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Finding concurrent annotations in gene lists<p>GENECODIS, a web-based tool for finding annotations that frequently co-occur in a set of genes and ranking them by their statistical significance, is presented.</p>

Abstract

We present GENECODIS, a web-based tool that integrates different sources of information to

search for annotations that frequently co-occur in a set of genes and rank them by statistical

significance. The analysis of concurrent annotations provides significant information for the biologic

interpretation of high-throughput experiments and may outperform the results of standard

methods for the functional analysis of gene lists. GENECODIS is publicly available at http://

genecodis.dacya.ucm.es/.

Rationale
High-throughput experimental techniques such as DNA

microarrays or proteomics are allowing researchers to study

biologic systems from a global perspective. In many cases, the

net result of these experiments is a large list of genes or pro-

teins that are potentially interesting for the analyzed system,

for example genes that are differentially expressed among

normal and pathologic tissues. A logical further step in the

analysis workflow is to translate such lists of significant genes

into functional descriptors that help researchers in the proc-

ess of elucidating the biologic meaning of their experimental

results.

Since Khatri and coworkers introduced Onto-Express [1],

several methods have been proposed within this context,

aimed at interpreting and extracting biologic knowledge from

large lists of genes or proteins. Most of these applications find

biologic annotations that are significantly enriched in a list of

genes with respect to a reference set, usually the whole

genome or those genes used in a microarray. Using a specific

source of information, for example Gene Ontology (GO) [2],

those tools first find all of the GO terms associated with the

set of analyzed genes. The number of appearances of each

term is then determined in the input and reference lists, and

a statistical test - usually the hypergeometric, χ2, bionomial,

or Fisher's exact test - is used to compute p values, which are

subsequently adjusted for multiple testing. The result of this

analysis is a list of single biological annotations from a given

ontology (for instance, GO terms) with their corresponding p

values. Those terms with p values indicating statistical signif-

icance are representative of the analyzed list of genes and can

provide information about the underlying biologic processes.

Good reviews of such methods are available elsewhere [3,4].

Most of the currently available tools, however, are designed to

evaluate single annotations, which means that they provide a
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list of annotations with their corresponding p values without

taking into account the potential relationships among them.

Finding relationships among annotations based on co-occur-

rence patterns can extend our understanding of the biologic

events associated with a given experimental system. For

example, a set of differentially expressed genes may be asso-

ciated with the activation of biologic processes that are

restricted to certain cellular organelles. Retrieving such asso-

ciations provides meaningful and additional information for

the interpretation of the experimental results.

In addition, the analysis of single annotations may show lim-

itations in some cases. A simple motivating example of such

limitations can be explained by using a hypothetical case of

GO terms. There are categories such as 'signal transduction'

that, although related to concrete aspects of the cell physiol-

ogy, are associated with genes that are involved in disparate

biologic processes, and therefore they may be annotated

together with other terms such as 'cell proliferation' or 'apop-

tosis'. In this scenario, in a list of genes annotated as 'signal

transduction' and 'cell proliferation', we may find that none of

these terms are significant because a large number of genes in

the genome belonging to each one of these categories are not

included in the analyzed set. On the contrary, the co-occur-

rence of both categories might be significant if most of the

genes simultaneously annotated with both terms are included

in the list. This co-occurrence information reveals that a sig-

nificant proportion of genes in the set are involved in specific

signaling pathways related to cell proliferation. Therefore,

relevant associations might be underestimated if only single

annotations are taken into account.

These observations prompted us to develop GENECODIS, a

web-based tool for finding sets of biological annotations that

frequently appear together and are significant in a set of

genes. It allows the integrated analysis of annotations from

different sources (for example, KEGG pathways, Swiss-Prot

keywords, GO, and InterPro motifs) and generates statistical

rank scores for single annotations and their combinations.

We believe that GENECODIS is an important extension of

existing tools for the functional analysis of gene lists. GENE-

CODIS is publicly available from the application website [5].

