other hand, the distribution of the curated gene sets is skewed and

the sizes of almost all gene sets are smaller than 100. Based on this

observation, we hypothesized that the performance of SSA

depends strongly on the sizes of input gene sets. To validate this

hypothesis, we focused on the distribution of the sizes of positive

gene sets retrieved by each method, especially the result for the

multiple tissue expression data set and curated gene set library

(because, for this input combination, all the three methods have a

number of positive gene sets of diverse sizes). After partitioning

gene set size to 6 intervals, for each method, we calculated

frequency of positive gene sets contained in each interval. Then,

by dividing frequency of positive gene sets by that of input gene

set, we calculated relative performance of each method in each

interval of gene set size (Table 1). We found that, although all the

methods expectedly show higher performance for lager gene sets,

SSA shows stronger dependency on gene set size than BEEM and

EEM. Especially, in the interval from 200 to 400 where the TF

binding motif gene set library has the peak in the size distribution,

the performance of SSA is twice as high as those of BEEM and

EEM. This observation suggests that the dependency on the size of

the gene set is a reason why SSA shows higher performance for the

TF binding motif gene set library. To test this hypothesis more

directly, we prepared downsized TF binding motif gene sets. A

downsized gene set was generated by randomly sampling genes

from an original gene set so that its size is equal to the half of the

original size. By applying BEEM, EEM and SSA to the downsized

TF binding gene sets, we found that the performance of SSA get

Figure 3. Comparison of performance among BEEM, EEM and SSA using real data. While changing p-value cutoff values, which are given
in minus log scale, ratios of positive gene sets detected by BEEM, EEM and SSA were plotted for the 4 combinations of the input data: the TF binding
motif gene sets and breast cancer expression data set (A); The TF curated gene sets and breast cancer expression data set (B); the TF binding motif
gene sets and multiple tissue expression data set (C); the curated gene sets and multiple tissue expression data set (D). Red, blue and yellow lines
indicate performance of BEEM, EEM and SSA, respectively. Dashed lines represents results obtained from null expression data sets whose gene labels
were randomly permutated.
doi:10.1371/journal.pone.0010910.g003
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worse, while BEEM and EEM kept their capability (Figure 5).

Taken together, our data suggest that the performance of SSA for

the TF binding motif gene set library is artifactually enhanced by

its gene set-size dependent property.

Finally, we examined differences of the positive gene sets

retrieved by the three methods. For the four analyses of different

combinations of input gene set library and expression data set, we

drew the heatmaps of p-values of all gene sets obtained by the

three methods (Figure 6). They show that positive gene sets

detected by the three methods are not identical but partially

overlapping. Note that, although EEM and BEEM produce

relatively similar results, positive gene sets by BEEM roughly

comprehend those by EEM in the multiple tissue data set, but

opposite in the breast cancer data set. This result suggests the

differences between BEEM and EEM for the expression data sets

with various sample diversity. Although SSA behaves differently

from two other methods, it produces results more similar to BEEM

than EEM. This observation seems to reflect similarity of two

approaches. Especially, by focusing on the results for the multiple

tissue data set, we found that the BEEM approach is positioned

between the two others. BEEM extracted not only all of positive

gene sets by both EEM and SSA, but also gene sets that the two

other methods could not find. Figure 7 shows two bicluster

structures successfully detected only by BEEM. Collectively, our

benchmark test using real data demonstrates that BEEM

successfully targets not only transcriptional programs which are

covered by either of EEM and SSA, but also novel types of

transcriptional programs which have not been covered by either of

the two previous approaches.

