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1 Abstract 

The evolution of next-generation sequencing (NGS) technologies has facilitated the detection 

of causal genetic variants in diseases previously undiagnosed at a molecular level. However, 

in genome sequencing studies, the identification of disease genes among a candidate gene list 

is often difficult because of the large number of apparently damaging (but usually neutral) 

variants. A number of variant prioritization tools have been developed to help detect disease-

causal sites. However, the results may be misleading as many variants scored as damaging by 

these tools are often tolerated, and there are inconsistencies in prediction results among the 

different variant-level prediction tools. Recently, studies have indicated that understanding 

gene properties might improve detection of genes liable to have associated disease variation 

and that this information improves molecular diagnostics. The purpose of this systematic 

review is to evaluate how understanding gene-specific properties might improve filtering 

strategies in clinical sequence data to prioritise potential disease variants.  Improved 

understanding of the “disease genome”, which includes coding, non-coding and regulatory 

variation, might help resolve difficult cases.  This review provides a comprehensive 

assessment of existing gene-level approaches, the relationships between measures of gene-

pathogenicity and how use of these prediction tools can be developed for molecular 

diagnostics. 

Key words: gene-specific metrics; disease genome; gene-level scores; gene essentiality; gene-specific filtering. 
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2 Introduction 

The sequencing of whole genomes using next generation sequencing (NGS) yields vast data-

sets which present significant analytical challenges for identification of disease-causal 

variants. It is known that a subset of human genes contain, or are associated with, rare and/or 

common variation which have a role in disease processes (the “disease genome”). However, 

recognition of causal variants amongst many thousands of mostly neutral variants is a huge 

challenge and a pressing problem. For example, Chong et al (2015) state that the genes 

underlying ~50% of all Mendelian phenotypes remain unknown and many more Mendelian 

conditions are still to be described. 
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Alongside methods for predicting the potential pathogenicity of individual DNA variants a 

number of gene-specific metrics (scores) have been developed in recent years which may 

help facilitate recognition of disease causing variation. Understanding the properties of the 

disease genome and integrating existing gene-specific predictors may help in classifying 

genes based on their specific features to refine molecular diagnosis. Pathogenicity scores for 

individual DNA variants are often inconsistent in that different methods can provide 

conflicting evidence on potential pathogenicity.  The degree of redundancy in the genome 

makes the task of picking out causal variation particularly challenging. We propose an 

integrated approach which evaluates evidence at both gene and variant levels.  We recognize 

that variant prediction tools alone are currently not conclusive and that evidence at the gene-

specific level has the potential to enhance the recognition  of variant pathogenicity [1].  

 

This systematic review considers the literature related to gene-specific scores and their 

applicability to improve filtering of genome sequence data. We set out to achieve a 

satisfactory answer to the following research question: “Can the use of gene-specific metrics 

facilitate the identification of disease genes in patient genomes?”  Details of the methodology 

used in this systematic review are given in the Supplementary methods, Supplementary 

Figures 1 and 2 and Supplementary Table 1. 

 

Findings: Key Models 

From a set of 20 papers yielded by the systematic review methods were classified into three 

groups determined by the main focus of each method and the corresponding scores: (i) 

Essentiality and conservation (ii) Haploinsufficiency (iii) Selection.  

 

4.1 Characteristics of essential and conserved genes. 

 

Essential and conserved genes encode proteins which have core biological functions essential 

for an organism’s viability. Genes vary in their degree of essentiality and a number of 

quantitative scores provide an approximation to essentiality.  These include predictions of the 

extent to which  a gene is tolerant or intolerant of  loss of function (LoF) mutations and 

estimation of the expected rate of de novo mutations  (Pengelly et al, 2017) [11]. 

Supplementary Table 2 outlines the key approaches in this category. The Residual Variation 

Intolerance Score (RVIS) (Petrovski et al.) ranks genes by probability of carrying more, or 

less, functional genetic variation than expected highlighting genes intolerant to common 

functional variation [12]. Genes with positive scores have more common functional variation, 

while negative scoring genes are less tolerant having reduced associated common functional 

variation. Genes containing variation involved in monogenic diseases have lower RVIS 

scores than other genes.  

 

By examining  the evolutionary conservation of protein sequences, Rackham et al. built  the  

Evolutionary inTolerance score (EvoTol) to identify genes which are intolerant to 

mutation[13] [14]. Because  only small areas of a gene may be intolerant, for example  

protein-coding domains, these sub-regions  may be considered particularly  essential [14]. 
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EvoTol allows identification of intolerant protein sub-domains alongside the identification of 

intolerant genes more generally.  

 

The development of NGS makes possible the identification of newly arising (de novo) 

mutations (DNMs) and their potential roles in rare disease. Such mutations are not considered 

to  play a significant role in the pathogenesis of complex diseases [15]. To accurately 

estimate the expected rate of de novo mutations in a given gene, careful assessment of gene 

mutability is required. Gene length and local sequence context are essential factors 

underlying mutation rate differences (11). Samocha et al. calculated per-gene probabilities of 

mutation which are correlated with observed counts of rare missense variants in the Exome 

Sequencing Project (ESP) data set. The Samocha et al. study extends a model which 

investigated de novo mutations in epileptic encephalopathy patients (Epi4K consortium) by 

considering depth of coverage (i.e., how many sequence reads were present on average per 

base) and the regional divergence in genes between humans and Macaques. Significant 

numbers of genes with missense variant deficits were observed, compared to expectation 

from predicted mutation rates, suggesting strong evolutionary constraint removing variants 

by negative selection [15] [16]. The Samocha et al. model utilizes exome sequence data to 

evaluate the DNM rate  by gene set and on a single gene basis [15], this score is referred to  

as de novo excess (DNE). The metric is  predictive of selective constraint in the human 

genome and they identified 1,003 constrained genes known to cause severe human 

disease[15]. It was found that constrained genes contain higher de novo LoF mutation rate 

than expected by chance[15].  

The LoFtool measures the ratio of LoF mutations to synonymous mutations for every gene. 

The performance of LoFtool, compared to RVIS, DNE Z-score, and EvoTol, suggests 

enhanced performance for predicting de novo haploinsufficient disease-causing genes. The 

LoFtool represents values as intolerance percentiles: genes that are intolerant to LoF variation 

have low LoFtool percentiles [13]. The four measures of genic intolerance outlined so far 

were included by Bartha et al. who described them as essentiality scores [17]. 

 

In early 2016, using data from 1000 Genomes Project, Aggarwala et al. proposed the 

Substitution Intolerance Score (SIS) as a gene-level measurement of essentiality. The 

interpretation of this score is such that  genes with high SIS scores are  functionally 

constrained, while genes which score low are  tolerant of functional changes in the protein 

which might arise through mutations in the DNA sequence [18]. 

