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Abstract

Hemophilia is an X-linked inherited bleeding disorder consisting of two classifications, 

hemophilia A and hemophilia B, depending on the underlying mutation. Although the disease is 

currently treatable with intravenous delivery of replacement recombinant clotting factor, this 

approach represents a significant cost both monetarily and in terms of quality of life. Gene therapy 

is an attractive alternative approach to the treatment of hemophilia that would ideally provide life-

long correction of clotting activity with a single injection. In this review, we will discuss the 

multitude of approaches that have been explored for the treatment of both hemophilia A and B, 

including both in vivo and ex vivo approaches with viral and nonviral delivery vectors.
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2. INTRODUCTION

Hemophilia is an X-linked inherited disorder resulting in a deficiency in the clotting 

functionality of blood. Depending on which clotting factor the patient is deficient in, the 

disease is classified as hemophilia A (deficiency in factor VIII, F.VIII) or hemophilia B 

(deficiency in factor IX, F.IX). Hemophilia A has a higher prevalence, occurring in about 

1:5,000 male births, while hemophilia B occurs in about 1:25,000. The loss of function of 

either F.VIII or F.IX results in a defect in the intrinsic clotting cascade (Figure 1). In the 

intrinsic pathway, exposure of circulating F.XII to a damaged surface causes its activation. 

Active F.XII (F.XIIa) activates F.XI, which then in conjunction with extrinsically activated 

tissue factor-F.VIIa complex (extrinsic factor Xase) proceeds to cleave the zymogens F.IX 

and F.X into their active forms, F.IXa and F.Xa. F.IXa is a serine protease whose function 

depends on the post-translational γ-carboxylation of F.IX by vitamin K. Meanwhile, 

activation by the extrinsic pathway also results in cleavage of the glycoprotein F.VIII into 

activated F.VIIIa. F.VIIIa (cofactor) and F.IXa (enzyme) come together to form the intrinsic 

factor Xase. This complex cleaves F.X into F.Xa at a rate much higher than the extrinsic 

factor Xase, such that in the end about 90 percent of F.Xa is produced by the intrinsic 

complex. The activity of the intrinsic factor Xase is dependent on binding to phospholipid 
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membranes on endothelial cells or platelets as well as free Ca2+. Activated F.Xa facilitates 

the conversion of prothrombin into thrombin, which then catalyzes the formation of the 

fibrin clot. Thus, a genetic defect in F.VIII or F.IX prevents the assembly of the intrinsic 

factor Xase, significantly impairing the ability to activate F.X and induce formation of the 

fibrin clot.

While the determination of which factor is missing is important for treatment, the clinical 

symptoms of hemophilia A and B are essentially comparable. The severity of X-linked 

hemophilia is dependent on the degree of residual clotting activity. Mild cases (5-40% 

activity) are typically asymptomatic outside of major trauma or surgery, whereas moderate 

cases (1-5% activity) are somewhat more vulnerable, and may evidence prolonged bleeding 

even from minor injuries. However, severe hemophilia (<1% activity) brings additional 

complications. In addition to the difficulty responding to injury, these patients frequently 

develop spontaneous bleeds in capillary beds, particularly within joints. Over time, this 

causes significant chronic deterioration of the joints if not properly managed. Currently, 

hemophilia is treated by intravenous delivery of replacement clotting factor, either plasma-

derived or recombinant. This therapy can be performed on demand, though it has been 

suggested that prophylactic management (typically 3 injections per week) can reduce joint 

damage over time (1). Longer-lasting clotting factors that would reduce the required 

frequency of injections are currently in development (2).

In addition to the inconvenience of these frequent injections, protein replacement therapy 

also carries the risk of deleterious immune responses against the therapeutic protein. As 

patients are not naturally producing clotting factor, the immune system can recognize the 

exogenous protein as a foreign antigen and form antibodies against the protein that prevent 

its function; these neutralizing antibodies are also known as inhibitors. The frequency of 

inhibitor formation varies by disease: about 25-30% of hemophilia A, but only about 5% of 

hemophilia B patients develop inhibitors. The risk for inhibitor formation varies depending 

on a number of factors, including the severity of the underlying mutation; both preclinical 

and clinical studies indicate that more residual protein expression reduces inhibitor 

formation in both hemophilia A and B (3-7). Although the frequency of inhibitors in 

hemophilia B is reduced, they are typically more severe, with the potential for anaphylaxis 

as well as nephrotic syndrome due to circulating antigen-antibody complexes (5). Currently, 

the only treatments for inhibitor formation are immune tolerance induction (ITI) protocols. 

These procedures are both costly and time-consuming, and during the procedure bypass 

reagents must be employed which are both less effective and more risky. Additionally, the 

treatment is typically effective in only around two-thirds of patients (8, 9).

Gene therapy represents an appealing alternative to protein replacement therapy. Instead of 

repeated injections of protein, it would ideally involve a single injection that would induce 

long-term production of the defective clotting factor. Expression at only 5% of endogenous 

levels can improve the disease to a mild phenotype and essentially eliminate the risk of 

spontaneous bleeding events as well as the need for prophylactic protein therapy. Although a 

variety of mechanisms to introduce the transgene have been investigated, some of the most 

popular are recombinant viral vectors. In particular, adeno-associated virus (AAV), a small 

and non-pathogenic parvovirus with an episomal genome, has been used extensively, 
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including in multiple clinical trials for the treatment of hemophilia B (10). Additionally, 

lentiviral vectors (LV) based on HIV-1 which integrate into the host's genome have also 

been employed in a multitude of preclinical studies both for in vivo and ex vivo gene transfer 

(11). Finally, in addition to these gutted viral vectors, research is also being performed on 

non-viral gene transfer (12). Some examples of sustained correction via liver-directed AAV-

mediated gene transfer are demonstrated in figure 2. These include correction of whole 

blood clotting time in canine studies and activated partial thromboplastin time (aPTT) in 

mice for hemophilia B, as well as aPTT correction in a murine model of hemophilia A 

(Figure 2A, C).

However, beyond merely introducing the transgene, it is also important to maintain 

production of the clotting factor by avoiding the deleterious impact of the immune system 

on gene transfer, either against the delivery vector or the transgene itself. For instance, 

preclinical studies with LV vectors have revealed that innate immune responses involving 

type I interferon (IFN) production can lead to impaired transgene expression and CD8+ T 

cell responses against the transgene (13, 14). Clinical trials of AAV-mediated gene transfer 

have also revealed the detrimental impact of pre-existing immunity to the AAV capsid, both 

in regards to neutralizing antibodies (NAB) preventing transduction as well as a memory 

CD8+ T cell response to the viral capsid that can eliminate transduced hepatocytes (15). 

Finally, there is always the risk of an immune response against the clotting factor itself 

(particularly in the case of hemophilia A), which would inhibit the gene therapy itself as 

well as obstructing further efforts to treat with recombinant protein (16). Beyond merely 

avoiding the immune response, though, it is preferable to actually induce immune tolerance 

to the transgenic protein, ensuring that endogenous production is not eliminated as well as 

allowing for the administration of supplemental clotting factor (e.g. during trauma or 

surgery) without provoking an inhibitor response (16, 17). Immune tolerance in preclinical 

studies is typically demonstrated by the intravenous administration of recombinant F.VIII or 

F.IX. This normally provokes an inhibitor response in hemophilic mice for both diseases; 

however, following gene transfer, mice that have been tolerized maintain clotting correction 

and fail to form inhibitory antibodies, as opposed to naïve control animals (Figure 2B, D). A 

variety of animal models of hemophilia are available for preclinical studies, and clinical 

trials for both diseases have been attempted as well (Figure 3). In this review, we will 

provide a comprehensive overview of viral and non-viral gene therapy approaches for both 

hemophilia B and hemophilia A, with an additional focus on the ability of these approaches 

to avoid destructive immunity or induce transgene-specific tolerance.

3. GENE THERAPIES FOR HEMOPHLIA B

Of the two diseases, gene therapy for hemophilia B has been more successful, having 

advanced to multiple recent clinical trials. Primarily, this is due to the simplicity of F.IX 

compared to F.VIII. The F9 coding region is only about 1.4 kb, and it encodes a single 

domain protein of 461 amino acids. This small size allows it to be easily packaged in a 

recombinant adeno-associated virus, a gene therapy vector that has provided promising 

results for a variety of genetic disorders (18). Additionally, the posttranslational 

modification of F.IX can be effectively carried out in skeletal muscle, allowing early studies 
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to be carried out in a target tissue less risky than a critical organ such as the liver, the natural 

site of F.IX synthesis (19).