Figure 4. Distributions of the size of input gene sets. (A) TF binding motif gene set library and (B) curated gene set library.
doi:10.1371/journal.pone.0010910.g004

Table 1. Relative performance in each size interval of gene
sets.

size SSA BEEM EEM

0–25 0.031022 0.354167 0.418033

25–50 0.713579 1.124139 1.173354

50–100 2.458843 1.692075 1.500631

100–200 3.678832 2.598485 2.295082

200–400 4.429927 2.298864 2.633607

400–1000 8.338686 4.327273 3.511475

doi:10.1371/journal.pone.0010910.t001

Figure 5. Comparison of performance using the downsized TF
binding motif gene sets. Ratios of positive gene sets detected by
BEEM, EEM and SSA were measured using the 50% downsized TF
binding motif gene sets and the multiple tissue expression data set.
Red, blue and yellow lines indicate the results of BEEM, EEM and SSA,
respectively. Dashed lines represent the results obtained from null
expression data sets whose gene labels were randomly permutated.
doi:10.1371/journal.pone.0010910.g005
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Expression Module Discovery in the Multiple Tissue
Transcriptomes
In our previous study, we showed that EEM successfully

decodes transcriptional programs in breast cancer cells [6].

Similarly to EEM, when given a TF binding motif gene set,

BEEM predicts genes under a common cis-regulatory code as an

expression module; Furthermore, the extracted module informa-

tion can be used to inspect the upstream transcriptional program.

In this section, from the results of BEEM analysis, we tried to

obtain new insights into cis-regulatory codes governing transcrip-

tomic diversity across various types of human tissues. We obtained

positive TF binding motif gene sets using the cutoff of 10{8 and 11

significant expression modules are extracted (Table 2 and Table

S5). Compared to the EEM and SSA results, BEEM assigns

smaller p-values to most of the 11 expression modules.

Intriguingly, most of the expression modules score significant p-

values in either of EEM and SSA. This observation suggests that

BEEM can detect two different types of modules targeted by the

other two methods. Some expression modules, however, score

significant p-values only in BEEM, demonstrating that BEEM

captures transcriptional programs that the other methods fail to

detect. Since many of them are enriched for specific GO terms,

Figure 6. Comparison of p-value distributions among BEEM, EEM and SSA. Minus log-scaled p-values of each gene set calculated by BEEM,
EEM and SSA were visualized using heatmaps after the values that exceed 10 were set to 10 (more significant: red, less significant: blue). The 4
heatmaps corresponds to the 4 combinations of the input data: the TF binding motif gene sets and breast cancer expression data set (A); The TF
curated gene sets and breast cancer expression data set (B); the TF binding motif gene sets and multiple tissue expression data set (C); the curated
gene sets and multiple tissue expression data set (D).
doi:10.1371/journal.pone.0010910.g006
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BEEM successfully identified functional units in the transcriptome.

We also drew the activity profile of each expression module, which

is defined as the mean values of the expression profiles of the

module genes: the heat map in Figure 8 shows in which tissues

each expression module is up or down-regulated. From the heat

map, we found that 11 expression modules are divided into four

distinct clusters. Moreover, we tested overlaps between expression

modules; the p-value matrix in Figure 9 shows that, in each of the

four clusters, the expression modules share a significantly large

number of genes while there are little overlaps between expression

modules that belong to different clusters. These observations

suggest that they are not independent expression modules, but

might be subsets of the same large expression module regulated by

multiple interacting motifs.

The composition of the four clusters is given as follows:

‘‘V$E2F4DP1_01 and V$NFY_01’’; ‘‘V$PU1_Q4 and V$IRF_

Q6_01’’; ‘‘V$NFMUE1_Q6, V$NRF2_01, V$TEL2_Q6 and

V$STAF_02’’; ‘‘V$NRF1_Q6, V$HIF1_Q5 and V$SP1_Q4’’.

Note that we refer to expression modules using TRANSFAC IDs

of their regulatory motifs. The activity profiles show that the

expression modules in the first cluster, V$E2F4DP1_01 and

V$NFY_01, are upregulated in a sample subgroup enriched for

Figure 7. Expression profiles of two gene sets that are significant only in BEEM analysis. A) Expression: multiple tissues, Gene set:
TAVOR_CEBP_UP in the cutated library, and B) Expression: multiple tissues, Gene set: LEE_CIP_DN in the curated library. The heatmap shows EM

(increased expression: red, decreased expression: blue). Rows and columns index genes and samples, respectively. Red bars attached to rows
represent biclustered gene sets (corresponding to M\B), while blue bars attached to columns represent biclustered sample sets. The p-values
assigned to these expression profiles by BEEM, EEM and SSA are: A) 6:0|10{9 , 0.083 and 0.26; and B) 1:5|10{8 , 0.14 and 0.26, respectively.
doi:10.1371/journal.pone.0010910.g007

Table 2. Expression modules in the multiple tissues data set.

