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ABSTRACT

Motivation: Gene-set enrichment analysis (GSEA) can be greatly
enhanced by linear model (regression) diagnostic techniques.
Diagnostics can be used to identify outlying or influential samples,
and also to evaluate model fit and explore model expansion.
Results: We demonstrate this methodology on an adult acute
lymphoblastic leukemia (ALL) dataset, using GSEA based on
chromosome-band mapping of genes. Individual residuals, grouped
or aggregated by chromosomal loci, indicate problematic samples
and potential data-entry errors, and help identify hyperdiploidy
as a factor playing a key role in expression for this dataset.
Subsequent analysis pinpoints suspected DNA copy number
abnormalities of specific samples and chromosomes (most prevalent
are chromosomes X, 21 and 14), and also reveals significant
expression differences between the hyperdiploid and diploid groups
on other chromosomes (most prominently 19, 22, 3 and 13)—
differences which are apparently not associated with copy number.
Availability: Software for the statistical tools demonstrated in this
article is available as Bioconductor package GSEAlm.
Contact: assaf.oron@gmail.com
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Gene set enrichment analysis (GSEA, Mootha et al., 2003;
Subramanian et al., 2005) is an important new approach to the
analysis of gene expression data, and it has already been extended
and generalized in a number of ways (Hummel et al., 2008;
Jiang and Gentleman, 2007; Kim and Volsky, 2005; Tian et al.,
2005). Expression analysis in general and GSEA in particular
can be viewed as a cascade of successive data reductions: first,
biochemical hybridization information is reduced to a set of pixel
images (typically one or two per sample). Second, the images
are preprocessed to produce probe-level summaries, which are
then further summarized to a G×n matrix of normalized average
expression estimates (G genes, n samples). This matrix is then
filtered to remove redundant probesets and genes identified as
unexpressed or otherwise uninformative (non-specific filtering).
Next, dataset-level differential expression statistics are calculated
for each gene. Finally, these statistics are used to calculate gene-set
(GS) level statistics, which help identify differentially expressed or
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otherwise interesting GSs. This data-reduction process is essential. It
helps bring the amount of information generated by the microarray
experiment down to a manageable level, while retaining its core
features. However, the quality of such massive data reduction can
and should be monitored. Monitoring the last stages of this process
is where linear model tools may prove beneficial.

Several studies (e.g. Goeman et al., 2004; Hummel et al., 2008;
Jiang and Gentleman, 2007; Kim and Volsky, 2005; Kong et al.,
2006) have demonstrated the potential of using a linear model
(regression) framework for GSEA. In particular, with linear models
one can adjust for important explanatory covariates, such as sex
and estrogen receptor (ER) status for breast cancer. These studies
focus mostly on the use of linear models to evaluate covariate
effects upon GS expression, averaged over the relevant genes and
samples. This averaging aspect of linear models is complemented
by diagnostics, in particular residuals—which examine the model’s
adequacy in describing the original data patterns, and also individual
deviations from the average effects. In this article, we demonstrate
the application of linear model diagnostics to GSEA.

2 METHODS

2.1 Linear models and diagnostics
A linear (regression) model assumes that the mean of the response variable
has a linear relationship with the explanatory covariate(s). In gene expression
terminology, a simple generic model could be written as:

ygi = βg0 +
p∑

j=1

Xijβgj +εgi, (1)

where

• ygi,g = 1,...,G,i = 1,...,n is the gene expression value of gene g in
sample i;

• p is the number of explanatory covariates in the model;

• Xij is the value of the j-th covariate for the i-th sample. For dichotomous
covariates, such as phenotype, one typically sets X to zero or one
(e.g. NEG will be zero and BCR/ABL one);

• βgj is the magnitude of the effect of covariate j upon the expression of
gene g (βg0 is the intercept, or baseline expression for gene g); and

• εgi is a random error (‘noise’), here assumed to follow a Normal
distribution with mean zero and variance σ 2

g .

