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Gene Therapy Progress and Prospects: Nonviral
vectors
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The success of gene therapy is largely dependent on the
development of the gene delivery vector. Recently, gene
transfection into target cells using naked DNA, which is a
simple and safe approach, has been improved by combining
several physical techniques, for example, electroporation,
gene gun, ultrasound and hydrodynamic pressure. Chemical
approaches have been utilized to improve the efficiency and
cell specificity of gene transfer. Novel gene carrier mole-
cules, which facilitate DNA escape from the endosome into
the cytosol, have been developed. Several functional
polymers, which enable controlled release of DNA in
response to an environmental change, have also been

reported. Plasmids with reduced number of CpG motifs, the
use of PCR fragments and the sequential injection method
have been established for the reduction of immune response
triggered by plasmid DNA. Construction of a long-lasting
gene expression system is also an important theme for
nonviral gene therapy. To date, tissue-specific expression,
self-replicating and integrating plasmid systems have been
reported. Improvement of delivery methods together with
intelligent design of the DNA itself has brought about large
degrees of enhancement in the efficiency, specificity and
temporal control of nonviral vectors.
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Introduction

The development of gene carriers for effectively deliver-
ing genes into cells has attracted a great deal of attention
in recent years. Nonviral vectors should circumvent

some of the problems occurring with viral vectors such
as endogeneous virus recombination, oncogenic effects
and unexpected immune response. Further, nonviral
vectors have advantages in terms of simplicity of use,
ease of large-scale production and lack of specific
immune response. These techniques are categorized into
two general groups: (1) naked DNA delivery by a
physical method, such as electroporation and gene gun
and (2) delivery mediated by a chemical carrier such as
cationic polymer and lipid. In this review, we focus on

In brief

Progress

* Naked DNA delivery by physical method: to over-
come safety issue and to realize efficient gene
expression in vivo

* Gene delivery using a chemical carrier: to establish
functional gene delivery in vivo

* Nonviral vector modifications with peptides to
increase intracellular gene delivery

* Reduction of immune responses by modifying the
administration protocol or the composition of the
DNA

* Design of tissue-specific, self-replicating and inte-
grating plasmid expression systems to facilitate long-
lasting gene expression

Prospects

* Physical techniques for gene delivery into cells such
as electroporation, with and without adjuvants, will
be significantly optimized

* Knowledge of the interaction of naked DNA with
serum components and cell surface receptors will
continue to accumulate. Immune responses originat-
ing from CpG motifs and nonviral gene carriers will
diminish

* The structure of gene carriers will be further
optimized and tailored for specific uses such as
systemic administration, local injection or organ-
specific delivery

* Novel ligands for targeted delivery of DNA will be
found

* Translocation mechanisms for plasmid DNA within
the cell will be identified – these may provide novel
strategies for efficient delivery

* More tissue-specific, site-specific integrating or
self-replicating plasmid vectors are likely to appear
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the progress made over the last two years and discuss
techniques in these two categories.

Naked DNA delivery by physical method: to
overcome safety issue and to realize efficient
gene expression in vivo

Many mechanical techniques are included in this section.
The simplest way for administration of DNA is direct
injection of naked plasmid DNA into the tissue or
systemic injection from a vessel. Use of naked DNA
without any carrier molecule is also the safest method.
Little attention needs to be paid on issues of complex
formation and its safety assessment. So far, site of
the direct injection includes skeletal muscle, liver,
thyroid, heart muscle, urological organs, skin and
tumor.1 Systemic injection is also a convenient route
for gene administration. However, owing to rapid
degradation by nucleases in the serum and clearance
by the mononuclear phagocyte system, the expression
level and the area after injection of naked DNA are
generally limited. Various physical manipulations have
been used to improve the efficiency. Electroporation, bio-
ballistic (gene gun), ultrasound, hydrodynamics (high
pressure) injection and others have been established
(Figure 1).2

