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Development of gene therapy for the muscular dystrophies represents a daunting challenge requiring

significant advances in our knowledge of the defective genes, muscle promoters, viral vectors, immune

system surveillance and methods for systemic delivery of vectors. However, tremendous progress has been

made in developing improved viral vectors and avoiding immune reactions against gene transfer. This review

summarizes recent progress and highlights problems that must be solved before an effective treatment is

available.

The muscular dystrophies (MDs) are a heterogeneous group of
disorders caused by mutations in any one of a large number of
genes (1). Since almost all types of muscular dystrophy arise
from single-gene mutations, genetic therapy, involving replace-
ment or modification of a gene, has emerged as a promising
approach for treatment. Gene therapy requires delivery of a
new gene to the vast majority of muscles in the body—a
daunting challenge, since muscle tissues makes up >40% of
body mass. Most current research is focused on identifying the
correct version of a gene to deliver, and on developing methods
for safe and efficient delivery to muscle. Neither task is simple:
many of these genes are enormous and display complex
expression patterns, and successful delivery must overcome
considerable physical and immunological barriers. This review
summarizes current approaches to gene therapy of Duchenne
muscular dystrophy (DMD), the most common form of MD,
which serves as a model for development of therapies for other
types of dystrophy.

THE DYSTROPHIN COMPLEX AND

MUSCULAR DYSTROPHY

DMD and the allelic Becker MD arise from defects in the
dystrophin gene (2). Dystrophin is the central component of a
large complex of proteins important for membrane stability and
force transduction from muscle fibers (3–6) (Fig. 1). Defects in
several members of the dystrophin–glycoprotein complex
(DGC) have been shown to lead to different forms of limb-
girdle muscular dystrophy (LGMD) and congenital muscular
dystrophy (7,8). Muscular dystrophies arising from DGC
defects are recessively inherited, suggesting that gene replace-
ment could be an effective treatment that would not require
correction of the mutant allele.
Most studies exploring DMD gene therapy have been

conducted animal using models, such as the mdx mouse or
the cxmd dog (9–11). Transgenic animal studies in the mdx

mouse revealed that striated muscle-specific expression of
either a full-length or a number of truncated dystrophin cDNAs
completely prevented the development of dystrophy (12–14).
Muscles from these transgenic animals display complete
restoration of the DGC, which is destabilized and largely
absent from dystrophin-deficient muscles (15). Interestingly,
restoration of the DGC by itself has little effect on the dys-
trophic pathology unless a mechanical link to the cytoskeleton
is also formed by dystrophin (16–19). The ability to rescue the
dystrophic pathology by gene replacement in muscle has
spurred efforts aimed at developing optimized dystrophin
expression cassettes and methods for their delivery to muscle.

CHALLENGES TO GENE THERAPY FOR DMD

Gene therapy for DMD will require efficient delivery of a
dystrophin expression vector to most of the striated muscles of
the body. The dystrophin gene is 2.4Mb in size, necessitating
the generation of mini-gene cassettes that can express
therapeutic levels of a functional protein. A delivery vector
must be identified that can carry these expression cassettes and
transduce striated muscle. Finally, muscle transduction must
not trigger toxic or immunological reactions that are harmful to
the patient or that lead to further muscle damage. Each of these
areas is the subject of intensive research, and the remainder of
this article will summarize recent progress.

DYSTROPHIN EXPRESSION CASSETTES

The muscle isoform of dystrophin is encoded on a 14 kb
mRNA, and transgenic animal studies have shown that this
cDNA can fully prevent dystrophy in mdx muscles (12).
Generating an expression cassette from a cDNA requires the
inclusion of gene regulatory regions active in muscle, such as
from the muscle creatine kinase (MCK) gene, a polyadenyla-
tion signal and an intron. While considerably smaller than the
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natural gene, these full-length dystrophin expression cassettes
cannot fit into most viral vectors. Consequently, numerous
studies have focused on identifying truncated, yet functional,
versions of dystrophin. The idea that truncated dystrophins
could be functional came from observations that some mildly
affected BMD patients have deletion mutations that remove
large portions of the gene (20,21).
Two large regions of dystrophin can be truncated with

minimal impact on function: the central rod (Rod) domain and
the C-terminal (CT) domain (Fig. 2). The CT domain is
composed of 277 amino acids that are minimally required for
dystrophin function (22–24). The Rod domain makes up nearly
80% of the protein and contains 24 spectrin-like repeats.
Micro-dystrophin clones with less than three repeats display
little function (25,26), whereas proteins with four or more
repeats display surprisingly high activity (26–28). One of the
smallest of these constructs (DR4-R23), which contains the first
three and the last of the 24 spectrin-like repeats, is able to
reverse many of the morphological abnormalities of dystrophic
muscle when delivered to young adult mice (28). This
remarkable construct can be carried on a 3.6 kb cDNA. Of
course, these micro-dystrophins have only been tested in the
mdx mouse, whose limb muscles develop weakness and lose
mass at a much slower relative rate than do the corresponding
human muscles. Nonetheless, some micro-dystrophins are

remarkably functional in the mouse diaphragm, which is a
very good model for the human disease (28).