3.1. Adeno-associated virus

Adeno-associated virus (AAV) is a parvovirus with a single-stranded DNA genome of about 

4.7 kb. It is a dependovirus that is unable to replicate in the absence of a helper virus such as 

adenovirus; thus, although it is a common natural infection, AAV is not associated with any 

known pathogenic infections in humans. Recombinant AAVs are modified by the removal 

of any DNA encoding for viral protein. Only the inverted terminal repeats (ITRs) required 

for packaging are retained from the viral genome, giving rAAV vectors a packaging 

capacity of about 5 kb for the promoter and gene of interest. Several factors make AAV an 

attractive vector for in vivo gene therapy, including its ability to infect non-dividing cells, 

the maintenance of vector genomes as episomal concatemers (minimizing the risk of 

insertional mutagenesis), its low immunogenicity, and the wide variety of capsid serotypes 

that allow gene delivery to numerous target tissues (20-24).

Early studies for gene therapy for hemophilia B with AAV focused on delivery to skeletal 

muscle, both in animal models (mice and dogs) and humans (25-30). Although more recent 

clinical trials for gene transfer to skeletal muscle have used AAV serotype 1 (AAV1) 

vectors due to their superior transduction capacity in myocytes, these early studies used 

AAV2 vectors (29-34). It was found that expression of functional human factor IX (hF.IX) 

was possible in skeletal muscle, though potential complications from an immune response 

against hF.IX could occur in some situations, particularly in cases with more severe 

mutations (3, 27, 35). The local F.IX expression and anti-F.IX immune response were found 

to be critically important during muscle-directed gene transfer, and this consequence could 

be avoided by carefully titering the vector dose per site or with transient immunosuppression 

(35-39). In a clinical trial, intramuscular delivery of hF.IX to patients with missense 

mutations met safety requirements and demonstrated that in vivo gene therapy with AAV 

could be a viable treatment strategy; however, although the persistence of transduced fibers 

was observed for ten years, expression never reached therapeutic levels at any of the doses 

tested (30, 40). Although some preclinical studies are still studying intramuscular gene 

therapy, most research for hemophilia B—including clinical trials—has shifted to hepatic 

gene transfer (41, 42).

The liver represents a superior target for F.IX expression for several reasons. In healthy 

individuals, F.IX is naturally produced in the liver. Hepatocytes have more efficient 

secretion machinery than myocytes, allowing them to produce higher transgene levels. Most 

interesting, though, is the fact that liver-directed gene transfer has been shown to induce 

transgene-specific tolerance that prevents subsequent antibody and CD8+ T cell responses 

(43, 44). Further studies have shown that this tolerance is mediated by antigen-specific 

regulatory T cells (Treg) (45-47). Tregs are a subset of CD4+ helper T cells that are typically 

defined as CD4+ CD25+ FoxP3+ lymphocytes, and are regarded as one of the most 

important regulators of peripheral tolerance. Through a variety of mechanisms, including 

cytokine release and contact-dependent interactions, they can prevent immune responses in 

an antigen-specific manner, though they have also been reported to have polyclonal 
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suppressive effects (reviewed in (48)). Though the mechanism of Treg induction is not 

entirely clear, it can occur for both secreted and cytoplasmic transgenes expressed in 

hepatocytes, and it depends on both IL-10 and TGF-β (49, 50). In addition to suppression of 

de novo immune responses against factor IX, hepatic gene transfer can reverse an active 

high-titer inhibitor response (4). This mechanism depends on induction of Tregs, and the 

continued presence of these cells is required to maintain tolerance. The high expression of 

F.IX in mice following hepatic gene transfer (~20-40% of normal) may also be responsible 

for this rapid clearance of F.IX-specific antibodies due to suppression of memory B cells (4, 

51). Though this phenomenon is understandably difficult to verify in human studies, it is 

encouraging that, to date, none of the patients treated with a liver-directed AAV vector have 

formed a F.IX-specific immune response (52, 53).

However, clinical trials have revealed an additional complication that was not predicted by 

preclinical studies: the impact of capsid-specific memory CD8+ T cells (54, 55). The first 

clinical trial of hepatic gene transfer with AAV vectors for hemophilia B using an AAV2 

vector delivered by injection through the hepatic artery revealed a couple of important 

findings (52). Contrary to previous expectations, it was found that even low-titer anti-capsid 

neutralizing antibodies could prevent successful transduction. Additionally, in one patient at 

the highest dose cohort, an initial rise in circulating hF.IX was detected; however, by 4 

weeks post-injection, this expression began to decline with a concomitant rise in liver 

enzymes indicative of hepatic damage (albeit at asymptomatic levels). By 8 weeks, 

circulating hF.IX was no longer detectable. Further studies revealed that this decline 

occurred due to a capsid-specific memory CD8+ T cell response (52, 56).

Several advances in AAV vector design were made that were incorporated into the second 

hepatic gene therapy clinical trial. Rather than using AAV2, this study used an AAV8 

vector, a serotype derived from rhesus macaques that has greater liver specificity than 

AAV2 (31). This allows for elevated transgene expression from an equivalent vector dose, 

and expression was comparable when the vector was delivered via tail vein or portal vein 

injection; these greater expression levels also enhanced the F.IX-specific tolerance induced 

by hepatic gene transfer (57). The prevalence of neutralizing antibodies against AAV8 is 

lower than AAV2 among the human population, allowing more patients to potentially be 

treated with AAV8 vectors (58, 59). Additionally, a self-complementary AAV (scAAV) 

vector rather than a single-stranded AAV (ssAAV) was utilized. This modification, 

performed by mutating one of the viral ITRs, forces the vector to package double-stranded 

DNA rather than the single-stranded genome found in the wild-type virus (60). These 

vectors bypass the need for second strand synthesis, a rate-limiting step during AAV 

transduction, allowing them to produce higher transgene levels (61, 62). Expression of 

hF.IX in mice and non-human primates was elevated with scAAV vectors (63-65).

Somewhat worryingly, recent studies have shown that scAAV vectors induce stronger innate 

immune responses through toll-like receptor 9 (TLR9) than ssAAV that can enhance 

transgene-specific immune responses during transfer to skeletal muscle (66-68) (reviewed in 

(69)). Similarly, the removal of CpG motifs sensed by TLR9 from the vector genome can 

allow expression in skeletal muscle by preventing the formation of a CD8+ T cell response 

against LacZ (70). In hemophilic mice with a null mutation, we found that scAAV enhances 
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CD8+ T cell but not antibody responses to hF.IX following intramuscular gene transfer (71). 

However, in transgenic hemophilic mice that are partially tolerant to hF.IX due to 

expression of truncated, nonfunctional hF.IX, no immune response was observed regardless 

of the vector genome, suggesting that the enhanced immunogenicity of scAAV vectors may 

not break tolerance when administration with ssAAV is tolerated. This was also true during 

hepatic gene transfer, where the enhanced innate immune response to scAAV did not result 

in transgene-specific immune responses (67). Unlike adenoviral vectors, the innate immune 

response from scAAV was not sufficient to induce type I interferon-dependent transgene 

silencing (72). However, the innate immune response may not always be deleterious, as 

activation of the alternative NF-κB pathway has been shown to enhance transgene 

expression from AAV vectors (73).

Thus, the second clinical trial of hepatic gene therapy for hemophilia B used a scAAV8 

vector delivered via peripheral vein injection (53). As previously observed, a rise in liver 

enzymes was detected only in subjects treated at the highest dose, though at around 8 weeks 

rather than 4 weeks post-injection. Administration of prednisolone at this time was able to 

suppress the CD8+ T cell response against the AAV capsid, allowing F.IX activity to persist 

at around 2% of normal. In a subsequent subject, more careful monitoring around this time 

point allowed the prednisolone treatment to preserve F.IX expression at ~5% normal. These 

data represent the first successful clinical gene therapy for hemophilia B. Although this 

treatment appears to have been successful, there are still problems that limit its applicability.