Electroporation, the application of controlled electric
fields to facilitate cell permeabilization, is used for
enhancement of gene uptake into cells after injection of
naked DNA.3 In addition, electroporation can achieve
long-lasting expression and can be used in various
tissues. Skin is one of the ideal targets because of the
ease of administration. Drabick et al4 established cuta-
neous transfection method for the purpose of DNA
vaccination. To optimize the condition of electroporation,
factors such as dose of DNA, electrode shape and
number, electrical field strength and duration have been

optimized for expression of hepatitis B surface antigen,4

erythropoietin5 and IL-12.6 High ionic strength in the
injection medium is also favorable for gene expression in
the skin.7 Muscle is also a good candidate for electro-
poration. Most of reports published recently relate to
immunological applications. For DNA vaccination,
potent immune responses against hepatitis B surface
antigen and HIV gag protein were obtained by electro-
poration of muscle after intramuscular injection of naked
plasmid DNA.8 Therapeutic effect of cytokines, such as
IL-129 and IFN-a,10 for inhibition of tumor growth
located at a distant site has been demonstrated. IL-12
was also employed for electroporation after intratumor
injection.11 Our laboratory recently reported the use of a
syringe electrode, with which same transfection effi-
ciency could be achieved by using much lower electric
field strength than that of conventional electrode. Tissue
damage by the electric field is thus minimized.12

Electrically mediated DNA delivery to hepatocellular
carcinoma in the liver was reported by Heller et al.13 All
of the electroporation protocols employ local injection of
the plasmid DNA. However, our group recently demon-
strated efficient gene transfer to the liver by electropora-
tion following tail-vein injection of naked DNA.14

Comparing with local injection of DNA to the liver,
systemic injection has the advantage of delivering genes
more evenly to the liver.

Gene gun can achieve direct gene delivery into tissues
or cells. Shooting gold particles coated with DNA allows
direct penetration through the cell membrane into the
cytoplasm and even the nucleus, bypassing the endoso-
mal compartment. Majority of the efforts reported in the
last 2 years are to introduce genes for antigen or
cytokines such as IL-12 into skin15,16 or liver17–19 for
vaccination and immunotherapy, respectively. However,
a disadvantage of this method is the shallow penetration
of DNA into the tissue.

Ultrasound can increase the permeability of cell
membrane to macromolecules such as plasmid DNA.
Indeed, enhancement of gene expression was observed
by irradiating ultrasonic wave to the tissue after injection
of DNA.20,21 Since ultrasound application is flexible and
safe, its use in gene delivery has a great advantage in
clinical use. Recently, it was reported that combination of
microbubble with ultrasound could further increase the
gene expression level. Microbubbles, or ultrasound
contrast agents, lower the threshold for cavitation by
ultrasound energy. In most cases, perfluoropropane-
filled albumin microbubbles or Optison (Mallinckrodt,
San Diego, USA) were used as microbubbles. It was
modified with plasmid DNA before injection, followed
by irradiation of ultrasound. At present, this technique is
used for gene delivery to vascular cells,22–26 muscle26,27

and fetal mouse.28

Hydrodynamic injection, a rapid injection of a large
volume of naked DNA solution (eg 5 mg plasmid DNA
injected in 5–8 s in 1.6 ml saline solution for a 20 g
mouse) via the tail vein, can induce potent gene transfer
in internal organs, especially the liver. Budker et al
hypothesized that naked plasmid DNA is taken up by
receptor-mediated pathway by hepatocytes.29 Certain
DNA receptors have been found in various tissues;30

however, their function has not been elucidated. It has
been proposed that the injected DNA solution accumu-
lates mainly in the liver because of its flexible structure,

Figure 1 Overview of nonviral gene delivery technologies. Different
injection routes of naked DNA and enhancement strategies are outlined.
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which can accommodate large volume of solution, and
the hydrostatic pressure forces DNA into the liver cells
before it is mixed with blood. Furthermore, breaking of
the endothelial barrier by the pressure has been
proposed as the major mechanism responsible for the
highly efficient expression in the liver. Recently, our
group reported that external massage of the abdomen
after small-volume injection of DNA via the tail vein can
enhance gene expression in the liver.31 The observation
suggests that mechanical stretching of the endothelial
barrier may affect uptake of DNA into the hepatocytes.
This pressure-mediated transfection method can be
applicable to other tissues. Wolff’s group showed that
large-volume injection with high speed via the portal
vein of liver or the artery of limb muscles achieved high
gene expression in the respective organ.29,32