 

Another scoring system by Gussow et al.  evaluates intolerance in  genic sub-regions 

proposing that  more conserved regions within a gene are expected to contain more  variants 

which are pathogenic  [19]. Genes are divided into sub-regions and tiered by intolerance to 

functional variation. This ‘subRVIS’ score ranks regions using RVIS but with the addition of 

information on conservation. Regions intolerant to functional variation are scored low by the 

subRVIS scoring system. The method utilizes the GERP++ score to evaluate evolutionary 

constraint for bases in each sub-region [19]. 
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The Loss Intolerance probability (pLI) score quantifies the likelihood that a gene is  

intolerant to a mutation which produces LoF in the protein product [20]. The score is derived 

using the Exome Aggregation Consortium (ExAC) database which is an extensive catalogue 

of human genetic diversity. This catalogue identifies one variant every eight bases on average 

in the exome providing a powerful filter for analysis of candidate deleterious variants in 

severe Mendelian diseases [20]. Lek et al. proposed that genes with high pLI score (pLI >= 

0.9) are most intolerant of LoF variation. Genes in this category are the most evolutionarily 

constrained. The least constrained genes (LoF tolerant) have low pLI scores (pLI< = 0.1) and 

typically contribute to the least constrained biological pathways, such as sensory perception, 

where high haplotype diversity is potentially advantageous [20]. 

 

It is challenging to assess the relationship between the DNM rate and genes involved in 

disease. In 2017, Jiang et al. utilized   available  DNM data to correct for the background 

mutation rate seen as  one of the main limitations in the Samocha et al.[15] work. The 

problem arises because by sequencing more individuals, more DNMs are inevitably observed 

in the same gene by chance. Therefore, in a given disease, if a de novo mutation is related to 

pathogenesis, disease-genes might be expected to contain more DNMs than predicted from 

background rates. This work includes the development of a  database which describes the  

background DNM rate (DNMR), acquired from population variation data  [21].   

 

4.2 Characteristics of Haploinsufficient genes 

 

Haploinsufficiency (HI) occurs whenever there is a missing or damaged copy of a gene  

leaving  a single  copy insufficient to maintain normal function [22]. Haploinsufficiency is 

mostly caused by LoF mutations and results in dominant diseases. Recognition and prediction 

of genes which are haploinsufficient can facilitate the filtering of disease genome data 

wherever the phenotype is likely to have arisen through reduced levels of gene product.  

 In 2010, Haung et al. proposed a deletion-based HI score by identifying  differences between 

HI and haplosufficient (HS) genes, aiming to better distinguish pathogenic from benign 

deletions which helps in variant prioritization [22]. The analysis develops a logarithm-of-

odds (LOD) score to estimate the probability of a deletion causing a HI phenotype. A high 

LOD score suggests deletions are likely to be deleterious through HI and therefore potential 

candidates for causing dominant traits. The score assumes  there are no statistical interactions 

between the genes [22]. Previously, and to try to assess the pathogenicity of a deletion, 

clinicians considered the length of a deletion or the number of genes deleted. The Haung et 

al. score provides a rational basis to classify pathogenic deletions by comparing deletions 

seen in patients with deletions  in controls and calculating the fraction of controls with a 

deletion at least as deleterious as that seen in the patient [22]. 

 

To distinguish false-positive disease variants from the genuinely causal variants is crucial for 

accurate molecular diagnoses. MacArthur et al. developed the RECessive (REC) score for  

distinguishing genes involved in recessive diseases from genes which are  LoF- variation 
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tolerant [23].  A “healthy” genome might contain 100 true LoF variants, the majority in a 

heterozygous state. Evidence suggests that the average human carries five recessive lethal 

alleles in single copy in their genome. Consequently, the majority of LoF variants are 

considered common variants. However, these variants might still have a phenotypic effect 

[23]. MacArthur et al. demonstrated  differences in  functional and evolutionary features 

between recessive disease and LoF-tolerant genes, allowing for the development of a 

predictive model to predict  recessive disease variants [23]. 

 

Khurana et al. developed the “gene position in NETworks” (NET) indispensability score   to 

investigate relationships between degree of network centrality of a gene and selection within   

biological networks [24]. They consider a range of biological networks (i.e., phosphorylation, 

signaling, protein-protein interaction, regulatory and genetic networks). Genes which are 

highly connected to many biological networks are the most functionally significant, therefore, 

mutations in those genes might have  serious consequences[24]. However, genes connected 

to metabolic networks were found to have  more duplicated copies  through more paralogs 

with more LoF mutations[24] .This score was included as a predictor of haploinsufficient 

genes  in the Hsu et al. study [2]   

 

Ge et al.  consider gene-specific pathogenicity using the ratio of non-synonymous to 

synonymous substitution rates (dN/dS) for X-chromosome genes [25]. Genes with unusually 

low ratios suggest intolerance to non-synonymous variation, suggesting these are susceptible 

to  disease related variation. They found correlation between genomic regions depleted for  

missense variation with disease-causal variants  [25].  

 

Steinberg et al. proposed that study biases existing in many biological networks might affect 

the ability of previous HI prediction scores to recognize the genuinely haploinsufficient 

genes. For that reason they constructed a new, unbiased, HI score, the Genome-wide 

HaploInsufficiency Score (GHIS) which  replaces biological networks with co-expression 

networks [26] [27]. They compared their model with the three pre-existing methods (i.e.,  HI 

[22], NET [24] and RVIS [12]) and  demonstrated that GHIS provides a score for many genes  

not scored by other  methods [26] with enhanced performance at  classifying  less well 

studied genes  [26]. 

 

Scores have been developed to recognize Mendelian genes with different modes of 

inheritance.  Hsu et al. considered Mendelian disease gene characteristics according to their 

mode of inheritance. Haploinsufficiency is an essential characteristic of Mendelian disease 

genes with an autosomal dominant (AD) mode of inheritance and  sensitivity to de novo 

mutations was recognized for this group of genes [2]. In contrast  disease genes with 

autosomal recessive (AR) modes of inheritance tend to have more  non-synonymous variants 

and regulatory transcript isoforms [2]. However, the X-linked (XL) pattern of inheritance is 

associated with  fewer  non-synonymous and synonymous variants   [2]. Based on these 

findings they create a new approach to prioritize Mendelian disease genes based on their 

mode of inheritance (AD, AR, and XL) termed  Inheritance-mode Specific Pathogenicity 

Prioritization (ISPP) [2]. This score integrates pre-existing gene-specific prediction methods 

namely:  HI  (Huang et al., 2010) [23], REC (MacArthur et al., 2012) [24], RVIS (Petrovski et 
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al., 2013) [13], NET (Khurana et al., 2013) [25], DNE (Samocha et al., 2014) [16] and GDI 

(Itan et al., 2015) [35] along with numerous genetic properties including  global expression 

from RNA-Seq data, DNA replication time and the noncoding (intronic region) mutation rate  

[2].  