The GENECODIS algorithm
The application that we propose is simple in its concept; it

takes a list of genes as input and determines biological anno-

tations or combinations of annotations that are over-repre-

sented with respect to a reference list. The novelty of this tool

relies in the fact that, before computing the statistical test, it

incorporates a new functionality to extract all combinations

of annotations that appear in at least x genes, with x being a

user-defined threshold (Figure 1 shows an overview of the

methodology).

Finding sets of terms that frequently appear together 

in a list of genes

To extract combinations of gene annotations, GENECODIS

uses a modification to the methodology reported by Car-

mona-Saez and coworkers [6], which implements the apriori

algorithm to extract associations among gene annotations

and expression patterns.

The apriori algorithm was originally introduced by Agrawal

and coworkers [7] and has been extensively used to extract

association rules from transaction databases. This algorithm

generates sets of elements that frequently co-occur in a data-

base of transactions. Briefly, the procedure starts by deter-

mining the set of all single annotations ('itemset') that appear

in at least x genes (also known as support threshold) from the

list of interest and establish the frequent k itemsets, where k

= 1. In the second iteration (k = 2), the set of frequent anno-

tations found in the previous step is used to produce the new

set of candidates of size 2 (2-itemset), and the database is

scanned again to explore each gene and counting the fre-

quency of each pair of annotations. However, if the set of

annotations does not satisfy the minimum support constraint

- that is, they do not occur in at least x genes - then they are

not further considered to generate larger itemsets. The proce-

dure continues until no more combinations are possible. At

the end of this search all itemsets that contain the collection

of annotations that co-occur in at least x genes are obtained

(Additional data file 1).

In our previous work [6] we used the apriori algorithm to

extract association rules among gene annotations and expres-

sion patterns. However, in this work we use it as the initial

step in the methodology included in GENECODIS, namely

the extraction of sets of annotation that frequently co-occur in

a gene list.

It is important to note that increasing the number of different

items (sources of annotation in this case) while decreasing the

minimum support value can significantly multiply the

number of concurrences and thus the computation time.

Additional data file 1 contains a complete study of execution

time and size of the itemsets for different support values in

real datasets. Very extreme scenarios, such as extracting all

possible combinations of terms that appear in at least one

gene (support value of 1), is in many cases a computationally

unfeasible task. For this reason we have provided the applica-

tion with a minimum support value of 3, which is a reasonable

threshold to extract significant biological information from

gene lists.

Statistical analysis

Once all combinations of annotations that appear in at least x

genes have been extracted, the method counts the occurrence

of each set of annotations in the list of genes and in a refer-

ence list. Note that for each set of concurrent annotations its

frequency is calculated as the number of genes that are
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simultaneously co-annotated with those terms. By default,

GENECODIS uses as a reference set all genes from the corre-

sponding genome at the NCBI Entrez Gene database [8], but

users can upload their own reference set (for example, genes

in a chip). Then, a statistical test is applied to identify catego-

ries, and their combinations, that are significantly enriched in

the list of genes. Two statistical tests are implemented in

GENECODIS: the hypergeometric distribution and the χ2 test

of independence. For a detailed description of these methods

in the context of the ontological analysis of gene lists, see the

work of Draghici and coworkers [9] and the online help for

the program.

The p values can then be adjusted for multiple tests using a

simulation-based correction approach [10,11] or the false dis-

covery method proposed by Benjamini and Hochberg [12].

Overview of the methodologyFigure 1

Overview of the methodology. (a) Annotations from several sources are assigned to genes in the input list. (b) The apriori algorithm is applied to find sets 
of annotations that frequently co-occur in the input list. (c) The statistical significance of each annotation or set of concurrent annotations is calculated 
based on its frequency in the input and reference sets. The figure illustrates an example in which a list of yeast genes is annotated with Gene Ontology 
(GO) terms for 'cellular component' and KEGG pathways. In the output table only the annotations that co-occur in more than five genes are shown.
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For the simulation-based correction, a gene list of the same

size of the input list is generated by randomly selecting genes

from those used as reference. The frequent itemsets are then

extracted (as described above) from this random list and their

corresponding p values are calculated. This process is

repeated 10,000 times and the corrected p value for each k

itemset is calculated as the fraction of simulations having any

k itemset with a p value as good as or better than the p value

for that k itemset.