First, many hemophilia patients, particularly those infected with hepatitis C, are not eligible 

for general steroidal immune suppression. To this end, several alternatives are being studied 

in animal models. Targeting of hepatocytes by capsid-specific cytotoxic T lymphocytes 

(CTLs) requires the degradation of input viral capsid, as the recombinant vectors do not 

encode for any viral proteins. This process occurs primarily through proteasomal 

degradation, which is provoked by phosphorylation and subsequent ubiquitination of the 

AAV capsid (74, 75). The role of the proteasome is supported by a recent study 

demonstrating that presentation of AAV capsid epitopes in MHC class I (allowing the cell to 

be targeted by capsid-specific CTLs) requires endosomal escape into the cytoplasm but is 

independent of nuclear uncoating, suggesting that this degradation occurs in the cytoplasm 

(76). To avoid this process, mutant AAV2 capsids have been developed in which tyrosine 

residues have been mutated to phenylalanine (77). Specifically, a combination of three 

mutations (Y444+500+730F) allows for greatly enhanced transgene expression both in vitro 

and in vivo (78). In addition to enhancing transduction, these vectors reduce the ability for 

capsid-specific CD8+ T cells to target transduced hepatocytes (79). Adoptive transfer of ex 

vivo expanded capsid-specific CTLs to immune-deficient mice resulted in more residual 

hF.IX expression and less elevation in liver enzymes in mice transduced with AAV2(Y-F) 

vectors than wild-type AAV2. This effect could be further enhanced with a proteasome 

inhibitor. Interestingly, AAV8 vectors showed prolonged vulnerability to CTL targeting, and 

additional studies have suggested that, depending on the vector genome, CD8+ T cells can 

detect AAV8 for as long as 6 months in mice (79, 80). This difference in the kinetics of 

antigen presentation between AAV2 and AAV8 may explain the delay in CTL response 

observed in the second clinical trial for hepatic gene transfer relative to the first.
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The other limitation of the current approach is its inability to treat patients with pre-existing 

neutralizing antibodies (NAB) to AAV8 (reviewed in (81)). Following the first hepatic 

clinical trial, it was discovered that NAB titers as low as 1:5 could severely impact transgene 

expression in vivo (82-84). Additionally, even if patients initially lack NAB, after the vector 

injection they will develop an anti-capsid antibody response that will prevent 

readministration of the vector. Several approaches have been investigated to negate the 

impact of NAB. Attempts have been made to modify the AAV capsid itself, both by rational 

design and directed evolution, to negate its susceptibility to NAB binding (85, 86). 

Plasmapheresis has shown some success at removing NAB from sera, particularly with 

repeated cycles, though the ability to reach titers sufficiently low to allow transduction may 

be restricted to individuals with initially low titers (<1:100) (87, 88). Isolation of the liver 

using balloon catheters and delivering the vector via portal vein injection may also increase 

the success of gene transfer in the presence of NAB (89). Pharmacological approaches have 

primarily focused on the use of rituximab, a monoclonal antibody against CD20 that is 

currently approved for B cell depletion in several autoimmune diseases and B cell cancers. 

Rituximab alone was able to partially reduce AAV NAB titers in patients with rheumatoid 

arthritis, though most subjects did not drop below a titer of 1:5 (90). These residual NAB are 

likely due to an incomplete depletion of B cells by rituximab, as well as the fact that plasma 

cells do not express CD20, rendering them immune to the cytotoxic activity of rituximab 

(91). In nonhuman primates, a combination of rituximab and cyclosporine A was more 

effective at eliminating NAB (92). Additionally, a non-depleting anti-CD4 antibody 

prevented the development of NAB following AAV gene transfer, though the effects on pre-

existing anti-capsid antibodies remain to be seen (93). Finally, the second hepatic clinical 

trial revealed an interesting phenomenon: although expression levels at the highest dose in 

both trials were similar, circulating hF.IX expression was observed at low doses in the 

second trial but not the first. Interestingly, the vector formulation in the second trial 

contained empty AAV capsids lacking DNA, a byproduct of rAAV production that was 

removed during the previous trial. Thus, Mingozzi et al. have found that the addition of 

empty capsids can serve as a decoy for pre-existing NAB, with higher titers requiring a 

greater excess of empties relative to the DNA-containing capsids (94). These empty capsids 

have been modified to remove the binding site that allows entry into hepatocytes, though it 

remains to be seen whether this will prevent these decoy capsids from enhancing the CD8+ 

T cell response in human studies (95). As these various approaches each seem to be partially 

effective, it is possible that some combination of them (or a yet undiscovered therapy) will 

allow us to bypass NAB and make AAV gene therapies available for patients with pre-

existing immunity.

Great strides have already been made in clinical trials for AAV-mediated gene therapy for 

hemophilia B. Earlier intramuscular studies provided a proof of concept and safety 

information, while liver-directed gene delivery has seen greater success, though it can still 

be limited by both NAB and anti-capsid CTL responses (Figure 4). However, there are still 

problems to solve to improve this strategy, as indicated by the fact that, in addition to the 

two completed trials, there are currently three active clinical trials using AAV vectors to 

treat hemophilia B (Table 1).
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3.2. Retrovirus and Lentivirus

Although the most clinical success to date has been seen with AAV, numerous studies have 

also been performed using integrating viral vectors to treat hemophilia B. Unlike AAV, 

where the maximum duration of expression and stability of episomal concatemers is not yet 

known, expression from an integrating vector would persist as long as cells from the 

transfected lineage remain. However, integration also comes with the risk of insertional 

mutagenesis. Initially, studies focused on the use of γ-retroviral vectors based on Moloney 

murine leukemia virus (MMLV); however, the inability of these viruses to transduce 

nondividing cells as well as their propensity for oncogenesis, as seen in a clinical trial for 

SCID-X1, has caused these vectors to be looked on less favorably (96, 97). Rather, research 

has shifted focus towards lentiviral vectors (LV). LV is based on HIV-1 (reviewed in (98)). 

Like γ-retroviral vectors, LV is an integrating ssRNA vector with a packaging capacity of 

~10 kb. Unlike the former, though, LV can transduce non-dividing cells (99). Pseudotyping 

the virus with various envelope proteins allows for significant alterations to tissue tropism 

and biodistribution. LV is most commonly pseudotyped with the VSV-G protein from 

vesicular stomatitis virus, though proteins from other viruses—including filovirus, Ebola, 

LCMV, and rabies virus—have also been employed (100-102). VSV-G pseudotyping allows 

for transduction of a wide variety of cell types both in vitro (e.g. CD34+ stem cells) and in 

vivo (e.g. liver, brain, and muscle). The integration pattern of LV is somewhat random, 

though biased towards transcriptional units. Compared to γ-retroviral vectors, which 

preferentially integrate into transcription start sites, LV prefers to integrate further into the 

active transcription unit (103, 104). Additionally, some LV incorporate a mutation that 

eliminates the transcriptional activity of the long terminal repeats; these LV are termed self-

inactivating (SIN) (105). Although this modification can also reduce the oncogenicity of γ-

retroviral vectors, studies in a cancer-prone mouse model have suggested that integration 

levels as much as 10-fold higher may be required for LV to reach similar oncogenic 

potential to γ-retroviral vectors (106-108). Overall, although it is clear that there are risks 

associated with integrating vectors, the exact degree of risk is currently unclear (109).

One significant advantage of an integrating vector is that it can be applied to cells ex vivo, 

and the transduced cells can then be reintroduced, bypassing any interference from an 

immune response against the virus (Figure 5). While this strategy is more often applied to 

gene therapy for hemophilia A, some research has also been done with ex vivo gene transfer 

for hemophilia B. The most common target for this type of therapy is hematopoietic stem 

cells (HSCs), due to the ease of both harvesting and reintroducing these cells. Following up 

on earlier studies performed with F.VIII, it was shown that gene transfer to bulk HSCs using 

LV resulted in sustained F.IX expression that tolerized recipient mice to hF.IX and could be 

transferred to secondary and tertiary recipients (110, 111). A similar outcome was achieved 

by targeting expression to cells of the erythroid lineage (112). However, in both studies, 

mice were lethally irradiated in order to allow engraftment of the transfected HSCs (111, 

112). To enhance the clinical relevance of this approach, a dual expression LV expressing 

both hF.IX and a drug resistance gene (methylguanine methyltransferase mutant P140K, 

MGMT) was used to achieve correction following engraftment with a moderate busulfan 

conditioning that was nonmyeloablative (113, 114). In addition to erythroblasts, F.IX 

expression has also been investigated in platelets following the success seen with that 
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strategy for F.VIII (115). A transgenic mouse expressing F.IX in platelets demonstrated 

correction of the bleeding phenotype (116). However, unlike with F.VIII, the activity of 

F.IX expressed in platelets was still adversely affected by inhibitory antibodies. This effect 

can also be achieved with gene transfer using LV, and this strategy induces tolerance to 

hF.IX in treated mice as well (117). More recently, studies have begun to explore expression 

in alternative types of stem cells. Treatment of murine adipose tissue-derived stem/stromal 

cells (mADSCs) with LV can induce sustained hF.IX expression in vitro, though it remains 

to be seen whether these cells can engraft into a recipient and provide sustained correction 

(118). Similarly, menenchymal stem cells (MSCs) derived from human cord blood can be 

transduced with retroviral or LV vectors to produce F.IX in vitro and in vivo, though efforts 

are still underway to optimize the matrix for cell growth and F.IX production (119-122).