Because the human genome contains an abundance of non-deleterious heterozygous variants, 

the identification of dominant mutations for monogenic disorders is challenging. Quinodoz et 

al. created DOMINO a method using machine learning to identify whether  a given gene is 

liable to carry dominant changes [28].  

 

Inevitably, well-studied genes are over-represented in most biological networks used to 

create scores that predict HI compared to less-studied genes, hence most biological networks 

are affected by study bias. Therefore the creation of unbiased HI score becomes essential[27]. 

Recently, Shibab et al. produced an integrated machine learning approach called (HIPred)  

merging functional annotations with genomic and evolutionary features to predict HI genes 

without study bias using data from NIH Roadmap Epigenomics [29] and the ENCODE [30] 

project. The performance of this approach is considered to  exceed the pre-existing HI 

predictors [27]. Supplementary Table 3 outlines the key approaches in this category. 

 

 

4.3 Characteristics of genes under selection. 

 

Genetic variants may be subject to positive selection whereby, if they are advantageous, 

they may increase in frequency. Negative selection, in contrast, acts to remove deleterious 

alleles. Scores which quantify the intensity of negative selection acting on genes provide 

insights into which genes are more likely to have variation which may have damaging 

consequences. The pattern is complex because some essential genes are not known to have 

any associated disease variation and are perhaps subject to negative selection at 

particularly high intensity  [31].  

 Bustamante et al. calculate the extent and directionality of Selection operating on a given 

gene, this score referred to here as “Sel”. They first compared fixed sequence differences, 

both synonymous and non-synonymous, between humans in the sample and Chimpanzees 

over 11.81 Mb region of aligned coding DNA. The ratio of non-synonymous to 

synonymous differences (divergence) was 23.76%. In contrast the ratio of non-

synonymous to synonymous polymorphisms in the human subjects was 38.42%. This 

shows a significant excess of amino acid variation, relative to divergence, consistent with 

previous work stating that much  amino acid variation in the human genome is slightly to 

moderately damaging [32].  

 

Eilertson et al. create a model to identify genes under natural selection with a non-parametric 

approach (with no assumption of a specific population genetic model) which is  robust to 

demography [33]. This approach, called Selection Inference using Poisson Random Effects 

(SnIPRE), utilizes polymorphism and divergence data from synonymous and non-

synonymous sites within genes [33].  
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The Gene-level Integrated Metric of negative Selection (GIMS) was created by combining 

two meta-analyses into a single meta-analysis. The first meta-analysis combines comparative 

genomic metrics (GERP++) and functional genomic metrics (Poly-phen2), and the second 

meta-analysis combines mutation rates (as SNPs/kb) and allele frequencies (as % rare) from 

the 1000 Genomes Project. Meta-analysis was achieved by combining those metrics into  

GIMS scores for 20,079 genes [34]. Because the majority of genes are under purifying 

selection, the aim was to quantify the degree of negative selection applied to genes.   

Conservation and functional scores were initially combined as ‘functional genomic metrics’ 

integrated with mutation rates and fraction of rare variants as ‘population genetic metrics’.   

The GIMS score combines these two metrics and provides a unified score per-gene. GIMS 

gives a probability distribution across the entire genome in quantiles. Genes under negative 

selection are scored low by GIMS [34]. 

 

The Gene Damage Index (GDI) is a gene-specific score which predicts the liability of a 

human protein-coding gene to contain disease-causing mutations considering the influences 

of selection and genetic drift. In GDI, Combined Annotation Dependent Depletion (CADD) 

scores are used as the variant-level damage prediction method because this method is 

efficient at  distinguishing between benign and deleterious variants and  is strongly dependent 

on evolutionary conservation [35]. Moreover, CADD scores can assess most types of variants 

while other methods, like Poly-Phen-2 and SIFT, can only predict missense variants. To 

construct the GDI score the cumulative predicted damage in exonic regions of the gene is 

calculated using the CADD score for each allele compared to the expected score for variants 

with similar allele frequencies. The homogenized Phred I-score is calculated for each metric 

to indicate the ranking of the targeted gene relative to all other genes. A low Phred score: 

indicates a human gene with a low GDI and high Phred score indicates a gene susceptible to 

contain damaging variation.   Genes with high GDI tend to be under less intense purifying 

selective pressure. A low GDI score is associated with highly conserved genes (including 

genes enriched for ribosome, chemokine signaling proteasome and spliceosome functions) 

reflecting essentiality. Such genes tend to be under stronger purifying selection than the 

median selective pressure acting on human genes [35]. Supplementary Table 4 outlines the 

key approaches in this category. 

 

3 Discussion 

Considering approaches which score genes according to essentiality and conservation the 

DNE score offers some advantages. The main limitation of DNE  is its validity only for  

interpretation of de novo mutations [2] but considers more variables related to mutation rate 

which  goes beyond sequence context compared to other methods like RVIS and Sel. These 

additional variables include  consideration of sequence  depth of coverage and regional 

divergence in  genes between humans and Macaques independently, which  improve the 

predictive value of this model [15]. The DNE score has been compared to the RVIS and 

negative selection score Sel. The  comparison showed that DNE and RVIS were equally 

effective  emphasizing the benefits predicted from combining the two scores [15].  
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The strength of Samocha et al. model is enhanced by incorporation of the depth of coverage 

(i.e., how many sequence reads were present on average per base) and the regional 

divergence in genes between humans and Macaques independently. These strengths play a 

significant role in the improvement of their predictive model. The number of rare 

synonymous variants in the Exome Sequencing Project (ESP) is shown to be highly 

correlated with the probability of a synonymous mutation determined by their model. 

 EvoTol was compared to the RVIS and the DNE scores and shown to have increased 

performance at classifying intolerant genes compared to RVIS. EvoTol was shown to be 

highly sensitive and more powerful to characterize genes with high pathogenicity  [14]. 

Although there was no significant correlation between RVIS and EvoTol, the application of 

the two scores simultaneously will likely be advantageous [14]. 

Considering approaches for scoring genes for potential roles in haploinsufficiency 

phenotypes the HIPred approach has been evaluated against five predictors (HI Score, NET, 

RVIS, EvoTol and GHIS, Supplementary Tables 2 and 3). HIPred was found to outperform 

all in predicting HI genes [27]. Using different perspectives across the 26 disease-associated 

gene lists, Hsu et al. estimates the power of several  methods that predict gene pathogenicity 

showing a substantial positive correlation between HI and REC (correlation r= 0.77) while 

the six scores have a moderate relationship with each other (r= 0.46) [2]. Among these gene 

scores (DNE, GDI, HI, NET, RVIS, and REC) the best  predictor of disease-predisposing 

genes was the REC score [2]. The performance of ISPP score was significantly superior for  

prioritizing AR and X-linked disease-associated genes [2]. The REC score is effective at  

predicting disease-associated genes generally but less successful in discriminating recessive 

and dominant disease genes [2]. 

