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Inflammation is an integral part of defense against most infectious diseases. These
pathogen-induced immune responses are in very many instances strongly influenced
by host’s sex. As a consequence, sexual dimorphisms were observed in susceptibility to
many infectious diseases. They are pathogen dose-dependent, and their outcomes
depend on pathogen and even on its species or subspecies. Sex may differentially
affect pathology of various organs and its influence is modified by interaction of host’s
hormonal status and genotype: sex chromosomes X and Y, as well as autosomal genes.
In this Mini Review we summarize the major influences of sex in human infections and
subsequently focus on 22 autosomal genes/loci that modify in a sex-dependent way the
response to infectious diseases in mouse models. These genes have been observed to
influence susceptibility to viruses, bacteria, parasites, fungi and worms. Some sex-
dependent genes/loci affect susceptibility only in females or only in males, affect both
sexes, but have stronger effect in one sex; still other genes were shown to affect the
disease in both sexes, but with opposite direction of effect in females and males. The
understanding of mechanisms of sex-dependent differences in the course of infectious
diseases may be relevant for their personalized management.

Keywords: sex-bias, sex-dependent gene, mouse model, susceptibility to infection, sex influence, viruses,
bacteria, parasites
INTRODUCTION

Sex plays an important role in immune response, including susceptibility to infectious diseases (1),
outcome of vaccination (2–6) and response to treatment (7). Sex differences in susceptibility to
infectious and inflammatory diseases are widespread – both in terms of number of pathogens and
diseases they influence and in terms of the number of vertebrate and invertebrate species and genera
where they were observed. In humans they were demonstrated in a number of diseases discussed in
detail below and hence they form a significant but hitherto unexplained component of clinical inter-
patient heterogeneity. Their individual prediction and functional explanation may therefore
significantly improve individual management of disease. A part of this phenomenon may be
under genetic control, but there is presently little evidence for this in humans. However, there are
extensive data from studies in mice that described 22 autosomal gene-loci controlling the sex
differences in response to 12 infectious or inflammatory agents. We are presenting a comprehensive
summary of this information, as it may help to proceed to clarification of the manifestations and
mechanisms of sex differences in these pathologies.
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Sexual dimorphism takes place already in healthy individuals. In
most cases, basal immune responses are higher in females than in
males. It has been described that women have higher several
immunology-related parameters than males: blood levels of
mature B cell subsets, IgM-only B cells, proliferating and memory
(CD45RA-) Treg cells, NK bright (CD56++CD16-) subsets (8),
immunoglobulin M (9), neutrophil and platelets (10), and higher
CD4+/CD8+ ratio (11). TLR7 ligands induce higher IFNa
production in woman peripheral blood lymphocytes (12).
Neutrophils of men exhibit lower responses to cytokine
stimulation and decreased ability to form neutrophil traps (13),
whereas in women neutrophils were characterized by enhanced type
I IFN pathway activity and enhanced proinflammatory responses
(14). Male and female neutrophils differ also in bioenergetics.
Metabolic assays of oxygen consumption rate (OCR), which is a
key metric of mitochondrial function, and the extracellular
acidification rate (ECAR), which approximates glycolytic activity
in male and female neutrophils shown that OCR was higher in male
than female neutrophils, whereas there were no differences in ECAR
(14). As the immune cells differentiation and function crucially
depend on mitochondrial bioenergetics (15, 16), sex differences in
mitochondrial functions have a potential to modulate immune
responses. Differences in immune responses have been observed
also between males and females of other mammals (17–19), birds
(20), reptiles (21), echinoderms (22) and insects (23). Such baseline
differences can contribute to sex biases in response to pathogens
(24,25 and see the next section) and to vaccination (2–6). Females
usually have more efficient response to vaccination than males (2–
5), but also develop more often adverse reactions to vaccination (4,
5). On the other hand, vaccination of healthy volunteers by Bacille
Calmette-Guérin (BCG) led to enhanced cytokine responses to
restimulation and reduced systemic inflammation. The effect was
much stronger in men than in women (6).
SEX BIASES IN HUMAN INFECTIONS