The data and model are used to calculate a fitted value for each
observation, denoted as ŷgi, an estimate for each effect’s magnitude, denoted
as β̂gj , and a t-statistic for each covariate quantifying the strength of evidence
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for its effect, denoted as tgj . Applying linear models to gene expression in
the way outlined here, involves fitting the same model form to all genes
independently and simultaneously [a more general formulation allowing for
explicit gene–gene dependence can be found in Hummel et al. (2008)]. Note
also that a simple gene-by-gene two-sample t-test is identical to a linear
model with p = 1 and with the sole covariate taking on only two values: zero
or one.

The regression residuals, egi ≡ygi − ŷgi, are used to estimate the residual
standard error needed for inference on model effects—but they also play a
key role in diagnostics. While model estimates summarize the information
about mean tendencies, residuals convey information about deviations or
discrepancies from these tendencies. Residuals can help to identify outlying
observations, examine model assumptions and evaluate whether there are
missing terms in the model (Neter et al., 1996). For example, outlying
residuals indicate suspect observations that need to be more carefully
inspected and accounted for. Grouping of residuals, or a trend in residuals
as a function of fitted values, may indicate a poor model fit, which may
be improved by adding terms to the model or by modifying its assumptions.
In the gene expression case, where we run a large number of identical models
in parallel, we will show that residuals can also be used to identify genes or
samples with discrepant or unusual residual patterns across the entire dataset.

There also exist diagnostic tools designed to test a single observation’s
impact, or influence upon the calculated mean tendencies. Typically, to be
influential an observation has to display some combination of a large residual
and off-center or rare Xij (i.e. covariate) values. One of these measures is
Cook’s D (Cook and Weisberg, 1982), representing the squared distance
by which the observation in question ‘moves’ the fitted model’s parameter
estimates. This distance is measured in p-dimensional parameter space and
normalized by the standard error of parameter estimates.1

2.2 GSEA and diagnostics in a linear model framework
GSEAinvolves using the gene-level statistics (usually, t-statistics) to produce
summary statistics for each GS. As mentioned above, there already exist
several ways to achieve this. Here, we choose the statistic of Jiang and
Gentleman (2007) (hereafter, ‘the J–G statistic’), as it enables the easy
implementation of diagnostic analysis.
The J–G statistic for a GS indexed k can be defined as

τk =
∑
g∈Sk

tg/
√|Sk |, (2)

where tg is the regression t-statistic for the effect of our covariate of interest
upon gene g expression, and |Sk | is the size of GS Sk . Under independence
between genes and under the null hypothesis that GS Sk’s expression is not
affected by the covariate in question, τk →N(0,1) as |Sk |→∞. However,
in microarray experiments where all genes in a given sample come from the
same organism, we expect their expression levels to be correlated. Even mild
gene–gene correlations can induce a size effect on τk ; methods to account for
these correlations are a subject of ongoing research (Efron, 2007; Hummel
et al., 2008). Here, we address correlations by calculating GS P-values via
sample (‘column’) label permutations rather than by comparing τk to standard
Normal or t-distributions. Thus, a GS would be considered interesting vis-a-
vis a specific covariate, if its J–G statistic for this covariate is very extreme,
compared with a large ensemble of analogous statistics calculated on the
same dataset via the same linear model, but with sample labels repeatedly
scrambled (see e.g. Ernst, 2004). The use of permutation tests also relieves
us of the need to make sure τk’s behavior is close enough to Normal, and
thus we can examine relatively small GSs.