TRANSFAC ID BEEM p-value* EEM p-value* SSA p-value* enriched GO**

V$E2F4DP1_01 28.63 8.84 Inf DNA replication (13.66)

V$NFMUE1_Q6 18.81 28.57 0.77 RNA binding (8.00)

V$NRF2_01 16.77 16.72 0.027 structual component of ribosome (10.50)

V$NFY_01 16.53 4.15 12.88 cell cycle (9.61)

V$NRF1_Q6 13.65 10.27 2.25 -

V$TEL2_Q6 13.33 10.02 0.0016 -

V$PU1_Q4 11.49 3.78 Inf defense response (5.18)

V$HIF1_Q5 8.75 6.69 0.019 -

V$STAF_02 8.46 4.94 0.040 macromolecular complex (4.97)

V$IRF_Q6_01 8.41 0.12 8.26 immune respose (7.34)

V$SP1_Q4_01 8.20 4.08 0.0021 -

*p-values are shown in minus log scale.
**p-values in minus log scale are given in the parentheses.
doi:10.1371/journal.pone.0010910.t002
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bone marrow, lymphoma and leukemia cells. These expression

modules regulated by E2F and NFY harbor many cell cycle-

related genes, presumably reflecting that cells are actively

proliferated in these tissues. The expression modules in the second

cluster, V$PU1_Q4 and V$IRF_Q6_01, are activated in a sample

subgroup enriched for immunes cells extracted from peripheral

blood; they contain many immune-related genes, suggesting PU1

and IRF cooperatively regulate immune systems in blood cells.

The activity profiles show that the expression modules in the third

cluster, V$NFMUE1_Q6, V$NRF2_01, V$TEL2_Q6 and

V$STAF_02, are upregulated in tissues where the former two

expression module clusters are activated, while the GO term

analysis shows they share ribosomal components. By combining

these different types of information, we speculate that these tissues

also have active translational systems upregulated by NFMUE1,

NRF2, TEL2 and STAF. The expression modules in the fourth

cluster, V$NRF1_Q6, V$HIF1_Q5 and V$SP1_Q4, are down-

regulated in sample subgroups containing ganglions; however, we

could not find any significant GO terms, and their function

remains to be elucidated. SSA assigns significant p-values to the

expression modules in the first and second clusters scores,

presumably reflecting that they are specifically expressed in a

small number of tissues. On the other hand, the expression

modules in the third and fourth clusters do not have significant p-

values in SSA. Although some of them also have significant p-

values in EEM, the others are only marginally significant in EEM.

This result demonstrates that, from the multiple tissue transcrip-

tomes, BEEM successfully discovered expression modules that

cannot be captured by the traditional approaches.

Discussion

Here, we have introduced a new module discovery method,

BEEM, to analyze sample subgroup-specific transcriptional

programs which are functional only in subgroups of samples.

We compared BEEM to two other methods, EEM and SSA,

which target coherent expression and single sample specific-

expression, respectively. We found that BEEM and EEM produce

Figure 8. Activity profiles of expression modules in the multiple tissues data set. For 11 expression modules identified by BEEM, activity
profiles were calculated, subjected to hierarchical clustering, and displayed as a heat map (increased activity: red, decreased activity: blue). Green and
yellow polygons indicate samples that constitute up and down-regulated bicluster identified by ISA.
doi:10.1371/journal.pone.0010910.g008
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relatively similar results, but their performances seem to be

different depending on heterogeneity of input transcriptome data:

BEEM works better for analyzing more heterogeneous data like

the multiple tissue data set.

Although SSA performs well for analysis of tissue-specific

transcriptional programs, performance of SSA is highly dependent

on the size of input gene sets; i.e., BEEM seems superior to SSA for

analysis of gene sets of relatively small size, typically smaller than 50.