 

DNE measures the rate of per-gene de novo mutation while RVIS ranks human genes based 

on the strength and consistency of the purifying selection acting against functional variation. 

Analysis has shown that GDI and RVIS capture unique sets of reciprocal information from 

population genetic data [35]. In essence, RVIS reflects selective pressure while DNE is based 

on de novo mutation rate estimates; both methods do not quantitatively estimate the 

mutational load for a gene in a healthy human population. For this reason, these methods are 

not optimal for filtering genes with high mutation rates and   many residual false positives 

might be expected.  GDI has proved to be the most efficient approach for filtering out false 

positive variants in genes known to contain damaging variation [35]. 

The Ge et al. X-linked scoring system is not limited by previous gene annotation and the 

dN/dS ratio can be calculated for any protein-coding gene. This score applies to all X-

chromosome protein-coding genes and therefore can assess genes for multiple disease 

phenotypes [25]. Because the intra-human dN/dS ratio is not specific to the  X-chromosome 

the analysis of more genomic data using dN/dS ratio is recommended for future studies to 

identify genes which may have  disease variation [25]. 
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This work aims to bring together the growing evidence that gene properties, alongside variant 

scoring systems, can play an important role in filtering disease sequence data. As healthy 

individuals can have genetic variants that lead to disruption of  protein-coding genes (with no 

clinical phenotype) [26][27][23][36], challenges remain to distinguish which loss of function 

variants are associated with disease phenotypes from those that do not cause any functional 

disturbance [26]. Data from the 1000 Genomes Project show that on average a healthy person 

might carry 250-300 LoF SNVs (1000 Genomes Project Consortium et al., 2010; The 1000 

Genomes Project Consortium, 2012) [2]. 

 

The understanding of human genomes is advanced through the accumulation of sequence 

data in publically available databases. The ExAC resource provides a potent filter to aid 

recognition of pathogenic variants in severe Mendelian diseases. Using ExAC for filtering to 

remove false positive, but plausibly  pathogenic, variants decreases the number of candidate 

protein-altering variants by 7-fold compared to the smaller Exome Sequencing Project 

database (ESP) which has fewer exome sequences  [20]. 

 

Coupled with the previous evidence, another study suggests that the missense Z score which 

represents genes rather than variants adds more information than variant-specific Poly-phen2 

and CADD classifications signifying that gene-level scores of constraints provide more 

details to variant-level scores in evaluating pathogenicity [20].  Furthermore, Haung et al. 

contend that variant level scores (e.g., SIFT and POLYPHEN) are limited by lacking the 

capability to determine , from cross-species alignments, if negative selection at a given site is 

acting in a recessive, additive or dominant mode [22].  

The work proposed by Gussow et al.,  was based on dividing the genes into sub-regions to 

identify  exactly where the pathogenic mutations are likely to present [19]. This study 

brought up an important question: is the whole gene the correct unit to judge patterns of 

intolerance? Future analyses may consider refinements to gene-specific scores which 

consider within-gene regional patterns of intolerance in more detail.   

Another controversial issue is the difficulty in interpretation of benign LoF variants for which 

the nomenclature is still not unified. It is important to realize that there are overlaps in the 

interpretation of LoF variants in healthy people. In the literature, all the following categories 

are represent LoF variants in healthy individuals: true variants that do not seriously disrupt 

gene function, benign LoF variation in redundant genes, non-deleterious or less-deleterious 

variants that have an impact on risk of phenotype or disease [23]. 

Because each genic scoring approach considers only a specific property of genetic 

architecture, each individual score has limitations. For example, the (i) REC score does not 

consider dominant disease-predisposing genes (ii) Non-CNV (Non-Copy Number Variation) 

genetic variants were not included in HI prediction score. (iii) NET score lacks the systematic 

comparison of different known disease-associated genes (iv) RVIS score does not consider 

variations in allele frequencies across different populations (v)The DNE score has limited 

applicability for testing de novo mutations. (vi) The GDI score only considers  mutation 
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profiles  [2]. Furthermore, a major limitation of the GHIS score is that the genetic 

background in individuals is not considered, which is an important issue since genetic 

variants do not act in isolation and disturbance of individual genes within a single biological 

pathway might affect the risk of a disease  [26]. Accordingly, this analysis which provides a 

comprehensive review of each prediction scheme, may help establish new routes for 

prioritizing disease-causal variants. 

 

Presented here are a range of well-studied gene-specific predictors with various 

independent genetic properties. Addressing the limitations of each score or perhaps 

exploiting the developed scores of pathogenicity and combining these scores in an integrated 

metrics might better predict disease-genes since there is currently no single method that is 

reliably predictive of gene pathogenicity.  

 

Many advances were developed to assess whether a gene is tolerant or intolerant to common 

functional variation. Initially, scores were developed per gene then studies were published 

showing that dividing the gene into sub-regions might help in allocating the mutation 

accurately. At that time all scores that measure genic intolerance required disease knowledge, 

this limitation was addressed by developing a tool with no prior disease knowledge required, 

an essential step to better predict genic intolerance. 

 

It is hoped that this review highlights existing work to identify and explain different gene-

specific pathogenicity predictors, while pointing to the gaps in disease-gene prioritization and 

annotation issues to facilitate new scores and better prioritization of disease-causal genes. 

 

Key points 

 

1. A wide range of well-established models exist that prioritize genes based on their 

associated disease variation potential. 

2.  Integration of these strategies to represent individual genes could have a significant 

impact on our understanding of genic properties and the recognition of disease-related 

functional variation. 

3.  Evaluation and comparison of these individual scores and the development of 

integrated models to enhance NGS filtering strategies in disease genomes is a fertile 

area for future studies. 
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1 Abstract 

The evolution of next-generation sequencing (NGS) technologies has facilitated the detection 

of causal genetic variants in diseases previously undiagnosed at a molecular level. However, 

in genome sequencing studies, the identification of disease genes among a candidate gene list 

is often difficult because of the large number of apparently damaging (but usually neutral) 

variants. A number of variant prioritization tools have been developed to help detect disease-

causal sites. However, the results may be misleading as many variants scored as damaging by 

these tools are often tolerated, and there are inconsistencies in prediction results among the 

different variant-level prediction tools. Recently, studies have indicated that understanding 

gene properties might improve detection of genes liable to have associated disease variation 

and that this information improves molecular diagnostics. The purpose of this systematic 

review is to evaluate how understanding gene-specific properties might improve filtering 

strategies in clinical sequence data to prioritize potential disease variants.  Improved 

understanding of the “disease genome”, which includes coding, non-coding and regulatory 

variation, might help resolve difficult cases.  This review provides a comprehensive 

assessment of existing gene-level approaches, the relationships between measures of gene-

pathogenicity and how use of these prediction tools can be developed for molecular 

diagnostics. 