In addition to ex vivo gene transfer, LV can also be employed for in vivo gene therapy. 

Although some studies have attempted to deliver LV prenatally to induce F.IX expression, 

these approaches have mostly focused on inducing the expression of F.IX in hepatocytes 

(123-125). Early studies demonstrated that it is possible to induce sustained hF.IX 

expression in hepatocytes using LV, and that proliferation is not required for transduction 

(126-129). F.IX expression has also been induced in vivo under the control of tetracycline 

using LV (130). However, as with AAV, in vivo gene transfer revealed barriers to 

transduction set up by the immune system. Unlike with AAV vectors, hepatic gene therapy 

with LV did not initially induce tolerance to the transgene. It was discovered that, due to 

their broad tropism, VSV-G-pseudotyped vectors could transduce antigen-presenting cells 

(APCs) (131). Since then, a number of steps have been taken to enhance the specificity of 

expression from LV. The use of a liver-specific promoter allowed for sustained expression 

of F.IX, but still did not completely eliminate off-target transduction (132). Nonspecific 

expression in APCs could be further reduced by adding target sequences for a 

hematopoietic-specific microRNA (miR-142) to the transcript. Mice treated with miR-142-

regulated LV showed sustained expression of hF.IX and remained nonresponsive following 

immunogenic challenge, suggesting that they had been tolerized to hF.IX via a mechanism 

mediated by regulatory T cells (133, 134). Similar to what was found with AAV vectors, 

hepatic expression of F.IX via LV was also able to reverse an active inhibitor response, 

suggesting that hepatic gene transfer can be both therapeutic and tolerogenic even in the 

presence of an active immune response (135).

As with AAV, eliminating barriers to transduction posed by the adaptive immune system 

revealed deleterious effects of innate immunity on LV gene transfer. In vivo administration 

of LV triggers type I interferon (IFN) responses that restrict gene transfer and promote 

vector clearance (13). Consistent with previous in vitro findings, this mechanism was shown 

to be partially dependent on TLR7, which senses the ssRNA genome of LV (14, 136, 137). 

However, TLR-independent innate immune responses were detected as well (14). Through 

the use of a reverse-transcriptase inhibitor, it was suggested that these responses were due to 

the cytoplasmic sensing of viral DNA. Recently, cyclic GMP-AMP synthetase (cGAS) has 

been implicated as a sensor of cytoplasmic DNA with crucial roles both in vitro and in vivo 

(138-142). Interestingly, cGAS has been reported to induce type I IFNs in response to HIV 
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and other retroviruses, suggesting that it may be responsible for this TLR-independent innate 

immune response to LV (143).

Aside from concerns of immunogenicity, the most important safety concern for LV remains 

the risk of insertional mutagenesis. Although the degree of risk remains a matter of debate, 

the potential for tumorigenesis following LV gene therapy has not been eliminated (144). To 

this end, integrase-defective lentiviral vectors (IDLV) have been developed; expression 

occurs from these viruses without integration at a rate above random (145-148). The viral 

genome is stable in episomal form, persisting in nondividing cells but not actively dividing 

cells (149-151). These findings were confirmed by in vivo studies with F.IX. Although the 

transduction efficiency of IDLV was lower than integrating LV, hepatic expression of F.IX 

using IDLV is able to induce antigen-specific tolerance and reverse an active inhibitor 

response (135, 152). However, expression subsided precipitously following partial 

hepatectomy, indicating a lack of integration. Additionally, in normal mice, F.IX levels 

declined significantly by 1 year post-injection, suggesting that transgene expression would 

not be persistent (152). Thus, while F.IX expression can be induced by IDLV, it seems 

likely that further development of these vectors to achieve persistent expression will be 

required for them to be a potential therapy for hemophilia B.

3.3. Integrases and non-viral approaches

In addition to the viral gene therapies we have discussed previously, nonviral gene therapy 

has also been investigated for hemophilia B. At its simplest, this involves the delivery of 

naked plasmid DNA to target cells. Although modern viral vectors do not produce any viral 

proteins in target cells, the delivery of naked DNA would also eliminate the immunogenicity 

of the input viral proteins (such as the CD8+ T cell response to the AAV capsid). However, 

the problems with this approach are twofold. Firstly, transgene expression from nonviral 

delivery is typically lower than seen with viral vectors, and without selective pressure or 

incorporation of the exogenous DNA, expression is short-lived (153). Secondly, it can be 

challenging to get the DNA into the target cells of interest. In vitro, membrane-disrupting 

procedures such as electroporation and liposome transfection can be employed. For in vivo 

targeting, although a number of targeting approaches are currently under development, 

hepatic gene transfer is most commonly achieved by hydrodynamic injection of a high 

volume of DNA solution intravenously (154-157). Efforts are underway to adapt this 

procedure to larger animal models and eventually humans (158-163).

To bypass the transient nature of plasmid DNA approaches, investigators have recognized 

the emerging potential of transposons to generate long-lived expression (164). Transposons 

are naturally occurring DNA elements capable of moving from one chromosomal location to 

another. They do so by encoding a transposase, a protein which is able to excise the 

transposon from the donor locus and insert it into a target location. Transposases can act on 

any DNA sequence flanked by the specific terminal repeat sequences, allowing for 

integration when DNA encoding for the transposase is added along with the transgene 

flanked by terminal repeat sequences. Research for gene therapy applications have primarily 

focused on two transposons: piggyBac (derived from the cabbage looper moth Trichoplusia 

ni) and Sleeping Beauty (SB; a Tc1-like transposon from fish), as well as its hyperactive 
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mutant, termed SB100X (165-170). The relative activity of these two transposons remains 

controversial, though it is likely that the rate of integration depends on the cell type being 

transduced (171, 172). However, it is known that these transposons have distinct integration 

patterns. SB appears to integrate randomly, whereas piggyBac is biased towards 

transcriptional start sites, similar to the integration pattern of viral vectors (173-175). By 

incorporating SB into IDLV, it is possible to replicate this random integration pattern with a 

viral vector (176). Like LV, the untranslated regions of SB possess transcriptional activity, 

and incorporation of insulator sequences into this region can reduce the risk of 

transcriptional activation of host genes proximal to the insertion site (177).

Gene therapy with transposons can be performed directly in vivo, or applied ex vivo to cells 

which are then reintroduced into the host. However, likely due to the greater success seen by 

in vivo approaches in gene therapy for hemophilia B, transposon research has focused on 

that approach. Using hydrodynamic injection, delivery of a SB-containing plasmid along 

with a plasmid containing F.IX transgene resulted in robust long-term hF.IX expression in 

mice (178). Similarly, hydrodynamic gene transfer using the ΦC31 integrase (derived from a 

bacteriophage) induced persistent F.IX expression in hemophilic mice (179-181). However, 

as previously mentioned, this procedure is currently not applicable to larger animal models. 

Ironically, in order to achieve targeted delivery of transposon/integrase systems, some 

investigators have returned to viral vectors. For instance, engineered adenoviral vectors 

incorporating SB transposons have been used to achieve sustained F.IX expression in mice 

and in hemophilic dogs (182-184).

Although these approaches have shown some success in pre-clinical models, even the 

random integration profile of SB transposons is not ideal, as it still carries the potential for 

oncogenesis. Ideally, targeted integration into ‘safe harbor’ sites in the genome that are not 

oncogenic would be employed to eliminate this risk. PiggyBac transposons have been shown 

to tolerate N-terminal fusion of DNA-binding domains that should constrain its activity to 

that specific region of the chromosome, whereas a molecular bridge can be employed with 

SB to fuse it to a DNA-targeting protein (171, 185). Alternatively, targeted gene delivery 

has been achieved using artificial DNA-recognizing proteins (reviewed in (186)). Zinc-

finger nucleases (ZFNs) based on naturally occurring DNA-binding motifs can be 

engineered to recognize specific DNA sequences by linking together domains that bind 

specific 3 base pair sequences, allowing for a sequence of 9-18 bp to be identified that 

should be unique within the human genome (187-189). Similarly, transcription activator-like 

effector nucleases (TALENs), composed of 33-35 amino acid repeat domains, are able to 

recognize single base pairs to construct a DNA recognition sequence (190, 191). Finally, the 

recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)/

CRISPR-associated (Cas) systems, which are normally used by bacteria as an adaptive 

immune system to specifically target phage DNA sequences, use RNA base pairing to DNA 

to target their cleavage activity (192-197). These targeted DNA integration strategies can 

approach gene correction in two ways. In addition to the traditional approach of introducing 

an intact transgene to a safe harbor locus, it is also possible to directly target to mutated 

gene, replacing it with the corrected sequence (198-200). This second approach may be 

superior in that it allows the corrected gene to utilize all of the natural regulatory elements of 
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the gene, such as upstream enhancers that likely would not act on the transgene otherwise. 