For this strong dependency of SSA on input gene set size, one

possible reason can be provided; it is because SSA combines p-

values for individual samples by Fisher’s method. Note that the

combined p-value could be significant even when none of the

individual hypergeometric p-values are clearly significant. For a

larger sized input gene set, this fact should more strongly affect the

SSA results because it is more probable that different subsets of the

input gene set are over or underexpressed in different samples. We

actually found that, for most of positive gene sets only found by SSA

but not by BEEM, the minimums of their original (pre-combined) p-

values are only marginally significant (Figure 10), suggesting that

their expressions are not specifically regulated in any tissues. Taking

into account this observation, apparently better performance of SSA

for gene set of large size does not lead to more biologically

meaningful findings; on the other hand, BEEM can present more

interpretable results as expression modules as discussed below.

Figure 9. A Overlaps of expression modules in the multiple tissues data set. Overlaps among 11 expression modules were tested by
hypergeometric tests, and the p-values in minus log scale were visualized as a clustered symmetric matrix. The values that exceed 10 were set to 10.
Red and blue indicates more and less overlaps, respectively.
doi:10.1371/journal.pone.0010910.g009
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More importantly, BEEM covers a broad range of transcrip-

tional modes positioned between two different modes targeted by

EEM and SSA; the biclustering algorithm enables BEEM to

capture expression modules with intermediate properties, which

are missed by two types of previous approaches. However, it

should be noted that BEEM also failed to detect some expression

modules, which the other methods could capture. For example,

although it is known that HNF1 regulates expression of liver-

specific genes [3], BEEM does not assign a significant p-values to

the HINF1 expression module in the multiple tissue data set, while

SSA assigns a significant p-value. This is because the sample

subgroup where the module genes are expressed is too small to be

detected by the biclustering algorithm. We expect that combining

our proposed method with conventional approaches leads to more

comprehensive discovery of transcriptional programs.

We should also mention another notable advantage of BEEM.

Application of BEEM to the multiple tissues expression data set

discovered of 11 regulatory motifs that regulate the diverse

transcriptomes. Similarly to EEM, BEEM produces information

about many regulatory links between TF binding motifs and their

target genes as expression modules. We can have information

about in which tissues each motif is functional from activity

profiles of expression modules. By clustering the obtained

expression modules based on the similarity of the activity profiles

and module overlap, we predicted interacting pairs of TF binding

motifs. Cellular function of each TF binding motif was also

inferred from the GO terms enriched in their target genes. A series

of these post-BEEM analyses generated highly interpretable

biological knowledge, demonstrating the power of our module-

based approach. Taken together, this study has established BEEM

as a powerful alternative for decoding regulatory programs from a

compendium of gene expression profiles.

Materials and Methods

ISA
Given a seed gene set and the values of parameters Tg and Ts,

ISA searches for a bicluster in an ng|ns matrix E, whose (i,j)-th

element Eij represents the expression value of the i-th of ng genes

and the j-th of ns samples. For E, we prepared two types of

normalized matrices, Eg and Es. Each column vector of Eg and

each row vector of Es were normalized so that the mean is equal to

0 and the variance is equal to 1 (i.e.,
P

i E
g
ij~0,

P

i (E
g
ij)

2
~ng,

P

j E
s
ij~0, and

P

j (E
s
ij)

2
~ns).

A bicluster can be specified by a binary sample vector vs of

length ns and a binary gene vector vg of length ng, where non-zero

entries in the vectors indicate samples/genes that belong to the

bicluster. After vg is initialized so that non-zero entries indicate

genes in the given seed gene set, ISA iteratively updates vg and vs.

First ISA calculates a sample-score vector us which scores each

sample according to how much the non-zero genes in vg is

upregulated:

us:
tEgvg

Dvg D
,

where tEg is the transpose of Eg, and Dvg D is the number of the non-

zero entries in vg. Next, ISA uptates the sample vector vs, which

scores whether the elements of us that are above a threshold ts:

vsj:H(u
s
j{ts),

where H(x)~1 for x§0 and H(x)~0 for xv0. Although ts is a

fixed parameter in the original paper [10], we set ts to the

(1{Ts)|100-th percentile of us. Similarly to us, the gene-score

vector ug measures how much each gene is upregulated under the

non-zero samples defined in vs:

ug:
Esvs

DvsD
:

Based on ug, vg is then updated for an input of the next iteration:

v
g
i:H(u

g
i {tg):

Similarly to ts, we set tg to the (1{Tg)|100-th percentile of ug.