Viruses
Male sex was associated with higher death rate in hepatitis A virus-
hospitalized cases (24). Male sex was also a risk factor for hepatitis B
virus (HBV) and hepatitis C Virus (HCV) prevalence and for
development of hepatocellular carcinoma subsequent to HBV
and/or HCV infection (25). Presence of virus stimulates
inflammatory responses and appearance of reactive oxygen (ROS)
and nitrogen species, which are described as leading cause of series
of alterations that led to DNA damage (25). Estrogen may serve an
inhibitory role in these processes by inhibiting inflammation, tumor
progression and invasion and stimulating DNA repair (26), whereas
androgen induced miR-216a stimulated tumorigenesis (27). The
lower survival rate was observed among male patients infected with
Ebola virus (28). The higher COVID-19 case mortality rate and
increased severity of disease was described in males (29–31).
Interestingly, gene encoding ACE2 (angiotensin-converting
enzyme 2), which plays an essential role in cell entry of SARS-
CoV-2 (severe acute respiratory syndrome coronavirus 2) is
localized on X chromosome (Xp22.2), thus females have double
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gene dose and can be potentially heterozygous compared to males
who are definitely hemizygous. It has been speculated that together
with X mosaicism it might favor women in counteracting the
progression of the SARS-CoV-2 infection (32, 33). Prevalence of
herpes simplex virus type 1 (HSV1) and type 2 (HSV2) in persons
aged 14-49 in United States in the years 2015-2016 was higher in
women than in men (34). Similarly, HSV1 in Europe was more
often detected in women than in men (35). Sex differences in
measles mortality were compared among 78 countries in years
between 1950 and 1989. Regional variations showed excess female
mortality of 3% in Europe, 6.2% in North America, 5.9% in Far East
Asia, 4.3% in Latin America, and 20.9% in the Middle East. The
cumulative excess female mortality in comparison with males was
small at age 0-4 (+4.2%), larger at age 5-14 (+10.9%), and peaks at
ages 15-44 (+42.6%) (36). The most probable explanation of these
variations is the influence of estrogens (36). Several studies have
shown that women are more susceptible to human
immunodeficiency virus 1 (HIV-1) acquisition than men, as the
male-to-female transmission is more efficient than female-to-male
transmission (37, 38). Indeed, in Sub-Saharan Africa higher HIV
prevalence is observed in women (39). However, in Europe, there
are more newly detected HIV infections in males than in woman,
because sex between men remains the predominant mode of HIV
transmission reported in the EU (European Union)/EEA (European
Economic Area) (40). Thus, socioeconomic factors most likely
contribute to the sex biases in HIV/AIDS (Acquired Immune
Deficiency Syndrome).

Bacteria
Sex differences have also been reported in bacterial infections.
Analysis of 4742 randomly selected subjects, aged 12-64, from
Northern Ireland shown that Helicobacter pylori infection was
more common in males than in females (41). A retrospective
seroepidemiologic survey of Chlamydia pneumoniae infection in
patients in Beijing, China between 2008 and 2017 revealed that adult
men had both a higher prevalence and higher levels of antibodies
than women (42). Klebsiella spp. induced bacteremia was higher in
males than in females in England, Wales, and Northern Ireland
(43). 60% of patients hospitalized in the years 2005-2014 in USA
with Lyme disease (infectious agent Borrelia burgdorferi) were men
(44). On the other hand, reinfection with B. burgdorferi in
individuals from Sweden that were initially diagnosed with
erythema migrans and treated with antibiotics was much higher
in women than in men (45). Incidence of tuberculosis that is caused
by infection with Mycobacterium tuberculosis was described to be
higher in men than in women (46), however a consistent female
excess for tuberculosis at age 5-29 was observed (47). Listeria
monocytogenes is a foodborne pathogen that is highly prevalent in
pregnant woman, older adults and immunocompromised
individuals. Incidence of listeriosis in the years 2008-2016 in USA
was higher in males than in non-pregnant females (48).
Socioeconomic factors highly influence the spread of syphilis: a
sexually transmitted infection caused by Treponema pallidum. Sex
differences in its incidence, prevalence and geographical variations
have been well described. For example, the incidence of maternal
syphilis is higher in low- to middle-income countries as compared
to high-income countries where syphilis is more common among
October 2021 | Volume 12 | Article 712688
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men who have sex with men. In Africa the spread of syphilis is also
high in female sex workers (49, 50).