VECTORS FOR MUSCLE GENE THERAPY

Efforts to deliver dystrophin to muscle have focused on four
vectors: adenoviruses (Ad), retroviruses, adeno-associated
viruses (AAV) and plasmids (29). Ad vectors have a relatively
large cloning capacity, can be grown to the highest titers and
display relatively efficient infection of muscle (30).
Conventional Ad vectors have been used to deliver dystrophin
mini-genes to mdx and cxmd muscles (31–37). Unfortunately,
these vectors can elicit a robust cellular immune response
against viral and some transgene proteins, so their use has
been limited to studies in immune-compromised animals.
Such studies have shown that muscles can be transduced with
high levels of mini-dystrophin, at least near the site of
injection, and that transduction can prevent the development
of pathology in mdx mouse limbs. To overcome immunological
problems, ‘gutted’ Ad vectors have been developed that use a
minimal vector backbone lacking all viral genes (38–40).
Deletion of the viral genes also creates a larger cloning
capacity, allowing full-length dystrophin cassettes to be
carried (41). Full-length dystrophin is efficiently expressed

Figure 1. Dystrophin and the dystrophin–glycoprotein complex in muscle. Dystrophin is a cytoskeletal protein that links the g-actin filaments to the extracellular
matrix via the dystroglycan/sarcoglycan complexes. The C-terminal domain of dystrophin binds syntrophin and dystrobrevin, the latter of which also binds the
sarcoglycan complex. Loss of dystrophin results in destabilization and loss of the DGC.
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from gutted vectors in muscle, and they elicit few of the
immunological problems seen with conventional Ad (Fig. 3)
(42–44). However, Ad vectors do not integrate into the host
genome, so their ability to persist for long periods of time is
unclear. Muscle gene therapy using Ad vectors will therefore
require either repeat delivery of vector to patients or
development of methods that enable vector integration into
the host genome. Two studies have recently described hybrid
vectors between Ad and retroviruses or AAV, approaches that
could enable integration of a dystrophin cassette (45,46).
Different classes of retroviruses have cloning capacities

between 7 and 11 kb, so these vectors are limited to delivering
only the mini- and micro-dystrophins (47). Retroviruses are
difficult to grow in large quantities, preventing robust
transduction of muscle by direct injection of vector.
Nonetheless, all types of retroviruses efficiently integrate into
the host genome, potentially allowing persistent gene transfer.
Lentiviral vectors display robust infection of a variety of
stem cells, and may be of interest for stem cell-based gene
delivery (48).
AAV is of great interest for muscle gene therapy as it

efficiently infects skeletal muscle and can persist for years,
at least in healthy mice (49,50). Persistence is likely a result
of nuclear retention signals in the vector genome, since
recombinant AAV does not appear to integrate to an appreci-
able extent (51). Gene delivery with AAV might therefore also
require periodic ‘boosting’ to maintain high-level expression.
Nonetheless, these vectors can be grown to titers approaching
those of Ad vectors, and serotypes 1, 5 and 6 are particularly
efficient at transducing skeletal muscle (52–54).

Naked plasmid DNA displays a remarkable ability to
transfer genes to muscle (55,56). Plasmids display minimal
immunogenicity and toxicity, and have an extremely large
cloning capacity. The primary disadvantage of plasmids is their
relatively poor transduction efficiency under typical delivery
protocols. However, several laboratories have been working to
improve this efficiency by using high-pressure injection and/or
electroporation (57–59). Retention of plasmids will be an
important consideration, and, as with Ad and AAV, it may be
necessary to either repeat administration or modify the
plasmids to enable integration. A human clinical trial asses-
sing the safety of plasmid-mediated dystrophin delivery is
currently underway in France, although no results have been
released (60).