Therefore, the result of the analysis performed by GENECO-

DIS consists of a list of annotations or combinations of anno-

tations with their corresponding p values. Annotations

exhibiting p values below a certain threshold can be consid-

ered significantly associated with the list of genes under study

and can be used to discern the biologic mechanisms relevant

to the experimental system.

Implementation
GENECODIS is a web-based tool that is freely accessible from

the application website [5]. It uses the Entrez Gene database

[8] as the backbone data structure to link the functional anno-

tations imported from GO together with the correspondences

among gene identifiers (IDs). It allows users to upload gene

lists using different IDs, including, for example, Gene Sym-

bols, Entrez Gene, or Unigene IDs (more information about

the identifiers supported for each organism can be found in

the application website). If duplicated IDs are used in the

input list, then they are treated as unique entries.

For each organism GENECODIS provides analysis of differ-

ent annotations, including the three GO categories (biological

process, cellular component, and molecular function), KEGG

pathways, InterPro Motifs, and Swiss-Prot keywords. GO

annotations for each gene are imported from the NCBI Entrez

Gene database. GENECODIS allows users to select different

levels of the GO hierarchy as well as GO Slim terms [13].

Information about metabolic pathways is imported from

KEGG database [14], whereas Swiss-Prot keywords and

InterPro motifs are imported from Swiss-Prot database.

Regarding the supported organisms, GENECODIS currently

works with Arabidopsis thaliana, Bos taurus, Caenorhabdi-

tis elegans, Danio rerio, Drosophila melanogaster, Gallus

gallus, Homo sapiens, Mus musculus, Rattus norvegicus,

Saccharomyces cerevisiae, and Schizosaccharomyces

pombe. More organisms and annotations will be systemati-

cally added in future versions of the application.

One relative limitation derived from the in-depth search per-

formed is the increase in the computational cost and time as

more annotation categories are analyzed. To tackle this limi-

tation GENECODIS uses an efficient technique to extract fre-

quent itemsets [6]. Additionally, GENECODIS runs on a 16-

processor cluster, which guarantees the simultaneous use of

the tool by multiple users.

GENECODIS at work
We provide two examples showing the analysis performed by

GENECODIS and how the results obtained as combinations

of several biological annotations provide additional informa-

tion that may be useful in the interpretation of high-through-

put experimental data.

Yeast data

To illustrate GENECODIS, we show the results obtained

using data generated by Smith and coworkers [15]. They used

oligonucleotide-based whole genome microarrays to measure

gene expression levels in yeast during growth in oleate (per-

oxisome induction) and growth in glucose (peroxisome

repression conditions). Using different clustering algorithms

they identified 224 yeast genes whose expression patterns

were similar to well known peroxisomal genes.

The list of these 224 genes was re-analyzed using GENECO-

DIS, selecting biological process (BP) and cellular component

(CC) GO Slim annotations. The simultaneous analysis of both

categories provided a global picture of the biological proc-

esses associated with the experimental system linked to cellu-

lar localization information (Figure 2). As was expected, the

most significant category associated with this gene list was

'peroxisome' (CC). Other single categories that were highly

representative were 'generation of precursor metabolites and

energy' (BP), 'carbohydrate metabolism' (BP), and 'lipid

metabolism' (BP), which is consistent with the observation

that the shift to growth in the presence of oleate activates

genes encoding enzymes that are involved in fatty acid degra-

dation, allowing efficient use of the new carbon source [16].

In addition to these single-category significant annotations,

GENECODIS revealed a new set of associations with a strong

biologic meaning. For example, taking a closer look at the sec-

ond and third categories with the lowest p values, we can see

that a significant set of genes were co-annotated with 'perox-

isome' (CC) and 'lipid metabolism' (BP), and 'peroxisome'

(CC) and 'organelle organization and biosynthesis' (BP),

respectively. These findings allow us to easily identify the set

of peroxisomal genes that are specifically involved in each one

of these two different biological processes. Among the genes

co-annotated as 'peroxisome' (CC) and 'lipid metabolism'

(BP) are the genes involved in the fatty acid β-oxidation path-

way, such as POX1, FAA2, ECI1, FOX2, POT1, and DCI1.