Parasites
Male sex is a risk factor for visceral leishmaniasis (51). Men were
more susceptible to visceral infection caused by Leishmania
donovani (52–54) and L. infantum (55–58). More variability
was observed in studies of sex influence on cutaneous
leishmaniasis. Some epidemiological studies revealed in male
patients a higher incidence of cutaneous leishmaniasis caused
by L. major and L. tropica (59, 60), L. major only (61), and also by
L. guyanensis (62). However, the study in Afghanistan found that
females developed more lesions and scars after L. tropica infection
(63) and other analyses reported no significant sex differences in
registered cases of cutaneous leishmaniasis caused by L. tropica
(64) and L. major (65). No sex bias was observed in intestinal
schistosomiasis caused by Schistosoma mansoni in adults (66).
Infection rates did not differ significantly among various age and
sex groups infected with Schistosoma haematobium (67).

Fungi
Prior to the AIDS epidemics, cryptococcal disease, caused by
Cryptococcus neoformans and Cryptococcus gattii was rather rare.
It was reported in case series 2-3 times more frequently in men as in
women (68). In the AIDS era, in the years 2000-2007 were in USA
hospitalized 10077 patients with cryptococcal disease, 26% were
females. Males had a higher risk of a disease in both HIV-infected
and uninfected cohorts. Age- and sex-adjusted death rates were
almost threefold higher in males compared to females (69).

Worms
Females were found to be more predisposed to Ascaris lumbricoides
infection than were males (70). Human neurocysticercosis results
from the infection of the central nervous systemwith the larval stage
of the intestinal tapeworm, Taenia solium. In Ecuador, the number
of transitional cysts in brain was found to be higher in the female
than in the male patients (71).
VARIOUS INFLUENCES ON SEX EFFECTS

Thus, differences in susceptibility and prevalence betweenmales and
females have been observed in many human infections. The
extensive studies showed that some infectious diseases exhibit
male (24, 25, 28–31, 41–43, 52–58, 68, 69), the other female bias
(34–36, 70, 71), but there are also epidemiological studies with
contradictory results; some studies showing male and the other
female bias or no sex bias in the same disease (37–40, 46, 47, 59–65).
These disparities may be explained by the fact that the occurrence
and susceptibility to infectious diseases is influenced by many
factors such as presence of pathogen reservoir, presence and
properties of pathogen transmission vector in case of vector borne
diseases (72), as well as immune status, sex and hormonal status,
age, nutrition, microbiome and genotype of the host (72–75) and
multiple environmental factors, including climate changes (76).
Susceptibility to many human diseases is modified by socio-
Frontiers in Immunology | www.frontiersin.org 3
cultural determinants, behavioral/lifestyle risk factors (50),
prevalence of co-morbidities (48) and co-infection with several
pathogens (69, 77).
SEX-DEPENDENT RESPONSES
REVEALED IN ANIMAL EXPERIMENTS

Sex-dependent differences in response to pathogens could be
more effectively analyzed in animal studies. Mouse experiments
revealed important features of sex-dependent responses to
infectious diseases: dose-dependence, pathogen and pathogen
species-dependence, organ specificity and genetic modification.

Dose-Dependent Sex Bias
Dose-dependent sex bias was described in responses to viruses and
bacteria. The response of the strain C57BL/6 infected intranasally
with the mouse adapted influenza A/PR8;H1N1 was sex-dependent
when median infection dose [102 or 103 TCID50 (tissue culture
infectious dose)] were used and females exhibited higher mortality
thanmales.Theeffectof infectionswith low(101TCID50)orhigh(10