However, it also requires specific design and validation of the targeting nuclease for each 

disease, whereas insertion into a safe harbor locus could employ the same nuclease while 

only changing the gene within the delivery vector.

Delivery of these DNA-targeting nucleases remains an issue, as with transposons. Thus, in 

the treatment of hemophilia B, AAV vectors have been used to deliver a ZFN in conjunction 

with the hF.IX transgene (201). This genome editing approach cleaved the endogenous F.IX 

gene after exon 1 (the excised portion encompasses 95% of mutations) and replaced the 

defective gene with the corrected sequence. Due to the limited packaging capacity of AAV, 

a dual-vector approach had to be employed in which two AAV vectors were injected 

simultaneously, one containing the transgene while the other encoded for the ZFN. Although 

this approach should lead to sustained expression of the ZFN, no adverse consequences (off-

target mutations, excision of the transgene, etc.) were observed. This study was initially 

performed in neonatal mice. Due to their actively growing liver, neonates were anticipated 

to be capable of homology-directed repair in hepatocytes rather than favoring non-

homologous end joining as in quiescent cells (202, 203). However, further investigation 

determined that this genome editing approach is also effective in adult mice (204).

Finally, a novel approach for nonviral gene therapy involves the oral delivery of plasmid 

DNA coding for F9 encased in chitosan nanoparticles (205). In a mouse model of 

hemophilia B, this approach could induce circulating F.IX and correction of the coagulation 

defect, particularly when using hyperactive F.IX mutants (206). F.IX expression was 

restricted to the small intestine. However, despite the tolerogenicity of oral protein delivery, 

this oral DNA delivery approach was not able to prevent inhibitor formation following 

protein challenge nor reverse pre-existing inhibitors (206-208).

3.4. Optimization of factor IX

A more recent development in gene therapy for hemophilia B involves alterations to the F9 

transgene itself rather than the delivery vector, a strategy which is applicable regardless of 

the delivery mechanism chosen. There are a couple potential strategies to achieve this. First, 

and already in use in the second hepatic clinical trial, is codon optimization (53, 64). This 

technique is based on the fact that, despite multiple trinucleotide sequences encoding for a 

single amino acid, certain codons are preferred over others depending on the host organism 

(mostly due to tRNA frequencies) (209). By making silent mutations within the transgene, it 

is thus possible to increase translation efficiency by optimizing codon usage for the target 

cell; this strategy also allows for other changes, such as the removal of negative regulatory 

cis-acting features, to enhance expression (210). Codon optimization of F.IX was reported to 

increase expression 3-4-fold compared with the unaltered sequence (63). More specific to 

F.IX, though, is the discovery of mutants with increased clotting activity. Alanine 

substitution mutation resulted in the artificial generation of F.IX-triple, which has ~10-fold 

greater specific activity than wild-type F.IX (211, 212). Additionally, a naturally occurring 

F.IX mutation (R338L), termed F.IX Padua, was discovered that has 5-10-fold higher 

activity (42, 213-215). Although these hyperactive F.IX variants can cause thrombosis at 

physiological expression levels, the fact that F.IX circulates in plasma in an inactive form 
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makes them apparently safe at the expression levels achieved by gene therapy (~5-10% of 

normal). Interestingly, both variants possessed a mutation at amino acid 338: alanine in 

F.IX-triple and leucine in F.IX Padua. Adding the leucine mutation to F.IX-triple resulted in 

an even better clotting factor, with activity ~15-fold greater than normal F.IX (216). A 

clinical trial is currently underway using an AAV8 vector containing F.IX Padua 

(NCT01687608).

4. GENE THERAPIES FOR HEMOPHLIA A

In contrast to hemophilia B, gene therapy for hemophilia A has seen significantly less recent 

progress into the clinic, despite it being the more common of the two diseases. Although the 

vector platforms and advances within them that we have previously discussed for 

hemophilia B should also be applicable for hemophilia A, there are some additional factors 

that make endogenous expression of F.VIII more complicated than F.IX. We will 

subsequently examine some of these issues before discussing the progress that has been 

made with various vector systems towards a genetic therapy for hemophilia A.

4.1. Additional challenges in hemophilia A

The primary difficulties in gene therapy for hemophilia A stem from the fact that F.VIII is a 

much more complicated protein than F.IX. As opposed to the single domain of F.IX, F.VIII 

is produced as a 2351 amino acid protein (encoded by a 9 kb cDNA) that, following 

secretion, is cleaved into a noncovalent heterodimer of two chains: the heavy chain (A1-A2-

B domains) and the light chain (A3-C1-C2 domains) (217). The size and complexity of 

F.VIII lead to several complications for gene therapy. First, a 9 kb transgene is too large for 

some vector systems, such as AAV. Additionally, the synthesis and secretion of F.VIII is 

notoriously inefficient. Using a comparable retroviral vector delivery system, the levels of 

F.VIII produced in vitro were about 2 orders of magnitude lower than F.IX (218). The 

inefficiency of F.VIII production results from several factors, including inefficient 

expression of the mRNA, misfolding and degradation of the translated protein, and retention 

in the endoplasmic reticulum via binding to ER chaperones such as immunoglobulin binding 

protein (BiP) (218-225).

The synthesis of F.VIII is further complicated by the interaction with von Willebrand factor 

(vWF), which is required for stabilization of F.VIII (226, 227). Studies in vitro have 

suggested that this stabilizing effect is enhanced when F.VIII and vWF are co-expressed in 

the same cell, rather than simply adding vWF to the media (219, 228). However, while vWF 

is believed to be produced in endothelial cells, platelets, and megakaryocytes, the site of 

F.VIII synthesis is somewhat controversial (229-231). The liver has been implicated as a 

major site of F.VIII synthesis due to the ability of liver transplantation to cure hemophilia A 

in canine models as well as human patients (232-234). A number of studies have reported 

the presence of F.VIII mRNA and protein in hepatocytes in vivo, F.VIII production by 

hepatocytes cultured in vitro, and even the ability to restore clotting activity through 

hepatocyte transplantation (235-239). Conversely, others have reported F.VIII synthesis in 

liver sinusoidal epithelial cells (LSECs) but not hepatocytes, or even in both cell types 

(240-246). However, the preponderance of recent evidence implicates LSECs and by 

extension endothelial cells in other tissues as well, which may explain the observations of 
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F.VIII production in extrahepatic vascularized tissues such as the kidney, spleen, and lung 

(247-250). In particular, a pair of recent studies using conditional knockout mice 

demonstrate a requirement for endothelial cells but not hepatocytes in F.VIII synthesis (251, 

252). Thus, the combination of expression in an unnatural cell type and the lack of vWF 

synthesis in hepatocytes may explain the difficulties that have been encountered in inducing 

hepatic expression of F.VIII using techniques that have been successful with F.IX.

Although these findings suggest that endothelial cells might be a preferred target for F.VIII 

expression, moving gene expression away from hepatocytes potentially highlights 

complications from the immune response to the transgene that are not a factor following 

hepatic gene transfer. The strength of tolerance induction to F.IX following hepatic gene 

transfer for hemophilia B is proportional to transgene expression levels (4, 57). Tolerance to 

F.VIII following gene transfer is likely also mediated by a similar Treg-dependent 

mechanism (253). Thus, in addition to the difficulty in achieving therapeutic correction, the 

low expression levels of F.VIII following gene transfer also reveal challenges from the 

immune system. The endogenous levels of F.IX in plasma (5000 ng/mL) are already 

significantly higher than F.VIII (200 ng/mL). When this gap is further enhanced by low 

expression of F.VIII following hepatic gene transfer, hemophilia A mice can generate 

inhibitors against F.VIII or even be potentiated towards stronger immune responses to i.v. 

protein challenge than their untreated brethren (254-258). Furthermore, F.VIII seems to be 

naturally more immunogenic than F.IX, since hemophilia A patients develop inhibitors at 

about 5-6 times the rate of hemophilia B patients during recombinant protein therapy. 

Conversely, other studies have suggested that tolerance to F.VIII following hepatic gene 

transfer with LV may occur or persist in the absence of transgene expression (259). 

However, these mice were transduced as neonates; the protocol was not tolerogenic in older 

mice or with non-hepatic delivery routes.