Key words: gene-specific metrics; disease genome; gene-level scores; gene essentiality; gene-specific filtering. 
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2 Introduction 

The sequencing of whole genomes using next generation sequencing (NGS) yields vast data-

sets which present significant analytical challenges for identification of disease-causal 

variants. It is known that a subset of human genes contain, or are associated with, rare and/or 

common variation which have a role in disease processes (the “disease genome”). However, 

recognition of causal variants amongst many thousands of mostly neutral variants is a huge 

challenge and a pressing problem. For example, Chong et al. [1] state that the genes 

underlying ~50% of all Mendelian phenotypes remain unknown and many more Mendelian 

conditions are still to be described. 
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Alongside methods for predicting the potential pathogenicity of individual DNA variants at 

least 20 gene-specific metrics (scores) have been developed in recent years which may help 

facilitate recognition of disease causing variation. An example of one of these methods is 

RVIS (residual variation intolerance score) which ranks genes by whether they have more or 

less common functional genetic variation relative to the genome wide expectation [2]. A 

candidate pathogenic variant found in a gene classed as intolerant of common functional 

variation might be worthy of follow-up as a potential causal variant.  

 

Understanding the properties of the disease genome and integrating existing gene-specific 

predictors may help in classifying genes based on their specific features to refine molecular 

diagnosis. Pathogenicity scores for individual DNA variants are often inconsistent in that 

different methods can provide conflicting evidence on potential pathogenicity.  The degree of 

redundancy in the genome makes the task of picking out causal variation particularly 

challenging. We recognize that variant prediction tools alone are currently not conclusive and 

that evidence at the gene-specific level has the potential to enhance the recognition  of variant 

pathogenicity [3].  

 

This systematic review considers the literature related to gene-specific scores and their 

applicability to improve filtering of genome sequence data. We set out to achieve a 

satisfactory answer to the following research question: “Can the use of gene-specific metrics 

facilitate the identification of disease genes in patient genomes?” 

 

Gene-specific metrics are frequently based on properties of genic coding regions. The extent 

to which they provide information on the tendency of a gene to have associated disease 

causal variation outside the coding region is limited. Most of the tools analyzed in this 

review, with a few exceptions, are concerned with genomic coding variation. 

 

Details of the methodology used in this systematic review are given in the Supplementary 

methods, Supplementary Figures 1 and 2 and Supplementary Table 1. 

 

 

3 Findings: Key models 

Each of the twenty gene-specific approaches identified by the systematic review were classified 

into one of three groups according to the main focus of each method. We consider below each 

of the three groups: (i) Essentiality and conservation (ii) Haploinsufficiency (iii) Selection. 

Supplementary Tables 2-4 give details of the main methods and scores allocated into each 

category. 

 

3.1 Characteristics of essential and conserved genes. 

 

Essential and conserved genes encode proteins which have core biological functions that are 

essential for an organism’s viability. Genes vary in their degree of essentiality and a number 
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of different quantitative scores provide approximations to essentiality.  These include 

predictions of the extent to which  a gene is tolerant or intolerant of  loss of function (LoF) 

mutations and estimation of the expected rate of de novo mutations [14]. Supplementary 

Table 2 outlines the key approaches in this category. The Residual Variation Intolerance 

Score (RVIS) ranks genes by probability of carrying more, or less, functional genetic 

variation than expected highlighting genes intolerant to common functional variation [2]. 

Genes with positive scores have more common functional variation, while negative scoring 

genes are less tolerant having reduced associated common functional variation. Genes 

containing variation involved in monogenic diseases have lower RVIS scores than other 

genes.  

 

By examining  the evolutionary conservation of protein sequences, Rackham et al. developed  

the Evolutionary inTolerance score (EvoTol) to identify genes which are intolerant to 

mutation[15] [16]. Because  only small areas of a gene may be intolerant, for example  

protein-coding domains, these sub-regions  might be particularly important domains of 

essentiality [16]. EvoTol allows identification of intolerant protein sub-domains alongside the 

identification of intolerant genes more generally.  

 

The development of NGS makes possible the identification of newly arising (de novo) 

mutations (DNMs) and their potential roles in rare disease. Recognition of these variants is 

not without difficulty because of errors in alignment and poorly supported variant calls. 

Validation by re-sequencing and, in particular, sequencing of additional family members 

(often the parents of a patient) can help correctly resolve de novo variation which might be of 

disease significance. Such mutations are not considered to play a significant role in the 

pathogenesis of complex diseases [17]. To accurately estimate the expected rate of de novo 

mutations in a given gene, careful assessment of gene mutability is required. Gene length and 

local sequence context are essential factors underlying mutation rate differences [17]. 

Samocha et al. calculated per-gene probabilities of mutation which are correlated with 

observed counts of rare missense variants in the Exome Sequencing Project (ESP) data set. 

The Samocha et al. study extends a model which investigated de novo mutations in epileptic 

encephalopathy patients (Epi4K consortium) by considering depth of coverage (i.e., how 

many sequence reads were present on average per base) and the regional divergence in genes 

between humans and Macaques. Significant numbers of genes with missense variant deficits 

were observed, compared to expectation from predicted mutation rates, suggesting strong 

evolutionary constraint removing variants by negative selection [17] [18]. The Samocha et al. 

model utilizes exome sequence data to evaluate the DNM rate  by gene set and on a single 

gene basis [17], this score is referred to  as de novo excess (DNE). The metric is  predictive 

of selective constraint in the human genome and identifies 1,003 constrained genes known to 

cause severe human disease[17]. It was found that constrained genes contain higher de novo 

LoF mutation rate than expected by chance[17].  

 

The LoFtool measures the ratio of LoF mutations to synonymous mutations for every gene. 

The performance of the LoFtool, compared to RVIS, DNE Z-score, and EvoTol, suggests 

enhanced prediction of de novo haploinsufficient disease-causing genes. The LoFtool 

represents values as intolerance percentiles: genes that are intolerant to LoF variation have 

low LoFtool percentiles [15]. The four measures of genic intolerance outlined so far were 

included by Bartha et al. who described them as essentiality scores [19]. 
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In early 2016, using data from 1000 Genomes Project, Aggarwala et al. proposed the 

Substitution Intolerance Score (SIS) as a gene-level measurement of essentiality. Genes with 

high SIS scores are  functionally constrained, while genes which score low are  tolerant of 

functional changes in the protein which might arise through mutations in the DNA sequence 

[20]. 

 

Another scoring system by Gussow et al.  evaluates intolerance in  genic sub-regions 

proposing that  more conserved regions within a gene are expected to contain more  variants 

which are pathogenic  [21]. Genes are divided into sub-regions and tiered by intolerance to 

functional variation. This ‘subRVIS’ score ranks regions using RVIS but with the addition of 

information on conservation. Regions intolerant to functional variation are scored low by the 

subRVIS scoring system. The method utilizes the GERP++ [22] score to evaluate 

evolutionary constraint for bases in each sub-region [21]. 