4

or 105 TCID50) viral inoculi was sex independent (78). Dose-
dependent sex bias was observed also in the animal model of gram-
negative sepsis. Wistar rats were injected intraperitoneally with
bacteria Escherichia coli LPS in one of two doses: 1.5 or 15 mg/kg.
Day after theLPS injection, serum levels of endotoxin, corticosterone,
alanine aminotransferase (ALT), and aspartate aminotransferase
(AST) activity in the serum and morphological changes in the lung,
liver, thymus, and spleen exhibited dose-dependent sex bias. Low-
doseLPS led to the serumendotoxin level increaseonly inmalesand it
was combined with a more pronounced inflammatory response in
the lungs (characterized by infiltration of eosinophils and
neutrophils) and thymus (characterized by presence of
macrophages and dead lymphocytes) and an increase and decrease
in ALT and AST activity, in males and females, respectively, without
any changes in corticosterone level. High-dose LPS induced systemic
inflammatory response syndrome (SIRS) comprises higher blood
endotoxin levels in males than in females, lower the volume fraction
index of the white pulp of the spleen of males, increase of apoptotic
cells in thymus and decrease of corticosteroids in males only. Sex
differences of pathological changes in the lungs and liver were not
revealed (79). The observed dose-dependent sex differencesmight be
largely caused by different dynamics of induction of different
signaling pathways in males and females.

Sex Differences Depend on Species and
Sub-Species of Pathogen and on
Genotype of the Host
Sex bias in disease susceptibility and prevalence that is dependent
on pathogen species is described in Sex Biases in Human
Infections. Here we describe, that sex bias can depend also on
pathogen sub-species. DBA/2 female mice are highly resistant
and males susceptible to lesion development after infection with
the parasite L. mexicana. On the contrary, although both female
and male mice developed ulcerating lesions after infection with
L. major, lesions healed in males, but not females (80). Sex
October 2021 | Volume 12 | Article 712688
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differentially influenced also infection with L. tropica and
L. major and the response was modified by genotype. Females
of strains BALB/c, CcS-11, CcS-16 and CcS-20 are more
susceptible than males to development of skin lesions induced
by L. tropica, whereas no sex bias was observed in strains STS,
CcS-3, CcS-5, CcS-12 and CcS-18. On the other hand, infection
by L. major induced larger skin lesions in males of strains CcS-3,
CcS-5 and CcS-18, whereas no difference between males and
females was observed in strains BALB/c, STS, CcS-11, CcS-12,
CcS-16 and CcS-20 (81).

Sex Affects Pathology of Various Organs
Differently and Its Influence Is Modified by
the Host Genotype
Strains BALB/c and CcS-11 did not exhibit any sex influence on
lesion size induced by L. major, but males of strain CcS-11
contained more parasites in spleens than females, and males of
both strains had much higher parasite load in lymph nodes (82).
Organ-dependent sex response was observed also in animal
model of gram-negative sepsis (79). These phenomena might
be explained by presence of different defense mechanisms in
different tissues (83, 84), as well as by highly tissue-dependent
sex-biases in expression of genes observed in intercross between
strains C57BL/6 and C3H/HeJ (85).
MECHANISMS OF SEX-DEPENDENT
RESPONSES

The observed sex-differential responses to disease susceptibility may
be explained by direct and indirect influence of sex hormones and
non-hormonal sex-biasing influence of X and Y chromosomes. Sex
steroid hormones (estrogen, testosterone and progesterone)
influence response to infections by 1) direct effect on pathogen
metabolism, growth, and expression of virulence factors. It was
shown that physiological concentration of progesterone
inhibited replication of Coxiella burnetii in JEG-3 cells (86),
both testosterone and progesterone inhibited growth of
Staphylococcus aureus (87). 2) by modification of immune
response and physiology of the host. Effects on sex hormones
on the host are exerted via sex hormone-receptor interactions.
These receptors are present in cell nucleus and membrane (88) of
non-immune and immune cells and tissues (88–91). Complexes
of sex hormone-nuclear steroid receptor bind target DNA
through hormone response elements to act as transcription
factors (88). They can also bind to DNA-protein complexes
and epigenetically modify cell functions (90, 91). Sex hormone-
receptor complexes can exert their effects also through DNA-
independent mechanisms, such as the activation of cytoplasmic
signal transduction pathways (90). These interactions influence
pro- and anti-inflammatory signaling pathways (92, 93). Indirect
influences might include for example sex-dependent organ
development (94) or influence of sex hormones on gut
microbiota (95).