IMMUNOLOGICAL HURDLES TO

GENE THERAPY OF DMD

Innate and acquired immune defense mechanisms can block or
limit the extent of gene transfer, lead to destruction of ‘rescued’
cells, and in severe cases cause systemic reactions that can
result in death (61–66). Serious problems from innate immune
responses are generally observed only with high doses of
virus administered intravascularly, and may not be of great
concern for many vectors and delivery routes (67,68).
Nonetheless, this concern is one reason that clinical gene
therapy trials are conducted only after extensive animal testing
and are initiated using very low vector doses. Acquired
immunity involves humoral and cellular responses that are

Figure 2. Domain structure of full-length and mini-dystrophins. The figure shows the N-terminal and central actin-binding domains (ABD), the 24 spectrin-like
repeats that are interrupted by 4 ‘hinge’ regions (hinge 4 contains a ‘WW’domain), the cysteine-rich domain that binds b-dystroglycan, and the C-terminal domain
that binds syntrophins and the dystrobrevins. Also shown are the Dp260 isoform (expressed in retina), the Dp71 isoform (expressed in many cell types), and
various mini- and micro-dystrophins that have been tested in animal models for DMD. The size of each protein is shown, together with a summary of the effec-
tiveness each displays when expressed in transgenic mdx mice.
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activated through B- and T-cell-mediated pathways. A humoral
immune response typically generates circulating antibodies
against vector or transgene-encoded proteins. These antibodies
can block further vector delivery to muscle, but in general are
not a great concern for long-term expression of an intra-
muscular protein. In contrast, cellular immune responses can
lead to cytotoxic T-lymphocyte (CTL)-mediated destruction of
otherwise ‘rescued’ tissues, and it is critical to avoid them in a
clinical setting.
The propensity of Ad vectors to elicit a cellular immune

response has greatly tempered enthusiasm for their use.
Fortunately, several methods have been developed that largely
overcome these problems. The first is the use of the gutted
Ad system, which greatly limits the CTL response against
Ad proteins and enables relatively long-term vector persistence
in both liver and muscle (43,44,54,69–71). The second is
the use of muscle-specific promoters, which block the CTL
response against many transgenes (72–74). Gutted Ad vectors
that express full-length dystrophin from the MCK promoter do
not display a loss of gene expression for at least 3 months
following intramuscular injection into adult mice (Fig. 3) (54).
It remains to be shown whether gutted Ad vectors can avoid
triggering an innate immune response.
A number of examples have also been found where a cellular

immune response can be generated against a protein delivered
by AAV. The intracellular localization of the protein is critical
for this effect: cytoplasmic proteins display the fewest
problems, while transmembrane proteins are the most likely
to be immunogenic (75). The news is even worse for dystrophic
muscle. While AAV-mediated delivery of many proteins is
without obvious immunological consequences, delivery of the
same vectors to dystrophic muscles can sometimes lead to

a cellular immune response against the protein product. For
example, delivery of either a sarcoglycan or a b-galactosidase
gene to a mouse model for LGMD led to rapid destruction of
transduced fibers unless a muscle-specific promoter (MCK)
was used (74,76,77). Similarly, muscle promoters largely block
the immune response against human dystrophin when delivered
to mdx mouse muscles with AAV (27,28). However, in contrast
to results with Ad vectors, muscle promoters do not appear to
block fully an immune response against b-galactosidase when
delivered to dystrophic mdx muscles using AAV (78).
Dystrophic muscles have two features that exacerbate the
induction of an immune response: ongoing myofiber necrosis
that deposits cellular contents into the environment, coupled
with greatly elevated levels of immune effector cells
(73,79,80). Muscle-specific promoters are highly effective in
Ad vectors because they shut down gene expression in
macrophages and dendritic cells, which are easily infected by
Ad (72,81). In contrast, AAV does not have a high tropism for
mature dendritic cells, and the immune response to these
vectors in dystrophic muscle primarily results from antigen
cross-presentation from necrotic fibers to macrophages and
dendritic cells (82,83). While this effect is not fully blocked by
muscle promoters, it can be halted or ameliorated by rescue of
the dystrophic phenotype (31,76,78).
Other vector systems, such as retroviruses and plasmids, do

not typically elicit a robust cellular immune response.
Nonetheless, a mild CTL response has been observed against
human dystrophin when delivered to mdx muscles using
intramuscular injection of plasmids—an effect that was not
blocked by use of a muscle promoter (84,85). The cellular
immune response against vector-encoded proteins is often
transient, and might be blocked by immune suppression at the

Figure 3. Transduction of adult, immunocompetent mdx mouse muscles by dystrophin and utrophin expression vectors. The figure shows cross-sections of C57Bl/
10 (A) or mdx mouse TA muscles that had been (B and F) sham-injected (no vector), or (C, D and E) injected with viruses expressing different dystrophin or
utrophin cDNAs. At intervals following injection, the mice were sacrificed and muscle sections were stained with antibodies against dystrophin (A–D) or utrophin
(E and F). Gutted Ad vectors express full-length mouse dystrophin (C) or mouse utrophin (E) for at least 3 months after injection; (D) AAV vectors express micro-
dystrophin for at least 5 months after injection.
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time of gene delivery (37,86). For example, recombinant AAV
and gutted Ad vectors do not carry viral genes. Consequently,
viral protein synthesis does not occur de novo, and the host
immune system is only transiently exposed to the viral proteins
that coat the delivered viral particles. Developing a better
understanding of the mechanisms that induce immune reactions
in dystrophic tissue and of ways to control them is obviously
important to the success of gene therapy for MD.