The Loss Intolerance probability (pLI) score quantifies the likelihood that a gene is  

intolerant to a mutation which produces LoF in the protein product [23]. The score is derived 

using the Exome Aggregation Consortium (ExAC) database which is an extensive catalogue 

of human genetic diversity. This catalogue identifies one variant every eight bases on average 

in the exome providing a powerful filter for analysis of candidate deleterious variants in 

severe Mendelian diseases [23]. Lek et al. proposed that genes with high pLI score (pLI >= 

0.9) are most intolerant of LoF variation. Genes in this category are the most evolutionarily 

constrained. The least constrained genes (LoF tolerant) have low pLI scores (pLI< = 0.1) and 

typically contribute to the least constrained biological pathways, such as sensory perception, 

where high haplotype diversity is potentially advantageous [23]. 

 

It is challenging to assess the relationship between the DNM rate and genes involved in 

disease. In 2017, Jiang et al. utilized   available  DNM data to correct for the background 

mutation rate seen as  one of the main limitations of the Samocha et al.[17] model. The 

problem arises because by sequencing more individuals, more DNMs are inevitably observed 

in the same gene by chance. Therefore, in a given disease, if a de novo mutation is related to 

pathogenesis, disease-genes might be expected to contain more DNMs than predicted from 

background rates. This work includes the development of a  database which describes the  

background DNM rate (DNMR), acquired from population variation data  [24].   

 

3.2 Characteristics of Haploinsufficient genes 

 

Haploinsufficiency (HI) occurs whenever there is a missing or damaged copy of a gene  

leaving  a single  copy which is insufficient to maintain normal function [3]. 

Haploinsufficiency is mostly caused by LoF mutations and results in dominant diseases. 

Recognition and prediction of genes which are haploinsufficient can facilitate the filtering of 

disease genome data wherever the phenotype is likely to have arisen through reduced levels 

of gene product.  
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 In 2010, Haung et al. proposed a deletion-based HI score by identifying  differences between 

HI and haplosufficient (HS) genes, aiming to better distinguish pathogenic from benign 

deletions which helps in variant prioritization [3]. The analysis develops a logarithm-of-odds 

(LOD) score to estimate the probability of a deletion causing a HI phenotype. A high LOD 

score suggests deletions are likely to be deleterious through HI and therefore potential 

candidates for causing dominant traits. The score assumes  there are no statistical interactions 

between the genes [3]. Previously, and to try to assess the pathogenicity of a deletion, 

clinicians considered the length of a deletion or the number of genes deleted. The Haung et 

al. score provides a rational basis to classify pathogenic deletions by comparing deletions 

seen in patients with deletions  in controls and calculating the fraction of controls with a 

deletion at least as deleterious as that seen in the patient [3]. 

 

Distinguishing false-positive disease variants from the genuinely causal variants is crucial for 

accurate molecular diagnoses. MacArthur et al. developed the RECessive (REC) score for  

distinguishing genes involved in recessive diseases from genes which are  LoF- variation 

tolerant [25].  A “healthy” genome might contain 100 true LoF variants, the majority in a 

heterozygous state. Evidence suggests that the average human carries five recessive lethal 

alleles in single copy in their genome. Consequently, the majority of LoF variants are 

considered common variants. However, these variants might still have a phenotypic effect 

[25]. MacArthur et al. demonstrated  differences in  functional and evolutionary features 

between recessive disease and LoF-tolerant genes, allowing for the development of a 

predictive model to predict  recessive disease variants [25]. 

 

Khurana et al. developed the “gene position in NETworks” (NET) indispensability score   to 

investigate relationships between degree of network centrality of a gene and selection within   

biological networks [26]. They consider a range of biological networks relating to 

phosphorylation, signaling, protein-protein interaction and regulatory and genetic networks. 

Genes which are highly connected to many biological networks are the most functionally 

significant, therefore, mutations in those genes might have  serious consequences[26]. 

However, genes connected to metabolic networks were found to have  an excess of  

duplicated copies  through more paralogs with LoF mutations[26] .This score was included as 

a predictor of haploinsufficient genes  in the Hsu et al. study [5]   

 

Ge et al.  consider gene-specific pathogenicity using the ratio of non-synonymous to 

synonymous substitution rates (dN/dS) for X-chromosome genes [27]. Genes with unusually 

low ratios suggest intolerance to non-synonymous variation, indicating they may be 

susceptible to disease-related variation. The authors found correlation between genomic 

regions depleted for  missense variation with disease-causal variants  [27].  

 

Steinberg et al. proposed that study biases existing in many biological networks might affect 

the ability of previous HI prediction scores to recognize the genuinely haploinsufficient 

genes. For that reason they constructed a new, unbiased, HI score, the Genome-wide 

HaploInsufficiency Score (GHIS) which  replaces biological networks with co-expression 
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networks [28] [29]. They compared their model with the three pre-existing methods (i.e.,  HI 

[3], NET [26] and RVIS [2]) and  demonstrated that GHIS provides a score for many genes  

not scored by other  methods [28] with enhanced performance at  classifying  less well 

studied genes  [28]. 

 

Scores have been developed to recognize Mendelian genes with different modes of 

inheritance.  Hsu et al. considered Mendelian disease gene characteristics according to their 

mode of inheritance. Haploinsufficiency is an essential characteristic of Mendelian disease 

genes with an autosomal dominant (AD) mode of inheritance and  sensitivity to de novo 

mutations was recognized for this group of genes [5]. In contrast  disease genes with 

autosomal recessive (AR) modes of inheritance tend to have more  non-synonymous variants 

and regulatory transcript isoforms [5]. However, the X-linked (XL) pattern of inheritance is 

associated with  fewer  non-synonymous and synonymous variants   [5]. Based on these 

findings they create a new approach to prioritize Mendelian disease genes based on their 

mode of inheritance (AD, AR, and XL) termed  Inheritance-mode Specific Pathogenicity 

Prioritization (ISPP) [5]. This score integrates pre-existing gene-specific prediction methods 

namely:  HI [3], REC [25], RVIS [2], NET [26], DNE [17] and GDI [30] along with numerous 

genetic properties including  global expression from RNA-Seq data, DNA replication time 

and the noncoding (intronic region) mutation rate [5].  

Because the human genome contains an abundance of non-deleterious heterozygous variants, 

the identification of dominant mutations for monogenic disorders is challenging. Quinodoz et 

al. created DOMINO a method using machine learning to identify whether  a given gene is 

liable to carry dominant changes [31].  