Non-hormonal sex-bias effects are mediated by genes localized
on X and Y chromosomes (1, 96, 97). The X chromosome carries a
Frontiers in Immunology | www.frontiersin.org 4
number of immune-related genes (96), such as toll-like receptor 7
(TLR7) and interleukin-1 receptor-associated kinase 1 (IRAK1), as
well as a number of immune-associated microRNAs (96). X
inactivation, or silencing of one X chromosome, in women would
be expected to provide dosage compensation of X-linked genes,
however certain regions of the X chromosome escape inactivation
(96, 98). This can lead to higher transcription levels of specific genes
that are involved in sex-specific responses (96, 99). The Y
chromosome also influences immune gene expression, regulation,
and susceptibility to infections (97). For example, the Y
chromosome mediates susceptibility to cocksackie virus
independently of serum testosterone level (100). Genetic variation
in chromosome Y regulates susceptibility to influenza A virus
infection (101).
MOUSE AUTOSOMAL GENES THAT
CONTROL SEX-BIASED RESPONSES TO
INFECTIONS

Besides X- and Y-linked genes, there are also autosomal genes
operating in sex-dependent manner. Sex-dependent autosomal
genes modify response to viruses (102–106), bacteria (106, 107),
parasites (108–111), fungi (112) and worms (113) (Table 1,
Figure 1). Three models were introduced to explain gene-sex-
interactions (114). 1. “Environment specific effect”: Sex dependent
gene/loci affect susceptibility only in females (102, 104, 107, 111,
112), or males (102–105, 108–110, 112, 113). 2. “A main effect”
model for gene by environment (= sex) interaction. A disease can
affect both sexes, but is more severe in one sex compared to the
other (106, 107, 111). 3. “A flip-flop”model of gene by environment
interaction. Gene affects susceptibility in both sexes, but in different
directions (102, 108).

Viruses
Theiler’s murine encephalomyelitis virus-induced demyelination
(TMEVD) is an animal model for virally triggered multiple
sclerosis. QTLs (quantitative trait loci) Tmevd7 and Tmevd8
modify susceptibility to virus-induced demyelination in males
only, Tmevd9 influences susceptibility to this disease in females
and Tmevd6 affects susceptibility in both sexes, but has an
opposite effect on males and females (102). Locus Rmp-4
(Resistance mousepox 4) modifies virus titer in spleen and
liver as well as survival after infection with ectromelia virus
(mousepox) (103). Two loci not named by authors NNI1 (not
named influenza 1) and NNI2 control survival after infection
with the mouse-adapted influenza H3N2/Hk/1/98. NNI1 and
NNI2 operate in females and males, respectively (104).
Susceptibility to HSV1 is in males controlled by Hlr (herpes
resistance locus) (105). Gene LRRK2 (leucine-rich repeat kinase-
2) is a 280 KDa, multi-domain protein that has dual catalytic and
kinase activity as well as number of protein-protein interaction
domains. Two major inflammatory pathways have been
biochemically linked to LRRK2 action: TLR pathway and
NFAT pathway (115). It is associated with Parkinson’s disease,
leprosy and Crohn’s disease that are disorders with an important
October 2021 | Volume 12 | Article 712688
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inflammatory component. Shutinoski and co-workers tested
hypothesis that Lrrk2 plays role also in infections with
paramount inflammatory responses such as reovirus and
Salmonella typhimurium (will be discussed in the next sub-
section). The increase of mortality caused by reovirus-induced
encephalitis in Lrrk2-knockout mice in comparison with wild
type animals was observed in female, but not in male mice (106).

Bacteria
Chlamydia pneumoniae causes a variety of respiratory diseases.
Susceptibility to this pathogen was controlled by two sex-
dependent QTLs: NNCH1 (not named Chlamydia 1) and
NNCH2. Effect of NNCH1 was observed in females, whereas
NNCH2 exerted stronger effect on males (107). Comparison of
replication of S. typhimurium in spleens of wild type and Lrrk2-
knockout mice shown increased replication of bacteria in spleen
of female knockouts. Knockin of Parkinson’s Disease (PD)-
Frontiers in Immunology | www.frontiersin.org 5
linked p.G2019S Lrrk2 mutation led to lower pathogen burden
in spleens. The effect was stronger in females (106).