Just as we aggregate gene-level t-statistics to calculate the GS effect
statistic τk , we can aggregate gene-level residuals to calculate GS-level
residuals. When aggregating residuals from different regression models fitted
in parallel, the residuals should first be normalized to prevent some genes

1More detailed information on residuals and influence measures is available
in Supplementary Material A.

from dominating the rest. There exist several normalization approaches
(Cook and Weisberg, 1982; see Supplementary Material A). In this article, we
mainly use externally-Studentized residuals, which (if model assumptions
hold) are t-distributed with n−p−2 degrees of freedom. The resulting
formula for normalized, aggregated GS residuals is

Rki =
∑
g∈Sk

rgi/
√|Sk |, (3)

where rgi is the normalized residual from sample i and gene g. Note that we
have n GS residuals per GS. GS residuals can be used in the same manner
as an individual gene residuals, with the advantage of being averages: if a
sample or group of samples does not really deviate in its expression for a
given GS, then we expect its GS residuals to roughly average out—even if
some individual gene residuals may be large. When this does not happen, we
have evidence that expression patterns of the sample in question are poorly
explained by the model. Similarly, we can also identify discrepant GSs via
their GS residual patterns.

Finally, we can also aggregate Cook’s D values within a GS. Since Cook’s
D is not symmetric around zero, the aggregation takes a somewhat different
form:

�ki =
√∑

g∈Sk

Dgi/|Sk |. (4)

�ki, the GS root-mean Cook’s D, provides a measure of the typical amount
by which the sample in question affects t-statistics for genes in the GS.

2.3 Chromosomal loci as GSs
A hallmark of most cancers is gene disregulation, which is often associated
with certain chromosomal loci, due to deletion, amplification or epigenetic
events (Pollack et al., 2002). For that reason, examining gene loci for
evidence of disregulation is of potential benefit. One can attempt to
model disregulation as a function of continuous chromosomal coordinates
(Nilsson et al., 2008), or use the more traditional, hierarchical structure of
chromosome bands and sub-bands. We chose the latter, being compatible
with GSEA methodology. Chromosomal loci (chromosomes, bands, sub-
bands, etc.) are modeled as GSs. This GS structure forms a tree graph: the
trunk is the organism, the first branches are complete chromosomes, and so
forth—down to the lowest resolution sub-bands, which are known in graph
theory as the tree’s leaves. We impose a cutoff of at least five genes, for a
chromosome sub-band to be included as a GS in our analysis.

2.4 Dataset: acute lymphoblastic Leukemia
We demonstrate the use of diagnostics on an adult acute lymphoblastic
leukemia (ALL) clinical trial dataset (Chiaretti et al., 2004, hereafter: ‘the
ALL dataset’). It contains 128 samples, each hybridized to an Affymetrix
HGU95-Av2 chip containing probes associated with 12 625 genes. One
question of interest is finding chromosomal locations with differential
expression between the B-cell BCR/ABL and NEG phenotypes of the disease.
Non-specific filtering was performed (Jiang and Gentleman, 2007), and
multiple probes targeting the same gene were filtered out as well. The
filtered dataset contains 79 samples and 4502 unique genes. We mapped
the chromosomal location of these genes, using tools available in R package
Category. In the filtered dataset, 4495 genes mapped to 524 chromosome
bands or sub-bands containing at least five genes each. This mapped subset
of genes was used for the analysis described below.

3 IMPLEMENTATION ON THE ‘ALL’ DATASET

3.1 GSEA for the phenotype effect only
3.1.1 Simple diagnostics We fitted the expression data of each
gene to the generic model (1) with a single covariate denoting
phenotype (BCR/ABL or NEG). Before continuing to the next GSEA
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Fig. 1. Raw externally Studentized residuals from the linear model of gene
expression on phenotype for the ALL dataset, grouped by sample, arranged
by phenotype (NEG on left, BCR/ABL on right) and sorted by each sample’s
median residual.

step—calculating GS statistics—we pause and examine residuals at
the individual gene level.