Among genes co-annotated as 'peroxisome' (CC) and

'organelle organization and biosynthesis' (BP) are the PEX

genes, which are involved in peroxisome assembly [15] and

are required for the increase in the number of these

organelles during growth on oleate [16].
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Another interesting set of annotations that show the useful-

ness of the application are those categories related to mito-

chondrial genes. Forty-eight out of 887 yeast genes annotated

as 'mitochondrion' (CC) were present in the list, and therefore

this annotation exhibited a p value of 0.0248 (simulation

corrected p value = 0.2; Additional data file 2). Consequently,

based on the statistical test, this annotation is not considered

significant. Nevertheless, GENECODIS was able to identify a

set of significant co-annotations related to mitochondrial

genes. For example, 6 out of 21 yeast genes that were simulta-

neously annotated with 'mitochondrion' (CC) and 'lipid

metabolism' (BP) were present in the list, and this co-annota-

tion exhibited a p value of 0.000162 (simulation corrected p

value = 0.0086). Among these genes was, for example, the

CRC1 gene, which is a mitochondrial inner membrane carni-

tine transporter that is required for carnitine-dependent

transport of acetyl-coenzyme A from peroxisomes to mito-

chondria. In the same way, the co-annotation of 'mitochon-

drial membrane' (CC) and 'generation of precursor

metabolites and energy' (BP) related to a subset of genes that

are component of the mitochondrial respiratory chain was

found to be significant, with a simulation corrected p value of

0.004.

Although fatty acid β-oxidation in Saccharomyces cerevisiae

is restricted to peroxisomes, the association of mitochondrion

related categories to this set of genes is highly consistent with

the important role of these organelles in the metabolism of β-

oxidation products. Acetyl-coenzyme A, the final product of

the fatty acid β-oxidation pathway in peroxisomes is trans-

ported to the mitochondria for the final oxidation to CO2 and

H2O [17]. In this way, peroxisomal fatty acid β-oxidation

demands a functional mitochondrial electron transport chain

for energy production, and either functional peroxisomes and

mitochondria are required for growth in the presence of

oleate [15].

Screenshot depicting results of the analysis of yeast genesFigure 2

Screenshot depicting results of the analysis of yeast genes. The 'Annotation/s' column represents the Gene Ontology codes of annotations found in the list. 
The '# list' and '# reference' columns represent the number of genes in the input list and reference list for a given annotation, respectively. The 'Genes' 
column represents the set of genes in the input list showing a given annotation. The 'Description/s' column represents the textual description of 
annotations. CC refers to 'cellular component' and BP to 'biological process' categories. Only annotations with corrected P values ≤ 0.05 are shown. P 

values were calculated using the hypergeometric distribution and were corrected using the simulation-based approach.
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Human data

To provide a second example of the functionality of GENECO-

DIS, we analyzed a set of 85 human genes expressed in testis

reported by Su and coworkers [18]. This dataset was also used

by Zhang and colleagues [19] to illustrate the performance of

the GOTree Machine (GOTM) software, and therefore it rep-

resents a good test case for our method. Zhang and col-

leagues, using GOTM, reported four main groups of GO

biological process annotations related to the testis gene clus-

ter: categories related to cell proliferation, cell cycle, mitosis,

and meiosis; categories related to testis specific development;

categories related to protein phosphorylation; and categories

related to glycerolipid metabolism.

We used our tool to analyze this set of genes using the GO bio-

logical process categories and InterPro motifs that appear in

at least three genes. The most significant concurrences are

shown in Figure 3. Similar results to those reported by Zhang

and coworkers [19] were obtained by GENECODIS, except for

the case of categories related to glycerolipid metabolism,

which were not extracted because they were present in only

two genes. In addition, GENECODIS was able to provide new

information for the functional interpretation of this set of

genes. For example, the fifth association revealed that a sig-

nificant set of genes in the analyzed list were co-annotated

with 'protein amino acid phosphorylation' and 'cell cycle' GO

biological process categories and contained protein kinase

motifs. The importance of this observation is the explicit con-

nection between 'protein amino acid phosphorylation' and

'cell cycle' categories.