Our group has demonstrated that significant gene
expression can be achieved in the liver by transiently
restricting blood flow through the liver immediately
following peripheral intravenous injection of naked
DNA.33 Occlusion of blood flow either at vena cava or
at hepatic artery and portal vein increased the expression
level in the liver. Presumably, the injected DNA is
internalized into the hepatic cells by receptor-mediated
mechanism as proposed by Budker et al29 or via a
nonreceptor-mediated pathway. However, the binding of
DNA to the surface of hepatic cells might be so weak that
DNA could be easily dissociated and washed away by
the blood flow in the normal physiological condition.
Only when the blood flow is transiently stopped, the
DNA can stably bind with the receptor and be
internalized into cells. A similar uptake of DNA by the
diaphragm muscle cells was achieved by a brief occlu-
sion of the blood flow through the diaphragm immedi-
ately after peripheral intravenous injection of DNA.34

Gene delivery using a chemical carrier: to establish
functional gene delivery in vivo
Novel carriers to achieve high-level gene expression and
functional delivery have been designed. Gene carriers
can be categorized into several groups: (1) those forming
condensed complexes with the DNA to protect the DNA
from nucleases and other blood components; (2) those
designed to target delivery to specific cell types; (3)
those designed to increase delivery of DNA to the
cytosol or nucleus; (4) those designed to dissociate from
DNA in the cytosol and (5) those designed to release
DNA in the tissue to achieve a continuous or controlled
expression. Lipids and polymers are mainly used for
gene delivery.

Lipid-mediated gene delivery
Liposome-based gene delivery, first reported by Felgner
in 1987, is still one of the major techniques for gene
delivery into cells. In 1990s, a large number of cationic
lipids, such as quaternary ammonium detergents, catio-
nic derivatives of cholesterol and diacylglycerol, and
lipid derivatives of polyamines, were reported. However,
the development of novel types of lipid molecules
appears to be saturated, and most of the efforts have
shifted to improving efficacy by the modification listed
above, as well as to specific in vivo applications. We will
highlight a number of new concepts that have appeared
in the last 2 years.

The reduction–oxidation (redox) sensitive character of
thiol groups has been exploited to control DNA–lipid
complex formation. Dauty et al35 reported a dimerizable
cationic detergent, which contains free thiol, amine and
alkyl groups. This alkylated ornithinyl cysteine deriva-
tive forms a complex with plasmid DNA. Subsequent
oxidation of the thiol groups to disulfides converts the
complex into stable nanometric particles. The particle is
made of a single molecule of condensed plasmid DNA
with a uniform diameter of less than 40 nm and showed
reasonable transfection activity in vitro. Practical advan-
tages include the small size for in vivo gene delivery
(improved particle diffusion) and that the disulfide
bonds should be reduced to thiols in the cytosol because
of the reductive environment provided by intracellular
glutathione, thus resulting in DNA release.

Peptide-mediated gene delivery
Redox-sensitive thiols have also been incorporated into
peptide gene carriers. McKenzie et al36 developed
peptides containing a cysteine residue and a continuous
sequence of lysine residues, for example, Cys-Trp-
Lys18.36 This peptide can also condense plasmid DNA,
and the thiol group is spontaneously oxidized, resulting
in a highly stable complex with potent transfection
activity in vitro. Cross-linking the peptide caused
elevated gene expression, without increasing DNA
uptake by the cells, suggesting that intracellular release
of the DNA triggered by disulfide bond reduction played
a key role. Furthermore, Park et al37 have also synthe-
sized sulfhydryl cross-linking poly(ethylene glycol)-
peptides (for stealth activity) and glycopeptides for
targeted delivery of genes in vivo.

Polymer-mediated gene delivery
Wightman et al38 systematically compared the ability of
branched and linear PEI/DNA complexes to transfect
cells in vitro and in vivo at various amine/phosphate
ratios and salt concentrations. They showed that salt-free
DNA complexes of linear PEI (22 kDa), which showed
high transfection efficiency in the lung, were small, but
subsequently aggregated when salt was added. In
contrast, DNA complex of branched PEI (25 kDa), which
showed low transfection efficiency in most of the organs,
remained small even after salt was added. The greater
efficiency of linear PEI in vivo might be because of a
dynamic structure change of the complex under high salt
concentrations as found in blood. Understanding of the
interaction between linear PEI and DNA could help in
designing future vectors.