Figure 10. Comparison of the minimums of pre-combined SSA p-values to p-values by other methods. SSAmin presents the minimums
of pre-combined p-values in SSA. For SSAmin and other methods, minus log-scaled p-values were calculated using the TF binding motif gene set and
multiple tissue expression data set, and were visualized as a heatmap.
doi:10.1371/journal.pone.0010910.g010

A New Module Discovery Method

PLoS ONE | www.plosone.org 10 June 2010 | Volume 5 | Issue 6 | e10910



These steps are repeatedly performed untile the gene vector vg

does not change anymore. Non-zero elements in vg and vs then

specify an upregulated bicluster, which consists of approximately

(ng|Tg) genes and (ns|Ts) samples. By inverting signs the

normalized matrices (E
g
ij?{E

g
ij , E

s
ij?{Es

ij ) prior to the calcula-

tion, ISA can also target downregulated biclusters.

Calculation of p-value for the BEEM Statistic
To calculate a p-value for the BEEM statistic, DB\M D, BEEM

takes a three-step approach. First, we roughly calculated a p-value

based on the hypergeometric distribution, which is popularly used

to evaluate overlap between two gene sets [16]:

p1~1{
X

DB\M D{1

i~0

ng{DM D

DBD{i

� �

: DM D

i

� �

ng

DBD

� � ,

where DBD is the number of the genes that constitute the bicluster in

the input expression matrix, E. Note that p1 tends to be liberal,

i.e., it tends to generate false positives as shown in Figure 11. It is

possibly because, even ifM is a null gene set, it is associated with B

via Mc (Note that Mc5M and Mc is also the seed gene for B). It

is, however, reasonable to use a liberal p-value for the first step,

because we want to remove the gene sets that are really

insignificant in the first step. In the second step, we employ a

computer intensive method to compute more accurate p-value and

the first step contributes to reduce the computational time in the

second step.

If p1 is smaller than a threshold (10{2 in this study), BEEM then

calculates a more accurate p-value, p2, based on an empirical

approach. An empirical null distribution for a BEEM statistic is

produced by randomly sampling 104 gene sets whose size is equal

to that of the seed gene set, and calculating 104 BEEM statistics

following the null distribution. The p-value is then calculated as a

ratio of null statistics which are larger than or equal to the BEEM

statistic evaluated.

However, if it relies only on this empirical approach, it is

impossible to calculate p2v10{4. Of course, by increasing the

number of the null statistics, we can have smaller p-values.

However, it practically needs prohibitive computational time. To

overcome this limitation, we extrapolate p2v10{4 based on a

relation between p1 and p2, We found that, for the same

expression matrix and fixed parameters, {log p2 linearly

correlates with {log p1 very well when p1 is small enough

(Figure 11). Since BEEM is usually applied to a hundred of gene

sets to screen for meaningful gene sets, we could obtain dozens of

pairs of (p1,p2) for gene sets which meet the criterion in the second

step (i.e., p1v10{2). The missing p2’s that are smaller than 10{4

are predicted from the values of p1 by the linear regression. i.e.,

{log p2 is the response variable and {log p1 is the explanatory

variable.

In ISA, the choices of Tg and Ts and the type of targeted

bicluster are critical for obtaining the optimal bicluster associated

with each seed gene set. Hence, we performed BEEM with nine

combinations between Tg (0.05, 0.1, and 0.15) and Ts (0.1, 0.2 and

0.3). We also target two different types of bicluster: up and down-

regulated. In total, we examine 18 settings and selected the best

result which scores the minimum p-value. Since the best p-value,

pmin, is liberal due to the multiplicity of the hypothesis testings, it

should be corrected to obtain a final p-value pcor as follows:

pcor~1{(1{pmin)
k,

where k is the number of the examined settings (i.e., 18 in our

case).