While there are many similarities between hemophilia A and B, these additional difficulties 

in achieving therapeutic circulating expression and dealing with the immune response to 

F.VIII have complicated attempts to develop a gene therapy for the former. Keep these 

challenges in mind as we begin our discussion of the specific approaches used in gene 

therapy for hemophilia A, as surmounting them has required novel developments and led to 

some unique approaches that are not effective for hemophilia B.

4.2. Adeno-associated virus

Given the success that AAV has shown as a vector for the treatment of hemophilia B, it is 

logical that a number of approaches have also attempted to use it for hemophilia A. When 

considering AAV-mediated delivery of F.VIII, the most pressing concern is the issue of 

packaging capacity—AAV vectors cannot package the entirety of the F8 gene. Two 

strategies to circumvent this limitation have been explored. Firstly, the heavy and light 

chains of F.VIII can be split into separate vectors, and co-injection of these AAVs can 

induce the expression of biologically active F.VIII in circulation (260). However, the utility 

of this approach is limited by the fact that the F.VIII light chain can interact with the heavy 

chain within the cell, significantly enhancing secretion (261, 262). Thus, only cells that are 

transduced by both vectors are likely to be involved in F.VIII production. Alternatively, the 
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use of a shortened promoter sequence allows the packaging of B-domain-deleted (BDD) 

F.VIII within a single AAV particle (256, 263). BDD F.VIII, as the name implies, is 

produced by removing the B domain of the F8 gene. This alteration does not appear to have 

any adverse effects on procoagulant activity of the protein (264). As the B domain 

represents over a third of the F.VIII protein, its removal results in a cDNA that can be 

packaged in an AAV vector and induce sustained F.VIII expression in mice (256, 265). 

These findings have been replicated in studies in hemophilic dogs, (266, 267). Further 

studies have indicated that both approaches (BDD and dual-vector F.VIII) can be effective 

in canine models (268, 269). However, the doses needed to achieve therapeutic correction 

were significantly higher than the maximum dose of AAV-F.IX administered to humans in 

clinical trials (52, 53, 270). Given the dose-dependence of the memory CD8+ T cell response 

to capsid that was observed in these trials, these vector doses may not be feasible in human 

subjects.

By enhancing the expression per AAV particle, it may be possible to reduce this dose. For 

instance, the use of a full-length rather than a truncated promoter is able to enhance F.VIII 

expression from AAV vectors (271). Although this required the use of an oversized AAV 

genome (5.75 kb), some studies have suggested it is possible to produce AAV vectors with 

an oversized genome, albeit at the cost of reduced packaging efficiency (272, 273). 

However, further investigation has suggested that these vectors do not actually package 

oversized genomes; rather, the transgene is fragmented between AAV vectors and 

complementation in the cell following transduction results in expression of these oversized 

transgenes (274-277). Thus, this approach would likely be subject to the same limitations as 

splitting the chains into separate vectors. That expression depends on transduction of a 

single cell by two separate AAV vectors significantly reduces expression levels below what 

they would otherwise be. Since proteasome inhibitors can increase transduction by AAV, 

the use of bortezomib can enhance expression of F.VIII using these oversized AAV vectors 

(74, 75, 278-280). Additionally, the use of a more strongly liver-specific promoter can 

enhance transgene expression while simultaneously reducing the propensity for inhibitor 

formation that can occur with a ubiquitous promoter (281). Similarly, neonatal 

administration of AAV avoided immune responses against F.VIII (282). Codon optimization 

of F.VIII significantly enhances transgene expression, as with F.IX (283). In HA mice, a 

dose used in humans (2 × 1012 vg/kg) of AAV containing codon-optimized F.VIII with a 

liver-specific promoter induced supraphysiologic F.VIII expression (284). However, even 

codon-optimized F.VIII is subject to limitations imposed by the immune system. The 

immunogenicity of codon-optimized F.VIII can vary depending on the genetic background 

of the treated hemophilic mice (257). In NHP, therapeutic expression was also induced; 

however, 3 out of 4 macaques developed inhibitors against F.VIII that were resolved with 

transient immunosuppression (284). Although AAV-mediated gene therapy for hemophilia 

A is progressing, the immune response to the transgene clearly still represents an additional 

barrier to transduction that is not fully understood yet.

4.3. Retrovirus and Lentivirus

In addition to AAV, significant work has been done exploring the use of retroviral/lentiviral 

vectors for the treatment of hemophilia A. As previously mentioned, these vectors can be 
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employed for either ex vivo or in vivo gene transfer. The first proof of concept for in vivo 

gene therapy used a γ-retroviral vector to express F.VIII in hepatocytes of neonatal 

hemophilic mice (285). This approach was also successful in a canine model of hemophilia 

A (286). Though additional studies in mice and rabbits suggested that this approach may 

also be viable in adult subjects, in human patients, only a sporadic and transient rise in 

circulating F.VIII was detected (287-289). In addition to γ-retroviral vectors, LV has also 

been employed in the treatment of hemophilia A via in vivo gene transfer. Although F.VIII 

expression can be achieved with this approach, the therapeutic benefit was hampered by the 

subsequent development of anti-F.VIII inhibitors in immune competent mice (126, 

290-292). Feline immunodeficiency virus (FIV)-based LV have also been employed for 

hemophilia A gene therapy; these studies have suggested that pseudotyping with the GP64 

envelope protein from baculovirus may enhance liver tropism of LV (293-295). By 

combining this liver-tropic envelope protein with a liver-specific promoter and miR-142 

regulation (to prevent transgene expression in APCs), it was finally possible to use LV to 

express F.VIII in hepatocytes without provoking an inhibitor response (296). Continuing the 

theme of enhanced immunogenicity of F.VIII relative to F.IX, the GP64 envelope protein 

was required to avoid inhibitor formation in this case, whereas the F.IX-expressing LV 

could achieve safe expression with a VSV-G envelope protein (133, 296). Although the 

miR-142-regulated LV expressing F.IX was tolerogenic, preventing antigen-specific 

immune responses, it remains to be seen whether these F.VIII-expressing vectors can also 

prevent inhibitor formation following challenge with recombinant protein (134, 135). Given 

the ability of AAV-F.VIII vectors to potentiate stronger immune responses in some strains 

of HA mice, this is a relevant concern if subsequent supplementary doses of F.VIII are 

required (257). Lastly, although LV vectors have been developed that target gene delivery to 

endothelial cells in vivo, the efficacy of this approach for F.VIII expression remains to be 

seen (297, 298).

Among the ex vivo gene therapies using LV, the most common site of expression is 

hematopoietic stem cells. Expression of F.VIII in hematopoietic stem cells has been 

achieved as early as 1992 using γ-retroviral vectors; although this approach did not initially 

correct the bleeding phenotype in vivo, it did appear to partially tolerize mice to F.VIII (299, 

300). Further optimizations allowed for therapeutic F.VIII expression in vivo, as well as 

enhanced efficacy of the tolerogenic potential of this treatment (301-304). Similarly, LV can 

be used to induce F.VIII expression in hematopoietic stem cells as well as human CD34+ 

cord blood cells (305-308). LV-mediated F.VIII expression in B cells also induces 

therapeutic F.VIII expression and immune hyporesponsiveness (309). An interesting 

development involves the expression of F.VIII specifically in platelets rather than all 

hematopoietic cells. Outside of endothelial cells, platelets are the other major source of 

vWF; platelet-derived vWF is thought to be critical for on-demand coagulant activity, 

though it may also play a role in clotting hemostasis (310). Given the ability of vWF to 

enhance F.VIII secretion, producing F.VIII within platelets may allow for efficient on-

demand release of F.VIII (311). A transgenic mouse expressing F.VIII under the control of a 

platelet-specific promoter demonstrated correction of the bleeding phenotype in the absence 

of circulating F.VIII (312). LV can be used to express F.VIII specifically in platelets, and 

this strategy also provides therapeutic benefit in the absence of circulating F.VIII (313, 314). 
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This approach has also proven effective in canine models of hemophilia, and LV-transduced 

human cord blood cells correct the bleeding phenotype when transplanted into 

immunodeficient hemophilic mice (315, 316). A surprising consequence of this approach to 

deliver F.VIII on-demand following a bleeding incident is the ability to bypass concerns of 

immunogenicity that have plagued other approaches. Mice treated with LV to induce F.VIII 

expression in platelets show bleeding correction even in the presence of high-titer inhibitory 

antibodies (317). Transduced mice more rapidly clear inhibitors compared to control 

animals, though they still had clinically relevant Bethesda titers (BU > 5) six months post-

injection. Additionally, the consequences of challenge with recombinant protein remain to 

be seen. This is in contrast to HSC transduction with retroviral vectors and a less restrictive 

promoter, which robustly induced tolerance to the transgene (303). The efficacy of tolerance 

induction following HSC gene transfer appears to be directly correlated with the efficiency 

of engraftment/expression. The use of safer vectors, more restrictive promoters, or milder 

conditioning regimens seems to impede the ability to induce transgene-specific tolerance, 

perhaps suggesting that transgene expression in specific hematopoietic cell types is required 

for tolerance induction (17, 318). Moreover, other studies have suggested that the ability of 

platelet-derived F.VIII to bypass inhibitors is improved but limited relative to plasma F.VIII 

(319). The efficacy of platelet-derived F.VIII can vary depending on the bleeding model 

used, so further preclinical studies will be required to validate this approach for use in 

humans (320).