Biodegradable polymers are known for their low
toxicity and high biocompatibility. Recently, a biodegrad-
able polymer, poly[a-(4-aminobutyl)-L-glycolic acid]
(PAGA), a derivative of poly-L-lysine, in which the ester
link is substituted with amide, was designed by Kim’s
group.39 This biodegradable and water-soluble polymer
condenses DNA and subsequently releases DNA upon
hydrolysis of the polymer. The complex showed higher
in vitro gene transfection efficiency with lower cytotoxi-
city than poly-L-lysine. Significant expression of murine
IL-10 was observed in the serum after tail-vein injection
of PAGA/DNA complexes, and the systemic adminis-
tration of murine IL-10 gene with PAGA into NOD mice
markedly reduced insulitis.40 The murine IL-12 gene was
also injected with PAGA into subcutaneous tumors in
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BALB/c mice. Significant level of the protein expression
and reduction of tumor growth was observed.41 Recently,
other types of biodegradable polymers were reported by
Kim’s and Leong’s groups, who have synthesized
cationic copolymers derived from PEI and polyethylene
glycol (PEG)42 and cationic polyphosphoester,43 respec-
tively.

Thermosensitive polymers can control the release of
encapsulated DNA in response to temperature changes
that lead to swelling or de-swelling of the hydrated
polymer. Kurisawa et al44 synthesized a thermosensitive
copolymer, poly(N-isopropylacrylamide (IPAAm)-co-2-
(dimethylamino)ethyl methacrylate (DMAEMA)-co-
butylmethacrylate (BMA), and investigated its thermo-
sensitive character and transfection efficiency at different
incubation temperatures.44 A polymer containing 8 mol%
DMAEMA and 11 mol% BMA had a low critical solution
temperature of 211C and complex formation/dissocia-
tion was modulated by temperature alteration. Transfec-
tion efficiency in vitro also depended on the incubation
temperature. Kim’s group have developed the biode-
gradable and thermosensitive polymer, PEG–poly(D,L-
lactic acid-co-glycolic acid) (PLGA)–PEG triblock co-
polymer. This nonionic, hydrophilic polymer shows
temperature-dependent solution-to-gel transitions45,46

and can be loaded with plasmid DNA in aqueous phase
at 4–201C. At above 30–31C (eg, at the body temperature),
the solution-to-gel transition occurs. It is conceivable that
DNA could be formulated and injected in the polymer
solution at room temperature, and slowly released from
the hydrogel for prolonged transfection at the injection
site.

PEG-PLL block contains a hydrophilic part consisting
of PEG and a DNA-binding moiety consisting of PLL
and forms self-assembling particles with DNA in a core-
shell structure with electrostatic interaction as the main
driving force. These polyion complex micelles are water-
soluble and nuclease-resistant nanoparticles, suitable for
in vivo gene delivery. Thus, DNA in the complex
remained intact in the blood stream for 30 min, although
gene expression after injection via the tail vein of mice
was only seen in the liver.47

Nonviral vector modifications with peptides to
increase intracellular gene delivery

Many anionic pH-sensitive peptides48 and cationic
fusogenic peptides49 show an enhancing effect on gene
expression mediated by cationic liposome and PEI,
respectively. These peptides show membrane disrupting
activities in weakly acidic condition, which is similar to
that in the endosome compartment, and could enhance
the translocation of the DNA to cytosol. Rittner et al50

reported that a bifunctional peptide with both DNA-
binding and membrane-disrupting activities showed
significant gene expression in the lung after tail-vein
injection.50

Inefficient entry of DNA into the nucleus is a major
limiting step in the development of nonviral gene
delivery system. The problem is particularly serious in
nondividing cells, where entry into the nucleus is
thought to occur only through the nuclear pore complex.
To achieve active transport to the nucleus, nucleus
localizing signal (NLS) peptides have been widely used.

Recent effort has been summarized in excellent re-
views.51–53 In most cases, NLS is conjugated with a gene
carrier such as PEI, or with DNA directly.