Input Data for BEEM
Simulated Data. We simulated expression matrices and gene

set libraries for the input data. We assumed that an expression

matrix includes 4000 genes and 100 samples, and harbors a

number of expression modules, each of which is associated with a

subset of the 4000 genes. A gene set library is assumed to have

positive gene sets, and negative gene sets. The positive gene sets

were prepared so that they have significant overlaps with any of

the expression modules, while the negative gene sets were

randomly sampled from the 4000 genes.

To simulate expression matrices, we assumed two different

models:

1. Coherent model.

We assumed that a 4000|100 expression matrix has non-

overlapping 20 modules, each of which consists of 200 module

genes. For each module, we first chose one gene and generated its

expression values across samples by the standard Gaussian

distribution. That is, assuming that we chose gene k, we have

Ekj*N(0,1) for j~1, � � � ,100. The other module genes were

generated so that they gather around gene k. The expression value

of gene i who is a member of the module generated from gene k is

generated by

Eij~sc:Ekjz(1{sc):gij ,

where gij*N(0,1) and sc is a parameter specifying signal strength.

2. Bicluster model.

We assumed that a 4000|100 expression matrix has 50

modules, each of which consists of 200 module genes, and is

allowed to overlap with each other. We randomly selected 200

genes from the 4000 genes to define module genes of each

expression modules. Assuming each expression module as a

biclustered gene set, we randomly chose 100:rs samples as a

biclustered sample set for the module. Here, rs is a parameter

specifying the ratio of the biclustered sample set. Let Bij be an

indicator variable, where Bij takes 1 if and only if the expression

Figure 11. Comparison of p1 and p2. p1 and p2 were plotted in log
minus scale. they were calculated using the TF binding motif gene sets
and multiple tissue expression data set with a parameter setting of
(Tg,Tc)~(10,10). To calculate p2 , random samplings was performed 105

times and p2v10{5 were plotted as p2~10{5 . Similar results were also
obtained for different inputs and parameter settings.
doi:10.1371/journal.pone.0010910.g011
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value of gene i in sample j, Eij , belongs to any of the defined

bicluster, or 0 otherwise. We set

Eij~fijzsb:Bij ,

where fij*N(0,1) and sb is a parameter specifying signal

strength.

We simulated a gene set library including 10 positive and 10

negative gene sets, where each gene set includes 200 genes. A

positive gene set includes 200:rg genes sampled from one

expression module, and randomly sampled 200:(1{rg) genes.

Here, rg is a given parameter specifying the ratio of module genes

in the positive gene set. On the other hand, a negative gene set was

prepared by randomly sampling 200 genes.

Real Data. We downloaded two microarray data sets from

the GEO database: a human breast cancer data set (GSE3494)

[13] and a human multiple tissues data set (GSE1133) [1].

Absolute expression values of each data set were converted to the

logarithmic scale and normalized so that the mean is equal to 0

and the variance is equal to 1 in each sample. The probe set IDs

were converted to genes symbols. In cases that one gene symbol

matches multiple probe set IDs, the probe set which shows the

most variance across the samples was mapped to the gene. A

variation filter was then applied to the data, and we obtained 8000

genes with the highest variance. The expression profiles of the

8000 genes were normalized across samples and subjected to the

following analysis.

The TF binding motif gene set library was prepared as

described in [6]. Briefly, we prepared human and mouse promoter

sequences encompassing the 500 bp upstream and 100 bp

downstream of the transcription start sites. We also prepared

199 PWMs from TRANSFAC 2009.1 [14], by applying motif

clustering to all vertebrate TRANSFAC PWMs and removing

redundant motifs. For each PWM, we scored every human and

mouse promoter sequence based on maximum log odds scores,

and obtained the average of human and mouse homolog promoter

scores as the PWM score for each gene. We assumed genes which

record the 5% highest PWM scores as seed gene sets sharing

common TF binding motifs associated with the PWM. The

curated gene set library including 1892 gene sets was downloaded

from a gene set database, MSigDB [15]. As actual input to BEEM

and other methods, we used the intersection of each gene set and

8000 genes in an input expression data set, after gene set for which

the intersection was less than 10 were filtered out.