In addition to HSCs, mesenchymal stem cells (MSCs) can be transduced by retroviruses to 

produce F.VIII (321, 322). In mice, MSCs transduced via LV to express F.VIII were not 

able to mediate systemic correction; however, following intra-articular injection, they were 

able to reduce bleeding following joint capsular needle puncture injury (323). When LV-

transduced MSCs were injected intraperitoneally into hemophilic sheep, however, they 

demonstrated widespread engraftment in organs and joints and were able to prevent further 

spontaneous bleeding as well as resolving pre-existing joint damage (324). In addition to 

hematopoietic approaches, LV has also been used for ex vivo transduction of endothelial 

cells to produce F.VIII. Although this approach avoids the need for myeloablative 

conditioning, which can have deleterious side effects, achieving persistent engraftment of 

endothelial progenitors has been challenging (325). Recent developments in cell sheet 

transplantation technology have shown promise for achieving sustained F.VIII expression 

from transduced endothelial cells (326). However, in a canine model, it was recently 

suggested that the use of an implantation matrix may not always be desirable. Omental 

implantation of F.VIII-expressing endothelial cells transduced with LV in a fibrin matrix 

induced an inhibitor response in the presence of sustained F.VIII expression, possibly due to 

the induction of IL-6 and MCP-1 by the thrombin in the matrix (327). Although anti-F.VIII 

IgG2 antibodies were detected when cells were implanted in the absence of this matrix, they 

did not possess inhibitory activity. Finally, LV has recently been used to transduce induced 

pluripotent stem (iPS) cells. While these iPS cells, which are transcriptionally 

reprogrammed from adult cells, show some promise, there are still a number of barriers 

including oncogenicity, genomic instability, epigenetic memory, and the impact of 

propagation in culture that caution against the use of these cells (328). In nude mice, LV-

transduced iPS cells were capable of teratoma formation and the secretion of physiologically 
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relevant levels of functional F.VIII (329). The impact of the immune system on this 

approach, however, is still unknown.

4.4. Integrases and non-viral approaches

Research in nonviral gene therapy for hemophilia A has largely mirrored the approaches 

used for hemophilia B. In vivo hydrodynamic injection of F.VIII-expressing plasmid can 

induce transgene expression; however, unlike with F.IX, this approach is limited by the 

development of anti-F.VIII inhibitors (254). Subsequent studies with the addition of 

immunomodulatory therapies have prevented inhibitor formation and induced F.VIII-

specific tolerance mediated by Tregs (255, 330, 331). Hydrodynamic injection in 

conjunction with RNA trans-splicing (splicing therapeutic RNA into abundant albumin 

mRNA) has also been explored in the treatment of hemophilia A (332, 333). Similarly, 

sustained gene transfer using the Sleeping Beauty transposon is limited by an immune 

response to F.VIII, unless tolerance is induced at the neonatal stage (334, 335). Interestingly, 

in adult mice, using SB to express both F.VIII and the immunosuppressive enzyme 

indoleamine 2,3-dioxygenase (IDO) induced sustained F.VIII expression and reduced T cell 

infiltration in the liver (336). In addition to hydrodynamic injection, F.VIII-expressing 

plasmids have also been targeted to specific cell types using nanocapsules. Targeting SB-

mediated transduction of F.VIII to liver sinusoidal endothelial cells (LSECs) of adult HA 

mice using hyaluronon nanocapsules induced sustained correction of clotting function (337). 

An alternative approach for in vivo gene therapy involves the oral delivery of plasmid DNA 

encapsulated in chitosan nanoparticles (205). This approach provides phenotypic correction 

of hemophilic mice, and repeated delivery provides sustained correction in the absence of an 

immune response to F.VIII (338, 339). In both of these nanoparticle mediated approaches, 

mice were not challenged with exogenous F.VIII to verify if they were tolerized to F.VIII, or 

if they merely failed to mount an immune response to the endogenously-produced protein.

Nonviral gene transfer has also been employed ex vivo for the treatment of hemophilia A. In 

human patients, this ex vivo approach was used to transduce autologous dermal fibroblasts 

and select for F.VIII-producing cells (340). Delivery of these genetically modified 

fibroblasts into hemophilic patients provided a slight decrease in the number of bleeding 

events, and no inhibitor formation was detected. However, these clinical improvements only 

lasted for about 10 months, likely due to loss of the transduced cells. Given these promising 

results, subsequent studies have focused on finding a superior cell type for ex vivo 

transduction, both in terms of secretion capacity as well as persistence. In particular, blood 

outgrowth endothelial cells (BOECs) have shown promise for this approach. These cells, 

derived from circulating endothelial cells in peripheral blood, display many of the 

characteristics of endothelial cells, including vWF expression (341). Additionally, BOECs 

grow extremely well in culture; after 65 days, they can be expanded from about 20 cells to 

1019 cells (341). Following gene transfer, selection, and injection into mice, genetically 

modified BOECs induced therapeutic or even supraphysiologic circulating levels of hF.VIII, 

depending on the cell dose (342). These cells maintained an endothelial phenotype and 

accumulated primarily in spleen and bone marrow. Further studies have also achieved 

persistent seeding of liver and lung in addition to the spleen and bone marrow (343). Other 

approaches have involved nonviral modification of hepatocytes and embryonic stem cells 
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(344, 345). F.VIII-expressing endothelial cells derived from iPS cells have also shown 

promise for the treatment of hemophilia A (346). iPS cells have also been modified with 

human artificial chromosomes (HACs), constructs that mimic a human chromosome. HACs 

are maintained separately from the host genome (minimizing the risk of insertional 

mutagenesis), persist through cell divisions due to their ability to bind centrosomal proteins, 

and allow for delivery of large constructs that can mimic physiological gene regulation 

(347-350). Megakaryocytes/platelets derived from iPS cells have been generated that 

produce F.VIII following transduction with a HAC, though their in vivo efficacy has not yet 

been demonstrated (351).

4.5. Optimization of factor VIII

Finally, the optimization of the F.VIII transgene represents a vector-agnostic approach to 

improving gene therapy. As previously mentioned, codon optimization of F.VIII has been 

shown to enhance transgene expression (283). However, the inefficient secretion of F.VIII 

provides additional routes for transgene optimization. Interestingly, porcine F.VIII is 

secreted by cells more efficiently than human F.VIII (352-354). HSCs expressing porcine 

F.VIII are able to correct the bleeding phenotype following implantation into hemophilic 

mice (303, 304, 355). Further studies have incorporated porcine sequences into hF.VIII to 

enhance secretion of the clotting factor while still maintaining a largely human protein; this 

hybrid protein can also mediate clotting activity in vivo following implantation of 

transduced HSCs (356-358). Another interesting aspect of porcine F.VIII is its differential 

immunogenicity relative to hF.VIII. Although the magnitude of the response to both proteins 

is largely comparable, antibody responses preferentially target different epitopes in porcine 

or human F.VIII, and some reports have suggested that porcine F.VIII may be able to bypass 

inhibitors directed against hF.VIII (359-362). Similarly, canine F.VIII is more stable and 

exhibits greater specific activity than hF.VIII (363). Incorporation of a point mutation 

(R1645H) from canine F.VIII into hF.VIII conferred many of these properties to the new 

transgene, and expression of this altered F.VIII via an AAV vector was more effective and 

comparably immunogenic to BDD-F.VIII (364). Other strategies for enhancing secretion 

include the incorporation of a fragment of the light chain into the heavy chain (whose 

secretion is the rate limiting step) or the use of chemical chaperones (365, 366). 