Reduction of immune responses by modifying
the administration protocol or the composition
of the DNA

Although it is well known that nonviral gene delivery
produces a less severe immune responses than virus-
mediated delivery, problems still remain. The DNA/
gene complex is recognized by macrophages, dendritic
and other immune cells. For cationic liposomes, toxicity
relates to the rapid induction of proinflammatory
cytokines such as TNF-a, IL-6, IL-12 and IFN-g.54 This
response stems from the stimulation of the immune cells
by the unmethylated CpG motifs in the plasmid DNA.
Various approaches have been taken to reduce this
inflammatory toxicity, including elimination of CpG
motifs in the plasmid DNA,55 use of PCR fragments
with reduced numbers of CpG motifs56 and active
targeting of the DNA to the endothelium, which
minimizes interaction with immune cells.57 Furthermore,
sequential injection of cationic liposomes followed by
naked plasmid DNA, first reported by Liu’s group,14

reduces the inflammatory response.58 Thus, when plas-
mid DNA was injected into the tail vein of mice 2–5 min
after the injection of cationic liposome, 50–80% lower
levels of proinflammatory cytokines (compared to
lipoplexes) were observed, without affecting gene ex-
pression level in the lung.

Design of tissue-specific, self-replicating and
integrating plasmid expression systems to
facilitate long-lasting gene expression

Producing sustained gene expression is also an impor-
tant goal for nonviral gene therapy. Tissue-specific
expression systems can produce stable expression by
reducing the probability of inducing an immune res-
ponse to the transgene. Thus, Kay’s group constructed a
plasmid DNA containing the apolipoprotein E locus
control region, a1-antitrypsin promoter, human factor IX
minigene sequence including a portion of the first intron,
30-untranslated region, and the bovine growth hormone
polyadenylation signal.59 When the plasmid DNA was
delivered to mouse liver by hydrodynamic injection, it
produced not only increased gene expression of factor IX
(in the therapeutic range), but also maintained these
levels for at least 10 months. Furthermore, a linear DNA
expression cassette originating from this plasmid
showed 10- to 100-fold higher expression than the closed
circular DNA for a period of 9 months.60

The Epstein–Barr virus (EBV)-based plasmid vector is
known to self-replicate in cells. It carries two genetic
elements from EBV, the EBV nuclear antigen 1 (EBNA1)
gene and the oriP element. The EBNA1 protein binds to
oriP, and facilitates the replication of the plasmid in
synchrony with chromosomal DNA. Furthermore,
the EBNA1 also facilitates nuclear localization of the
plasmid DNA. This approach has been used for tumour
suicide therapy61 (coupled to a polyamidoamine den-

Nonviral vectors
T Niidome and L Huang

1650

Gene Therapy



drimer), long-term expression of the �2-adrenergic
receptor in cardiomyocytes,62 and efficient and long-
lasting luciferase expression in murine liver after hydro-
dynamic injection.63 Stoll et al64 have also reported high-
level and long-lasting expression of the a1-antitrypsin
gene in mouse liver using the hydrodynamic injection
protocol.

Controllable integration of plasmid DNA into the
genome of mammalian cells would also provide long-
lasting gene expression. Reconstitution of an ancient
transposon, Sleeping Beauty, from sequence alignment of
nonfunctional remnants of members in the Tc1/mariner
superfamily of transposons within the genomes of
salmonids, provided the first functional transposon for
use in vertebrate species.65 Sleeping Beauty has been
used to accomplish stable chromosomal integration of
functioning genes in somatic cells of adult mice.66 In
addition, several phage integrases and their correspond-
ing recognition elements, which can mediate integration
into mammalian chromosomes, were reported by Calos’s
group.67–70 Although the integration efficiency of inte-
gration system is still low, this technology may one day
enable site-specific and high-efficiency integration into
the host chromosome without the potential for mutagen-
esis.

Summary

To establish efficient and safe gene delivery in vivo, a
number of new techniques and concepts have been
introduced in the last 2 years, with improvements in
targeted or controlled delivery of genes. However, we are
still far from the perfect gene carrier suitable for clinical
use. We have come a long way in understanding the
cellular barriers which prevent proper delivery of DNA,
but still relatively ignorant about factors controlling the
stability, pharmacokinetics and biodistribution of non-
viral vectors. Much of the above effort has been carried
out in rodents and whether the new improvements are
applicable to larger animals remains to be seen. We are
still far from the perfect gene carrier suitable for clinical
use, and much more work is still ahead of us.
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