 

Inevitably, well-studied genes are over-represented in most biological networks used to 

create scores that predict HI compared to less-studied genes, hence most biological networks 

are affected by study bias. Therefore the creation of unbiased HI score becomes particularly 

important [29]. Recently, Shihab et al. produced an integrated machine learning approach 

called (HIPred)  merging functional annotations with genomic and evolutionary features to 

predict HI genes without study bias using data from NIH Roadmap Epigenomics [32] and the 

ENCODE [33] project. The performance of this approach is considered to  exceed the pre-

existing HI predictors [29]. Supplementary Table 3 outlines the key approaches in this 

category. 

 

 

3.3 Characteristics of genes under selection. 

 

Genetic variants may be subject to positive selection whereby, if they are advantageous, 

they may increase in frequency. Negative selection, in contrast, acts to remove deleterious 

alleles. Scores which quantify the intensity of negative selection acting on genes provide 

insights into which genes are more likely to have variation which may have damaging 

consequences. The pattern is complex because some essential genes are not known to have 
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any associated disease variation and are perhaps subject to negative selection at 

particularly high intensity  [34].  

 Bustamante et al. calculate the extent and directionality of Selection operating on a given 

gene, this score referred to here as “Sel”. They first compared fixed sequence differences, 

both synonymous and non-synonymous, between humans in the sample and Chimpanzees 

over 11.81 Mb region of aligned coding DNA. The ratio of non-synonymous to 

synonymous differences (divergence) was 23.76%. In contrast the ratio of non-

synonymous to synonymous polymorphisms in the human subjects was 38.42%. This 

shows a significant excess of amino acid variation, relative to divergence, consistent with 

previous work stating that much  amino acid variation in the human genome is slightly to 

moderately damaging [35].  

 

Eilertson et al. create a model to identify genes under natural selection with a non-parametric 

approach (with no assumption of a specific population genetic model) which is  robust to 

demography [36]. This approach, called Selection Inference using Poisson Random Effects 

(SnIPRE), utilizes polymorphism and divergence data from synonymous and non-

synonymous sites within genes.  

 

The Gene-level Integrated Metric of negative Selection (GIMS) was created by combining 

two meta-analyses into a single meta-analysis. The first meta-analysis combines comparative 

genomic metrics (GERP++) [22] and functional genomic metrics (Poly-phen2) [37], and the 

second meta-analysis combines mutation rates (as SNPs/kb) and allele frequencies (as 

percentage rare) from the 1000 Genomes Project. Meta-analysis was achieved by combining 

those metrics into  GIMS scores for 20,079 genes [38]. Because the majority of genes are 

under purifying selection, the aim was to quantify the degree of negative selection applied to 

genes.   Conservation and functional scores were initially combined as ‘functional genomic 

metrics’ integrated with mutation rates and fraction of rare variants as ‘population genetic 

metrics’.   The GIMS score combines these two metrics and provides a unified score per-

gene. GIMS gives a probability distribution across the entire genome in quantiles. Genes 

under negative selection are scored low by GIMS [38]. 

 

The Gene Damage Index (GDI) is a gene-specific score which predicts the liability of a 

human protein-coding gene to contain disease-causing mutations considering the influences 

of selection and genetic drift. In GDI, Combined Annotation Dependent Depletion (CADD) 

[39] scores are used as the variant-level damage prediction method because this method is 

efficient at  distinguishing between benign and deleterious variants and  is strongly dependent 

on evolutionary conservation [30]. Moreover, CADD scores can assess most types of variants 

while other methods, like Poly-Phen-2 [37] and SIFT [40], can only predict missense 

variants. To construct the GDI score the cumulative predicted damage in exonic regions of 

the gene is calculated using the CADD score for each allele compared to the expected score 

for variants with similar allele frequencies. The homogenized Phred I-score is calculated for 

each metric to indicate the ranking of the targeted gene relative to all other genes. A low 

Phred score: indicates a human gene with a low GDI and high Phred score indicates a gene 

susceptible to contain damaging variation.   Genes with high GDI tend to be under less 
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intense purifying selective pressure. A low GDI score is associated with highly conserved 

genes (including genes enriched for ribosome, chemokine signaling proteasome and 

spliceosome functions) reflecting essentiality. Such genes tend to be under stronger purifying 

selection than the median selective pressure acting on human genes [30]. Supplementary 

Table 4 outlines the key approaches in this category. 

 

4 Discussion 

Considering approaches which score genes according to essentiality and conservation the 

DNE score offers some advantages. The main limitation of DNE  is its validity only for  

interpretation of de novo mutations [5] but it considers more variables related to mutation rate 

going beyond sequence context compared to other methods like RVIS and Sel. These 

additional variables include  consideration of sequence  depth of coverage and regional 

divergence in  genes between humans and Macaques independently, which  improve the 

predictive value of this model [17]. The DNE score has been compared to the RVIS and 

negative selection score Sel. The  comparison showed that DNE and RVIS were equally 

effective  emphasizing the benefits predicted from combining the two scores [17].  

The strength of Samocha et al. model is enhanced by incorporation of the depth of coverage 

(i.e., how many sequence reads were present on average per base) and the regional 

divergence in genes between humans and Macaques independently. These strengths play a 

significant role in the improvement of their predictive model. The number of rare 

synonymous variants in the Exome Sequencing Project (ESP) which comprises a relatively 

small sample of 6700 exomes [41] is shown to be highly correlated with the probability of a 

synonymous mutation determined by their model. As rare variant allele frequencies are 

impacted by sample size evaluation in larger databases such as ExAC would be of interest 

[41].  

 EvoTol was compared to the RVIS and the DNE scores and shown to have increased 

performance at classifying intolerant genes compared to RVIS. EvoTol was shown to be 

highly sensitive and more powerful to characterize genes with high pathogenicity  [16]. 

Although there was no significant correlation between RVIS and EvoTol, the application of 

the two scores simultaneously will likely be advantageous [16]. 

Considering approaches for scoring genes for potential roles in haploinsufficiency 

phenotypes the HIPred approach has been evaluated against five predictors (HI Score, NET, 

RVIS, EvoTol and GHIS, Supplementary Tables 2 and 3). HIPred was found to outperform 

all in predicting HI genes [29]. Using different perspectives across the 26 disease-associated 

gene lists, Hsu et al. estimates the power of several  methods that predict gene pathogenicity 

showing a substantial positive correlation between HI and REC (correlation r= 0.77) while 

the six scores have a moderate relationship with each other (r= 0.46) [5]. Among these gene 

scores (DNE, GDI, HI, NET, RVIS, and REC) the best  predictor of disease-predisposing 

genes was the REC score [5]. The performance of  the ISPP score was significantly superior 
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for  prioritizing AR and X-linked disease-associated genes [5]. The REC score is effective at  

predicting disease-associated genes generally but less successful in discriminating recessive 

and dominant disease genes [5]. 

 

DNE measures the rate of per-gene de novo mutation while RVIS ranks human genes based 

on the strength and consistency of the purifying selection acting against functional variation. 