Parasites
Sex-dependent QTLs operating in L. major infected mice are
involved in control of pathogen load in lymph nodes (108) and
infiltration of eosinophils into lymph nodes (109). Lmr4
(Leishmania major response) and Lmr27 control parasite load in
lymph nodes in males, Lmr14 influences both parasite load in and
eosinophil infiltration into lymph nodes in males and Lmr15
determines parasite load in lymph nodes in both sexes, but with
opposite direction of effect (108, 109). Wild type BALB/c mice
infected with L. mexicana develop non-healing, progressively
growing skin lesions. Monitoring the course of infection with
L. mexicana in BALB/c mice lacking expression of IL-4Ra
(interleukin 4 receptor, alpha) in CD4+T cells revealed that these
mice developed small lesions, which subsequently healed in females,
TABLE 1 | Autosomal genes and loci controlling sex-biased responses to infection in mouse.

Pathogen Locus/Gene Chromosome Cross/Strain Trait (phenotype) controlled Sex effect Reference

Viruses
Theiler’s murine
encephalomyelitis
virus

Tmevd6 1 BALB/c x DBA/2J virus-induced demyelination opposite effects on females and males (102)
Tmevd7 5 BALB/c x DBA/2J virus-induced demyelination males (102)
Tmevd8 15 BALB/c x DBA/2J virus-induced demyelination males (102)
Tmevd9 1 BALB/c x DBA/2J virus-induced demyelination females (102)

mousepox/
ectromelia

Rmp-4 1 C57BL/6 x D2 virus titer in spleen and liver,
survival

males (103)

mouse-adapted
influenzaH3N2/
HK/1/68

NNI1 2 C57BL/6J x A/J survival females (104)
NNI2 17 C57BL/6J x A/J survival males (104)

herpes simplex
virus 1

Hrl 6 BALB/c x 129S6 survival males (105)

reovirus - T3D Lrrk2- knockout 15 C57BL/6 mortality from encephalitis females - increased mortality in
knockouts

(106)

Bacteria
Chlamydia
pneumoniae

NNCH1 5 C57BL/6J x A/J chlamydial burden in lungs females (107)
NNCH2 17 C57BL/6J x A/J chlamydial burden in lungs stronger effects on males (107)

Salmonella
typhimurium

Lrrk2- knockout 15 C57BL/6 bacterial replication in spleen female knockouts higher bacteria
replication than WT; knockin of pG2019S
mutation lower bacteria replication than
WT, stronger effect on females

(106)

Parasites
Leishmania major Lmr4 6 BALB/c x CcS-9 parasite load in lymph nodes males (108)

Lmr14 2 CcS-9 x BALB/c eosinophil infiltration into lymph
nodes

males (109)

Lmr14 2 BALB/c x CcS-9 parasite load in lymph nodes males (108)
Lmr15 11 BALB/c x CcS-9 parasite load in lymph nodes opposite effects on females and males (108)
Lmr27 17 BALB/c x CcS-9 parasite load in lymph nodes males (108)

Leishmania
mexicana

Il4ra CD4+ T cell
specific
expression

7 BALB/c skin lesions non-healing phenotype in males (110)

Trypanosoma
brucei brucei

Tbbr1 3 BALB/c x CcS-11 survival females (111)
Tbbr2 12 BALB/c x CcS-11 survival stronger effect on females (111)

Fungi
Cryptococcus
neoformans

Cnes1 3 C57BL/6J x CBA/J lung fungal burden females (112)
Cnes2 17 C57BL/6J x CBA/J lung fungal burden females (112)
Cnes3 17 C57BL/6J x CBA/J lung fungal burden males (112)

Worms
Trichuris muris TM5 5 C57BL/6J x DBA/2 Serum IFNg males (113)
October 2021 | Volume 12 | Art
The Table summarizes position on chromosome, cross used to map certain locus or mouse genetic background, disease phenotype controlled and sex effect.
Cnes, Cryptococcus neoformans susceptibility; Hlr, herpes resistance locus; Il4ra, interleukin 4 receptor alpha; Lmr, Leishmania major response; Lrrk2, leucine-rich repeat kinase-2;
NNCH, not named Chlamydia; NNI, not named influenza; Rmp-4, Resistance mousepox 4; Tbbr, Trypanosoma brucei brucei response; TM, Trichuris muris; Tmevd, Theiler’s murine
encephalomyelitis virus-induced demyelination.
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but persisted in males (110). Tbbr1 (Trypanosoma brucei brucei
response 1) and Tbbr2 control survival after infection with T. b.
brucei. Effect of Tbbr1 is visible only in females, Tbbr2 has stronger
effect on females than on males (111).