In order to explain the 'protein phosphorylation' category in

the context of the phenotypic feature of the gene cluster,

Zhang and colleagues [19] remarked that, 'spermatozoa

undergo a series of changes before and during egg binding to

acquire the ability to fuse with the oocyte. These priming

events are regulated by the activation of compartmentalized

intracellular signaling pathways, which control the phospho-

rylation status of sperm proteins.'

Results provided by GENECODIS complement this finding

and point out that, in this particular case, the 'protein phos-

phorylation' category is mainly related to proteins that are

involved in cell cycle. Indeed, activation and inhibition of

many key regulators of cell cycle are carried out by phospho-

rylation/dephosphorylation events.

Screenshot depicting results of the analysis of human genesFigure 3

Screenshot depicting results of the analysis of human genes. GENECODIS results from the analysis of Gene Ontology CC ('cellular component') and 
InterPro motifs in the human gene set. Only annotations with corrected P values ≤ 0.05 are shown.
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This finding can be confirmed by examining the genes that

were co-annotated with both categories: CDC2 (Entrez Gene

ID: 983), aurora kinase A (Entrez Gene ID: 6790), NEK2

(Entrez Gene ID: 4751), BUB1 (Entrez Gene ID: 699), and

BUB1B (Entrez Gene ID: 701). All of these have been associ-

ated with testis tissues and cell proliferation events in previ-

ous studies. For example, the NEK2 gene is predominantly

expressed in spermatocytes and appears to be associated with

meiotic chromosomes in these cells [20]; expression of the

gene BUB1B in testis decreases with advancing age, and it

may play a role in regulating infertility [21].

These two examples illustrate the type of information pro-

vided by GENECODIS, which can be useful in helping

researchers to interpret large lists of genes generated by high-

throughput experimental techniques.

Discussion
High-throughput experimental techniques, such as DNA

microarrays, have opened new ways to study biological sys-

tems from a global perspective. In many cases, these tech-

niques generate huge amounts of data in the form of large

gene or protein lists that share a common property, for exam-

ple genes that are differentially expressed among pathologic

and normal tissues. These data can provide a basis for the

characterization of unknown genes, and at the same time they

are also the basis for elucidating the biological processes asso-

ciated with the experimental system. Methods based on the

ontological analysis of such lists of genes have proved to be

very useful tools for the analysis and interpretation of the

underlying biological mechanisms.

However, most of the current applications for functional pro-

filing essentially use the same general approach and generate

statistical scores for single annotations. They mainly differ on

aspects such as the statistical test used, supported annota-

tions and organisms, the gene identifiers that they are able to

manage, and visualization capabilities. Indeed, a relevant

conclusion of a review of such tools recently reported by

Khatri and Draghici [3] was that it would be more beneficial

if future applications expand the current approach rather

than providing endless variations of the same idea.

GENECODIS was designed to expand the biological enrich-

ment of annotations by adding the possibility of extracting

not only single enriched categories, but also significant com-

binations of them. To the best of our knowledge there is no

other tool available in the field that integrates information

from different sources in a flexible way for concurrent enrich-

ment studies. A comparison of GENECODIS with related

tools [1,22-25] and an example with test data [26] is provided

in Additional data file 3. We hope that this tool will help by

complementing available analysis tools for the large genome

research community.

Additional data files
The following additional data are available with the online

version of this article. Additional data file 1 contains an illus-

trative example of the GENECODIS algorithm in operation.

Additional data file 2 contains the results obtained by GENE-

CODIS in the analysis of the yeast and human gene sets. Addi-

tional data file 3 provides a description of a comparative

analysis of the results provided by GENECODIS and other

related tools.

Additional data file 1An illustrative example of the GENECODIS algorithm in operationA file containing an illustrative example of the GENECODIS algo-rithm in operation.Click here for fileAdditional data file 2Results obtained by GENECODIS in the analysis of yeast and human gene setsA file containing the results obtained by GENECODIS in the analy-sis of the yeast and human gene sets.Click here for fileAdditional data file 3Description of a comparative analysis of results provided by GENE-CODIS and other related toolsA compressed file containing a description of a comparative analy-sis of the results provided by GENECODIS and other related tools.Click here for file
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