Analysis has shown that GDI and RVIS capture unique sets of reciprocal information from 

population genetic data [30]. In essence, RVIS reflects selective pressure while DNE is based 

on de novo mutation rate estimates; both methods do not quantitatively estimate the 

mutational load for a gene in a healthy human population. For this reason, these methods are 

not optimal for filtering genes with high mutation rates and   many residual false positives 

might be expected.  GDI has proved to be the most efficient approach for filtering out false 

positive variants in genes known to contain damaging variation [30]. 

The Ge et al. X-linked scoring system is not limited by previous gene annotation and the 

dN/dS ratio can be calculated for any protein-coding gene. This score applies to all X-

chromosome protein-coding genes and therefore can assess genes for multiple disease 

phenotypes [27]. Because the intra-human dN/dS ratio is not specific to the  X-chromosome 

the analysis of more genomic data using dN/dS ratio is recommended for future studies to 

identify genes which may have  disease variation [27]. 

 

The effort to improve the predictive ability of variant-level scores now includes combination 

of evidence from multiple pathogenicity scores and other data. An example is the 

“Mendelian Clinically Applicable Pathogenicity” (M-CAP) score [42] which uses machine 

learning classification based on existing pathogenicity scores and  measures of 

evolutionary conservation. Such a combinatorial approach might usefully integrate 

evidence from both variant-level and gene-level metrics to improve predictive abilities 

overall [42]. 

 

This work aims to bring together the growing evidence that gene properties, alongside variant 

scoring systems, can play an important role in filtering disease sequence data. As healthy 

individuals can have genetic variants that lead to disruption of  protein-coding genes (with no 

clinical phenotype) [25,28,29,43], challenges remain to distinguish which loss of function 

variants are associated with disease phenotypes from those that do not cause any functional 

disturbance [28]. Data from the 1000 Genomes Project show that on average a healthy person 

might carry 250-300 LoF SNVs (1000 Genomes Project Consortium et al., 2010; The 1000 

Genomes Project Consortium, 2012) [5]. 

 

The ACMG guidelines consider in silico predictions of whether a variant is involved in 

disease, but without specifying which or how many variant interpretation algorithms to use. 

These data can be used only as ‘supporting’ evidence for variant interpretation. There are 

difficulties with respect to validation of these methods and there is a relatively high error rate 

with many pathogenic variants assessed as benign by some methods and many benign 

variants assessed as pathogenic [44]. The guidelines do not currently consider gene-specific 
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metrics which are the subject of this review but presumably could similarly constitute 

supporting evidence given alongside stronger independent evidence suggesting role or lack of 

role in disease.   Ultimately, functional validation is optimal although is frequently not 

timely, practical or reimbursable [44,45]. 

 

The understanding of human genomes is advanced through the accumulation of sequence 

data in publically available databases. The ExAC resource provides a potent filter to aid 

recognition of pathogenic variants in severe Mendelian diseases. Using ExAC for filtering to 

remove false positive, but plausibly  pathogenic, variants decreases the number of candidate 

protein-altering variants by 7-fold compared to the smaller Exome Sequencing Project 

database (ESP) which has fewer exome sequences  [23]. 

 

Coupled with the previous evidence, another study suggests that the missense Z score which 

represents genes rather than variants adds more information than variant-specific Poly-phen2 

and CADD classifications signifying that gene-level scores of constraints provide additional 

information for evaluating pathogenicity [23].  Furthermore, Huang et al. contend that variant 

level scores (e.g., SIFT [40] and poly-phen 2 [37] ) are limited by lacking the capability to 

determine , from cross-species alignments, whether  negative selection at a given site is 

acting in a recessive, additive or dominant mode [3].  

The work proposed by Gussow et al. was based on dividing the genes into sub-regions to 

identify  exactly where the pathogenic mutations are likely to present [21]. This study 

identified an important question: is the whole gene the correct unit by which to judge patterns 

of intolerance? Future analyses may consider refinements to gene-specific scores which 

consider within-gene regional patterns of intolerance in more detail.   

Another controversial issue is the difficulty in interpretation of benign LoF variants for which 

the nomenclature is still not unified. It is important to realize that there are overlaps in the 

interpretation of LoF variants in healthy people. In the literature, all the following categories 

are represent LoF variants in healthy individuals: true variants that do not seriously disrupt 

gene function, benign LoF variation in redundant genes, non-deleterious or less-deleterious 

variants that have an impact on risk of phenotype or disease [25]. 

Because each genic scoring approach considers only a specific property of genetic 

architecture, each individual score has limitations. For example: (i) the REC score does not 

consider dominant disease-predisposing genes (ii) Non-CNV (Non-Copy Number Variation) 

genetic variants were not included in HI prediction score. (iii) the NET score lacks the 

systematic comparison of different known disease-associated genes (iv) the RVIS score does 

not consider variations in allele frequencies across different populations (v) the DNE score 

has limited applicability for testing de novo mutations. (vi) the GDI score only considers  

mutation profiles  [5]. Furthermore, a major limitation of the GHIS score is that the genetic 

background in individuals is not considered, which is an important issue since genetic 

variants do not act in isolation and disturbance of individual genes within a single biological 

pathway might affect the risk of a disease  [28]. Accordingly, this analysis which provides a 
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comprehensive review of each prediction scheme, may help establish new routes for 

prioritizing disease-causal variants. 

 

 

Many advances have been developed to assess whether a gene is tolerant or intolerant to 

common functional variation. Initially, scores were developed per gene then studies were 

published showing that dividing the gene into sub-regions might help in allocating the 

mutation accurately. At that time all scores that measure genic intolerance required disease 

knowledge, this limitation was addressed by developing a tool with no prior disease 

knowledge required, an essential step to better predict genic intolerance. 

 

Reviewed here are a range of well-studied gene-specific predictors with various independent 

genetic properties. It is hoped that recognizing some of the limitations of each score and 

perhaps combining evidence from both variant-specific scores and gene-wise evidence might 

enable better prediction since there is currently no single method that is reliably predictive of 

gene pathogenicity. Therefore this hopefully might help to overcome one of the main 

challenges of 100,000 genome project which is variant annotation to prioritize important 

variants from harmless neutral variants. This review is intended to highlight existing work to 

identify and explain different gene-specific pathogenicity predictors, while pointing to the 

gaps in disease-gene prioritization and annotation issues to facilitate new scores and better 

prioritization of disease-causal genes. 

 

Key points 

 

1. A wide range of well-established models exist that prioritize genes based on their 

associated disease variation potential. 

2.  Integration of these strategies to represent individual genes could have a significant 

impact on our understanding of genic properties and the recognition of disease-related 

functional variation. 

3.  Evaluation and comparison of these individual scores and the development of 

integrated models to enhance NGS filtering strategies in disease genomes is a fertile 

area for future studies. 
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