Figure 1 summarizes all externally Studentized residuals by
sample arranged by phenotype. Even though there is no single
overwhelmingly outlying sample, several samples do catch the eye.
For example, residuals from samples 28001 and 68001 (NEG
phenotype, top left) are predominantly negative, and also exhibit
relatively high variability. Residuals from sample 84004 display
high variability combined with a positive tendency (BCR/ABL
phenotype, bottom right). If a sample’s expression levels are
systematically higher or lower across the board, it is impossible
to tell whether this is due to real biological differences or due to a
normalization offset; we suspect that the latter case is more common.
It is interesting to note that the dataset had already been normalized
during preprocessing with all 12 625 features present. Apparently,
the 4495 features shown on Figure 1 are different enough from the
rest to somewhat disrupt the early normalization. Moreover, removal
of the average per-gene baseline via regression, and Studentization
of the residuals, seem to improve our sensitivity to normalization
offsets. In any case, whether corrective normalization action is
warranted—and also whether a phenotype-only model fits the data
well—becomes clearer upon observing GS-level residuals.

3.1.2 GSEA diagnostics Figure 2 displays a heatmap of GS
residuals, with chromosome bands in rows and samples in columns.
Red indicates positive values and blue negative values. In order to
avoid overlaps, only the leaves of the chromosome-location tree
are shown. Both rows and columns are simultaneously re-ordered
according to correlation, allowing us to detect patterns deviating
from model fit—whether they occur by sample or by GS.

Fig. 2. GS residuals from the linear model of gene expression on phenotype,
for each lowest level chromosome band (row) and sample (column).
Residuals in each row were standardized to have mean 0 and SD 1. Heatmap
colors change in increments of 0.8 (on the normalized scale), with reds
positive and blues negative. The horizonal band at the top indicates the value
of the kinet variable: red for hyperdiploid, gray for diploid and white for
unknown.

One of the samples identified above as having low residuals,
28001, is visible as a narrow predominantly blue vertical strip
(Fig. 2, somewhat right of center). This indicates no association
between chromosomal loci and low expression levels for this
sample; unless we realign expression levels on the filtered dataset
(most simply by removal of sample-specific medians), sample
28001—and quite possibly others with smaller offsets—are likely
to appear as outliers during more detailed analysis. More interesting
from a modeling perspective is the apparent block or checkerboard
pattern of the heatmap. This pattern indicates a potential association
between groups of samples and overall expression levels at
certain chromosomal locations; an association not explained by
the phenotype-only model. In particular, there is a relatively tight
cluster of 20 samples (left-hand side of map), whose expression
pattern is roughly the opposite of most other samples. Among the
dataset’s 21 descriptive variables, we identified the ‘kinet’variable
to be most strongly associated with the pattern-induced grouping of
samples (χ2 P-value conditional on the clustering: <0.001). This
variable indicates whether the sample is classified as hyperdiploid.
The association between hyperdiploidy and gene expression of
chromosomal loci or complete chromosomes among pediatric ALL
patients, has been well documented in research (Ross et al., 2003;
Teixeira and Heim, 2005), and we can plausibly assume it holds for
adult patients as well. The kinet variable is illustrated as a colored
band at the top of Figure 2, with red indicating hyperdiploid samples,
gray diploid samples and white samples of unknown status. Even
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Fig. 3. Boxplot of GS residuals, calculated on the set of non-autosomal genes
on the Y chromosome, obtained from a linear model with only phenotype as
predictor and grouped by sex.

though only 19 of 79 samples are hyperdiploid, they form a clear
majority in the 20-sample cluster described above, and are further
differentiated from diploid samples within that cluster as well. We
concluded that it may be useful to add kinet to the model.