Alternatively, one can simply bypass F.VIII altogether. Expression of activated factor VIIa 

in hepatocytes or platelets has been shown to provide bleeding correction in the absence of 

thrombotic events (367, 368). F.IX variants that do not require F.VIII, or an antibody that 

mimics F.VIII's role in the intrinsic factor Xase by bringing F.IX and F.X into close 

proximity are also able to provide therapeutic benefit (369, 370). By completely avoiding 

F.VIII, these strategies sidestep complications posed by the immune system. In addition to 

preventing the risks associated with a de novo inhibitor response to the gene therapy, they 

would also be appropriate for use in patients with preexisting inhibitors without being 

concerned with tolerance induction. However, there are also potential risks for thrombosis 

when bypassing the natural regulation of the coagulation cascade, and these mechanisms 

will likely need thorough safety studies before being applied in the clinic.
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5. CONCLUSION

Clearly, the field of gene therapy for hemophilia is being thoroughly explored. Given its 

recent clinical success, AAV-mediated hepatic gene transfer is likely to be the primary 

direction going forward for hemophilia B. However, there are still a number of problems 

that limit the broad applicability of the current approach, particularly the current 

immunosuppressive regimen and pre-existing neutralizing antibodies. Perhaps these barriers 

to transduction will be fixed with more specific therapies or a combinatorial approach of 

several techniques to bypass NAB. Alternatively, a different approach that does not have to 

deal with these anti-vector immune responses, such as an ex vivo or nonviral technique, 

might become a more effective way to administer gene therapy to the broadest base of 

patients. For hemophilia A, while AAV-mediated gene therapy has potential, a number of 

limitations reduce its desirability, including packaging capacity and inefficient expression. 

While a number of transgene modifications have increased the expression levels, the vector 

doses required to achieve corrective F.VIII expression remain significantly higher than with 

F.IX. These expression limitations lead to further concerns about immune responses both to 

the capsid and, if expression levels are not sufficient, the transgene. As such, ex vivo gene 

transfer may be more effective for hemophilia A due to its ability to enhance expression 

through cellular division. Specifically, gene transfer to platelets is a promising example of 

this technique. This approach appears to bypass barriers posed by the immune system, as the 

local expression and release of F.VIII can correct the bleeding phenotype in the presence of 

inhibitors. This technique, too, has its drawbacks, particularly in terms of delivery. Current 

techniques involve the use of integrating viral vectors, for which concerns about 

oncogenicity have not been fully addressed. Thus, while a number of promising approaches 

for gene therapy for hemophilia have been elucidated, there are clearly numerous problems 

that still need to be addressed to develop approved gene therapies for both hemophilia A and 

B for use in humans.
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Abbreviations

F.VIII factor VIII

F.IX factor IX

F.VII factor VII

F.X factor X

ITI immune tolerance induction

AAV adeno-associated virus

ITR inverted terminal repeat

Treg regulatory T cell
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scAAV self-complementary AAV

ssAAV single-stranded AAV

TLR9 toll-like receptor 9

CTL cytotoxic T lymphocyte

MHC major histocompatibility complex

NAB neutralizing antibody

MMLV Moloney murine leukemia virus

LV lentivirus

HIV human immunodeficiency virus

VSV vesicular stomatitis virus

LCMV lymphocytic choriomeningitis virus

SIN-LV self-inactivating lentivirus

HSC hemaptopoietic stem cell

mADSC murine adipose tissue-derived stem/stromal cells

miR-142 microRNA 142

IFN interferon

TLR7 toll-like receptor 7

cGAS cyclic GMP-AMP synthetase

IDLV integrase-defective lentivirus

SB Sleeping Beauty

ZFN zinc-finger nuclease

TALEN transcription activator-like effector nuclease

CRISPR clustered regularly interspaced short palindromic repeats

Cas CRISPR-associated systems

BiP immunoglobulin binding protein

vWF von Willebrand factor

LSEC liver sinusoidal endothelial cell

i.v. intravenous

BDD-F.VIII B-domain-deleted factor VIII

FIV feline immunodeficiency virus

BU Bethesda unit

MSC mesenchymal stem cell
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IDO indoleamine 2,3-dioxygenase

BOEC blood outgrowth endothelial cell

iPS induced pluripotent stem cell

HAC human artificial chromosome
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Figure 1. 
Diagram of the coagulation cascade. Activation of F.XII by exposure to a damaged surface 

causes sequential activation of F.XI and F.IX. Similarly, activation of the extrinsic factor 

Xase (F.VIIa and tissue factor) leads to limited activation of F.X. This limited activation 

induces a feedback loop by activating F.VIII, which combines with F.IXa to form the 

intrinsic factor Xase. The intrinsic factor Xase then cleaves high levels of F.X, which 

induces the activation of prothrombin to thrombin, leading to formation of the cross-linked 

fibrin clot.

Rogers and Herzog Page 44

Front Biosci (Landmark Ed). Author manuscript; available in PMC 2015 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Examples of sustained correction of hemophilia in animal models by hepatic AAV gene 

transfer. A. Sustained correction of the whole blood clotting time after hepatic AAV2-canine 

F.IX gene transfer in 2 hemophilia B dogs with F9 null mutation (Niemeyer et al., Blood 

2009). B. Sustained correction of the activated partial thromboplastin time (aPTT) after 

hepatic AAV2-human F.IX gene transfer in hemophilia B mice (n=4) with F9 gene deletion 

(Dobrzysnki et al., Proc Natl Acad Sci 2006). Arrows in A and B indicate challenge with/

immunization against FIX protein. C. Sustained correction of the aPTT after hepatic AAV8-

human FVIII gene transfer in hemophilia A mice (of 2 different strain backgrounds, n=8 per 

strain) with F8 exon 16 gene deletion (Sack et al., PLoS One 2012). Mice were challenged 

with F.VIII protein injections at the indicated time interval. D. Lack of inhibitor formation in 

the hemophilia A mice treated with gene therapy and challenged with F.VIII protein (insert 

shows inhibitor titers in BU/ml in response to FVIII in control mice that had not received 

gene transfer).
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Figure 3. 
Animal models of hemophilia. Preclinical studies of gene therapy for hemophilia have 

access to a variety of animal models. Models of both hemophilia A and B are available in 

mice, whereas dogs typically serve as the large animal model for both diseases. Although 

studies are performed in nonhuman primates, there are not hemophilic models of these 

animals available. Though not used very often, there is a model for hemophilia A in sheep. 

Finally, humans obviously suffer from both hemophilia A and B, and studies for both have 

been performed in clinical trials. An average range of weights for each animal is given 

below, and the average AAV vector dose that would be required for delivering 2 × 1012 

vg/kg to each animal indicates how rapidly the vector titers required can increase with larger 

animals.
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Figure 4. 
AAV-mediated gene therapy for hemophilia B. A recombinant AAV vector is produced, 

whose genome includes the viral ITRs, as well as a promoter, intron, F.IX cDNA, and polyA 

tail. AAV has been used for intramuscular gene transfer, which was limited by 

nonphysiological expression levels in human trials, as well as anti-transgene immunity 

during some preclinical studies. Circulatory delivery of AAV for hepatic gene transfer, 

either via the hepatic artery or peripheral vein, has seen more success. However, this route 

can still be limited by anti-capsid NAB as well as reactivation of a memory CD8+ T cell 

response to the input viral capsid.
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Figure 5. 
Ex vivo gene transfer. Gene transfer to cells ex vivo is typically initiated by isolation of the 

relevant cell population (such as CD34+ HSCs, iPS precursors, BOECs, MSCs, etc.) from 

the patient. Modification with LV or other integrating gene transfer system is performed, 

followed by a selection for transduced cells. If necessary, a conditioning regimen is given to 

the patient prior to reintroduction of the transduced autologous cells to ensure efficient 

engraftment. Finally, in the patient, these precursors are distributed and differentiated into 

the cells desired for expression, whether these are megakaryocytes, platelets, B cells, 

endothelial cells, MSCs, or some other cell type of interest.
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Table 1

Clinical trials of AAV-mediated gene therapy for hemophilia B

Vector Route of administration Institute Status Reference/Identifier

ssAAV2-CMV-hF.IX Intramuscular Children's Hospital of Philadelphia/
Stanford/Avigen

Complete (30)

ssAAV2-hAAT-hF.IX Hepatic artery Children's Hospital of Philadelphia / 
Stanford/Avigen

Complete (52)

scAAV8-LSP-hF.IXco Peripheral vein St. Jude Children's Hospital/University 
College London

Ongoing (53)

ssAAV8-hAAT-hF.IXco Peripheral vein Children's Hospital of Philadelphia Ongoing NCT01620801

scAAV-TTR-hF.IXco-Padua Peripheral vein University of North Carolina Ongoing NCT01687608
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