SYSTEMIC DELIVERY OF GENES TO

MUSCLE TISSUE

Recent progress suggests that safe vectors will soon be
available for dystrophin delivery. However, there is not yet a
method to deliver these vectors efficiently to all the muscles of
the body. Crude delivery methods, such as performing
hundreds of intramuscular injections, could be used on selected
limb muscles to improve mobility and quality of life for
patients. However, such methods are not easily applied to the
heart or diaphragm, which are critical for long-term survival.
The simplest method for systemic delivery would be to use

intravascular routes, since capillaries intimately surround all
muscle fibers. However, vectors do not easily pass through
vessel walls. One solution is to disrupt the integrity of the
capillary wall to allow vectors to pass through and contact the
muscle fiber surface. Vasodilators, such as histamine and
papaverine, can achieve this effect, and have enabled
impressive gene delivery efficiencies in rodent limbs (87).
These drugs are dangerous when used systemically, and this
approach must be refined considerably to allow safe use in the
clinic. A related method is to inject vectors under high pres-
sure (88). A third approach is to modify the vector capsid
proteins to alter their natural tropism so as to bind muscle fibers
selectively rather than other organs such as the liver (89–91).
A intriguing method for gene transfer is to use stem cells.

Early interest in this concept lead to clinical trials of myoblast
transplantation, but the cells being used were not well
characterized and the studies were not successful (92,93).
More recently, stem cells isolated from bone marrow and
muscle have been reported to display a low efficiency of muscle
formation when delivered by bone marrow transplantation
(94–96). While it is not clear if these observations reflect
transdifferentiation or non-specific incorporation of cells into
myofibers, the results warrant further development. In this
scenario, hematopoietic or muscle-derived stem cells could be
harvested from a patient, transduced ex vivo with an
integrating, dystrophin-expressing virus (such as a lentivirus),
and then used for bone marrow transplantation back into
the patient.

GENE REPAIR

Several groups are exploring direct methods to repair or modify
a mutant dystrophin gene. The most successful approach to
date is with chimeroplasts, single-stranded RNA/DNA oligo-
nucleotides that can base-pair with a small target sequence and
trigger repair of a mutation. When chimeroplasts were
delivered to cultures of the mdx mouse myoblasts, up to 5%
of the mutant dystrophin genes were repaired (97). Other

approaches for gene repair rely instead on viral vectors for gene
targeting (98), or the use of short segments of homology in
DNA oligonucleotides (99). Antisense oligonucleotides have
also been used to influence exon/intron splicing in the
dystrophin gene to either skip a mutant exon or restore an
open reading frame (100,101). While these methods are not yet
efficient, they offer the potential advantages of simplicity,
safety, oral delivery and cost-effectiveness.

OTHER GENES FOR DMD THERAPY

An alternate approach for therapy of DMD involves delivery or
upregulation of utrophin, a dystrophin homologue that can
compensate for dystrophin deficiency (102–105). Since
utrophin is expressed normally in DMD patients, it would
not be expected to elicit an immune response (54,106,107).
Similarly, methods that could upregulate its synthesis or lead to
uniform expression along the sarcolemma might effect a therapy
without gene transfer (108,109). Several groups are conducting
small-molecule screens to find an inducer of utrophin synthesis.
Upregulation could presumably occur at either a transcriptional
or a post-transcriptional level. In this regard, a recent report
showed that modification of the glycosylation pattern of
a-dystroglycan can lead to a large increase in utrophin
accumulation along the sarcolemma in mdx muscles (110).
These data imply that the rate-limiting step for utrophin
upregulation may not be gene transcription, but creating high-
affinity docking sites on the sarcolemma. In this regard, previous
studies have shown that utrophin does not effectively compete
with dystrophin for sarcolemmal binding (111).

CONCLUSIONS

Over the past 10 years, the concept of gene therapy for
muscular dystrophy has gone from a distant dream to an idea
moving rapidly towards clinical trials of safety. During this
time, it has become possible to shrink the dystrophin gene from
2.4Mb to 3.5 kb without a significant loss of functionality.
Numerous vectors are now available that can hold these
expression cassettes and transduce muscle tissue with minimal
immunological or toxic side-effects. A major challenge to an
effective treatment remains the need for an efficient, systemic
delivery system. Coupled with intriguing advances in alternate
areas of study, the possibility of a treatment for DMD and other
forms of MD is no longer such a distant challenge.
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