Another variable that is known with certainty to be associated
with chromosome-level expression differences is sex. Females do
not have the Y chromosome, and therefore observed expression
differences for non-autosomal Y chromosome genes can serve
several functions at once: a test of microarray technology, a test
of GSEA methodology and a test for data-entry errors. Since the
Y chromosome has relatively few genes, it is represented in Figure 2
by two rows only, making its effect hard to detect at this level.
A direct inspection of GS residuals, with the GS defined as the
11 non-autosomal Y chromosome genes in our filtered dataset,
reveals the expected strong sex-related pattern—albeit with some
noise (Fig. 3). In fact, several samples’ GS residuals deviate from
their sex baseline so strongly towards the other sex, as to suggest
a possible sex mis-assignment in the dataset annotation. A more
careful analysis led us to conclude beyond reasonable doubt, that
two females have been mis-assigned as males. Additionally, up
to three males have apparently been mis-assigned in the opposite
direction, though the evidence is somewhat weaker.2 For subsequent
analysis in this article, we have reassigned two samples to female
and one sample to male. An additional sample with a missing
sex entry was identified as male by its Y chromosome expression
patterns.

3.2 GSEA using the expanded model
3.2.1 Chromosome-level patterns The GSEA procedure was
repeated with the changes indicated above—adding sex and
hyperdiploidy to the model, relabeling the sex entries of three
samples and recentering each sample’s expression values by its
median to diminish the impact of outlying samples. Four samples
with missing data for hyperdiploidy were dropped from the analysis,
leaving us with n = 75. It is of interest to compare the evaluation of
the phenotype effect before and after model expansion. There are
minor changes: the correlation between phenotype-effect t-statistics
generated by the two models is 0.99. We performed GS-level
inference to see if the minor variations between the two models
are localized to certain GSs. Inference was obtained via sample-
label permutation as explained above. For the expanded model,
care must be taken to permute sample labels only within groups
that have the same sex and hyperdiploidy status. The test was

2Details can be found in Supplementary Material B.
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Fig. 4. Complete-chromosome mean expression levels relative to the median
gene, as found by the 3-covariate model. Shown are the baseline mean (NEG-
diploid, black and ‘+’ signs), the BCR/ABL-diploid mean (red, dots and ‘B’)
and the NEG-hyperdiploid mean (blue, dashes and ‘H’). All estimates are for
male samples; the female-sample pattern was nearly identical, except for the
Y chromosome.

performed only for the leaves of the chromosomal-loci tree, using
5000 permutations. Overall, the 3-covariate model’s inference
is somewhat more conservative, and less tilted towards over-
expressed bands. However, there is substantial agreement between
the significant chromosomal-loci lists generated via the two models.3

At the other end of the chromosomal-loci hierarchy, Figure 4
shows complete-chromosome mean expression trends calculated
using the 3-covariate model. Even for normal samples (black line)
there are marked inter-chromosome differences, as is known from
literature (Caron et al., 2001). BCR/ABL’s trend (red dots) is
almost indistinguishable from the normal group, with the biggest
gap observed at chromosome 22, which is directly affected by
that phenotype’s anomaly. The hyperdiploid trend (blue dashes),
though following the normal group’s general trend, exhibits much
larger deviations from it—with chromosomes 19, 21, 22 and X most
strongly over-expressed and chromosomes 3 and 13 most strongly
under-expressed. All these effects are statistically significant at the
0.05 false discovery rate (FDR) level (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001). The sex covariate (trend not
shown) has negligible effect, except for the Y chromosome.

These hyperdiploidy-related differences raise the question
whether they are the result of individual hyperdiploid samples
exhibiting aneuploidy while others have normal expression levels,
or of a subtle expression shift across the entire hyperdiploid group.
In the former case, chromosome-level GS residuals of samples with
abnormal DNA copy number should be flagged as gross outliers.
Figure 5 displays a map of these outliers, using GS residuals from
an intercept-only model. Outliers were identified via standard robust
location and scale methods (Huber, 1981), using a numerically

3See Supplementary Material C for a significant loci list according to the
3-covariate model.
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Fig. 5. Map of suspected aneuploidies in the ALL dataset, by chromosome
(rows) and sample (columns). Red–brown hues correspond to extra copies,
and blue hues to missing copies. Dark, medium and light shades correspond
to FDR levels of 0.05,0.1 and 0.2, respectively. The top bar indicates
hyperdiploidy, as in Figure 2. Samples and chromosomes with no flags have
been omitted.