EEM
The algorithm of EEM is described in detail in [6]. We used

radius parameters of 0:05,0:10 and 0:15 and calculated p-values

using a recently developed efficient method (manuscript in

preparation). The p-values corrected for multiple hypothesis

testing were then obtained as described above.

SSA
So far, a number of methods targeting gene sets differentially

expressed in a single sample have been reported [2–5]. Among

them, we focused on a simple but widely used approach based on

the hypergeometric test. Since the approach introduced by Segal et

al. does not explicitly assign a single p-value to an input gene set,

we reformulated it and called it SSA (Single Sample Analysis).

First, SSA normalizes the input expression matrix E across

samples to obtain Es. The j-th column vector of Es, Es
j scores how

much each gene is up or downregulated in the j-th sample,

compared with an average across all samples. Based on values of

Es
j , we can obtain the top 5% of the upregulated genes in the j-th

sample, denoted as Uj . SSA tests overlap between the input gene

set M and Uj based on the hypergeometric test, and obtains a p-

value, puj , for upregulation of M in the j-th sample. Similarly, SSA

calculates a p-value, pdj , for downregulation of M in the j-th

sample. After puj and pdj are calculated for all samples, we obtains a

p-value vector of length m~2|ns, p~fpu1,p
d
1 , . . . ,punc ,p

d
nc
g~

fp1, . . . ,pmg. To assign a single p-value to M, SSA converts p to

the combined p-value by Fisher’s method [17]. When up and

downregulation across samples are independent, the overall

significance of the M can be represented by a single statistic,

whose p-value can be calculated from the chi-square distribution

of 2|m degrees of freedom:

{2
X

m

k~1

log(pk)*x22m:

However, because gene expressions between samples are generally

correlated, assumption of independence is not guaranteed; the

tests based on the independence assumption could overestimate

statistical significance, leading to more false positives. To correct

the problem, we employed Brown’s approximation for combining

independent p-values [18]:

{
2m

s2

X

m

k~1

log(pk)*x2
2m2=s2

,

where s2~
P

k

P

l covf{log(pk),{log(pl)g. Note that s2 is

unknown and needs to be estimated. We generated 1000 null gene

sets whose sizes have the same distribution as the input gene sets,

calculated p for each of them, and estimated s2 from the 1000 null

p-value vectors.

Expression Module Discovery in the Multiple Tissue
Transcriptomes
By applying BEEM to the TF binding motif gene sets and

multiple tissue expression data set, we assigned a p-value to each

gene set. Using a cutoff value of 10{8, we obtained 16 significant

gene sets out of 199 input gene sets, along with their 16 regulatory

TF binding motifs. We found that the 16 TF binding motifs

contain some cognate motifs which are similar to each other and

seem to be bound by same the TF. To reduce the redundancy, we

performed clustering. From the motif list in which the 16 motifs

were sorted in ascending order of the p-values, we removed the 1st

motif and, for each of the reminder, we calculated the KL distance

from the first motif. If the distance is less than a cutoff value of 15

(we found that this cutoff value well discriminates between cognate

and non-cognate motif pairs), we removed it from the sorted list

and put it together with the 1st motif, assuming them as cognate

motifs. This procedure was repeated until the sorted list got empty.

We finally obtained 11 clusters of motifs and took the top scoring

motif in each cluster as non-redundant TF binding motifs.

From the 11 gene sets having the non-redundant motifs, we

extracted their subsets that constitute biclusters, i.e. B\M, as

expression modules. To predict functions of the expression

modules, the GO enrichment tests were performed using the

hypergeometric distribution [19]. To visualize the tissue specificity

of the expression modules, the activity profile of each expression

module was calculated by taking a mean of the expression profiles

of the module genes, and presented as a heat map (Figure 8).

Overlaps between each pair of the 11 expression modules were

tested by hypergeometric tests. After the obtained p-values were
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transformed in minus log scale with base 10, the symmetric p-

value matrix was visualized as a heat map (Figure 9).
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