Fungi
Cryptococcus neoformans is a fungal pathogen that causes
pneumonia, meningitis and disseminated disease in
Frontiers in Immunology | www.frontiersin.org 6
immunocompromised host (68, 112). Fungal burden in lungs after
infection with this pathogen was controlled by three sex-dependent
QTLs. Cnes1 (Cryptococcus neoformans susceptibility 1) and Cnes2
operate in females, whereas effect ofCnes3 is observed inmales (112).

Worms
TM5 (Trichuris muris 5) is associated with IFNg production in
serum of males infected with parasitic nematode T. muris (113).
FIGURE 1 | Sex-dependent loci and genes that control susceptibility to infections in mouse and their overlaps. Cnes, Cryptococcus neoformans susceptibility; Hlr,
herpes resistance locus; Il4ra, interleukin 4 receptor alpha; Lmr, Leishmania major response; Lrrk2, leucine-rich repeat kinase-2; NNCH, not named Chlamydia; NNI,
not named influenza; Rmp-4, Resistance mousepox 4; Tbbr, Trypanosoma brucei brucei response; TM, Trichuris muris; Tmevd, Theiler’s murine encephalomyelitis
virus-induced demyelination.
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Overlaps and Features of Sex-Dependent
Loci
Some sex-dependent loci co-localize (Figure 1). Locus Tmevd7 on
chromosome 5 (102) overlaps with locus controlling susceptibility
to Chlamydia (107). Cnes2 on proximal and central part of
chromosome 17 (112) co-localizes with loci modifying
susceptibility to Chlamydia (107) and influenza (104). Cnes3 on
distal part on chromosome 17 (112) overlaps with Lmr27 (108).
This suggests the presence either of clusters of functionally related
genes, or of genes that are involved in controlling the response to
several infections, similarly as Lrrk2 that controls response to
reovirus and bacteria S. typhimurium (106).

Loci Lmr15 (108) and Tmevd6 (102) exhibit different effect on
males and females (flip-flop model) (114) (Table 1). Both of them
are localized on rather long chromosomal segments, thus we cannot
exclude existence of two closely linked genes – one controlling
susceptibility of males, the other females. However, it cannot be
excluded that the opposite sex-dependent effects are controlled by
one gene. Similar situation was described in humans.
Polymorphism in rs2069885 (c.350 C>T) in IL9 (5q31.1) has an
opposite effect on the risk of severe respiratory syncytial virus
infection in boys and girls (116), as well as on Aspergillus
fumigatus-induced allergic lung inflammation estimated as IgE
level and IL9/IL9R mRNA ratio in lung expectorates in males and
females suffering by cystic fibrosis (117). The inflammation is
stimulated by IL-9 – IL-9R on mast cells – innate lymphoid cells
– Th9 pathway (117). Sex influence might be exerted by interaction
of IL-9 with IL-9R. IL9R is located in the pseudoautosomal regions 2
(PAR2) on Xq28 and Yq12 that behave as autosomes, recombine
during meiosis and PAR regions on X escape silencing (118, 119).
CONCLUSIONS AND PERSPECTIVE

Sex differences in response to infections are frequent in human
and form a considerable part of interpretation heterogeneity. The
Frontiers in Immunology | www.frontiersin.org 7
genetic studies in mice revealed 22 genes/QTLs influencing these
differences, suggesting a genetic heterogeneity of this
phenomenon. The mechanisms of effects of these sex-specific
mouse genes/QTLs are unknown, but may appear as a result of
sex hormone regulation of the polymorphic genes underlying
these QTLs or interaction between X- or Y-chromosome-linked
genes (96–99). Some of the differences between females and
males might be due to sex-specific genetic architecture,
characterized by profound gene-sex interactions (85, 117, 120,
121). This would mean that some genes controlling response to
infections might operate differently in the two sexes. The
understanding of these sex- dependent responses could
facilitate personalized medicine that would take into account
sexual dimorphism in susceptibility to infectious diseases,
outcome of vaccination and response to treatment.
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108. Kobets T, Čepičková M, Volkova V, Sohrabi Y, Havelková H, Svobodová M,
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