generated outlier-free reference distribution (Wisnowski et al.,
2001), and FDR thresholds of 0.05,0.1 and 0.2. We imposed the
additional constraint that the sample’s average expression for the
chromosome in question must differ from the median of all samples
by a relative amount of at least 1:6 [similarly to Hertzberg et al.’s
(2007) approach which was tested against verified aneuploidies].4

Most hyperdiploid samples, and about a dozen diploid samples,
are flagged for at least one aneuploidy. Observing Figure 5 from
the perspective of chromosomes, chromosome X is by far the
most prevalent, with 12 samples flagged as potential multisomies
at the 0.2 FDR level. The next most prevalent multisomies are
of chromosomes 21 and 14, respectively. Equally interesting are
some chromosomes absent from Figure 5, because they have no
flagged samples. These include chromosomes 19 and 22, identified
in Figure 4 as over-expressed by the hyperdiploid group, and
chromosomes 3 and 13, identified as under-expressed. Sample-level
inspection reveals that these chromosomes are mildly over- or under-
expressed across the board, i.e. the second of the two potential
explanations suggested above seems to hold for them.

3.2.2 Influence analysis Beside identifying outliers, researchers
may need to answer the practical question: how strongly does a
specific outlying sample affect model estimates? This is where
Cook’s D, mentioned above, can be useful. For the phenotype-
only model, which splits the dataset into two roughly equal-sized
groups of 42 and 37, no sample is influential enough to cause
concern—not even 28001. The story is somewhat different under
the 3-covariate model, where both the female and hyperdiploid

4More details can be found in Supplementary Material D.
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Fig. 6. Chromosome-band root-mean Cook’s D values, summarized by
sample, for the 3-covariate model. Samples are ordered by mean.

groups are much smaller. Figure 6 summarizes all �ki values for
lowest level chromosome bands, by sample. Two samples belonging
to hyperdiploid female subjects (far right) have much larger overall
influence than most other samples. However, even they are not
dominant to the point of questioning the validity of hyperdiploidy
or sex effect inference.

4 DISCUSSION
Diagnostics, an indispensable and versatile component of regression
analysis, are especially useful for finding unexpected data patterns.
On the single dataset used here for demonstration, diagnostics have
helped us recognize the need to realign expression values; decide
whether the sex covariate has been entered in error for certain
samples; explore model expansion and pinpoint suspected individual
aneuploidies.5 Some of the uses of diagnostics can be formalized
and even automated (see Supplementary Materials B and D); others,
such as recognizing that there may be a Y-chromosome problem or
interpreting Figure 2, are more exploratory and intuition driven.

Software tools used to produce the analysis reported here are
publicly available as Bioconductor package GSEAlm.6 Researchers
wishing to perform the main regression analysis using a package
of their choice, can still take advantage of GSEAlm’s diagnostic
features by extracting residuals using lmPerGene followed
by getResidPerGene. Detailed information appears in the

5Regarding aneuploidies, following a referee’s suggestion we applied our
residuals method to the St Jude pediatric ALL dataset (Ross et al.,
2003), on which Hertzberg et al.’s (2007) expression-based aneuploidy
detection method was optimized. For that dataset, cytogenetic information on
chromosome 21 is available. Our method, lifted ‘as is’ from the ALL dataset
and applied to the St Jude dataset with no further optimization, exhibits
somewhat weaker sensitivity but somewhat better specificity than Hertzberg
et al.’s (2007). More details can be found in Supplementary Material D.
6Included in this package is a function to test a single covariate’s effect at
the GS level, while adjusting for other covariates (gsealmPerm). Package
GlobalAncova offers a wider variety of such tests; that package uses
the F-test, while gsealmPerm uses the permutation analogue to the t or
Wald test.
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package’s vignette and manual pages. The ALL dataset is available
as Bioconductor package ALL.
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