Downloaded from orbit.dtu.dk on: Aug 27, 2022

DTU Library

=
=
—

i

GeneDMRs: An R Package for Gene-Based Differentially Methylated Regions Analysis

Wang, Xiao; Hao, Dan; Kadarmideen, Haja N

Published in:
Journal of Computational Biology

Link to article, DOI:
10.1089/cmb.2020.0081

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Wang, X., Hao, D., & Kadarmideen, H. N. (2020). GeneDMRs: An R Package for Gene-Based Differentially
Methylated Regions Analysis. Journal of Computational Biology, 28. https://doi.org/10.1089/cmb.2020.0081

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://doi.org/10.1089/cmb.2020.0081
https://orbit.dtu.dk/en/publications/5db66cb1-b6ed-43a1-b872-622ca9ec9577
https://doi.org/10.1089/cmb.2020.0081

JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 28, Number 0, 2021

Mary Ann Liebert, Inc.

Pp. 1-13

DOI: 10.1089/cmb.2020.0081

Research Article

GeneDMRs: An R Package for Gene-Based
Differentially Methylated Regions Analysis

XIAO WANG! DAN HAO?2? and HAJA N. KADARMIDEEN'

ABSTRACT

DNA methylation in gene or gene body could influence gene transcription. Moreover,
methylation in gene regions along with CpG island regions could modulate the transcription
to undetectable gene expression levels. Therefore, it is necessary to investigate the methyl-
ation levels within the gene, gene body, CpG island regions, and their overlapped regions
and then identify the gene-based differentially methylated regions (GeneDMRs). In this
study, R package GeneDMRs aims to facilitate computing gene-based methylation rate
using next-generation sequencing-based methylome data. The user-friendly GeneDMRs
package is presented to analyze the methylation levels in each gene/promoter/exon/intron/
CpG island/CpG island shore or each overlapped region (e.g., gene-CpG island/promoter-
CpG island/exon-CpG island/intron-CpG island/gene-CpG island shore/promoter-CpG
island shore/exon-CpG island shore/intron-CpG island shore). GeneDMRs can also interpret
complex interplays between methylation levels and gene expression differences or simi-
larities across physiological conditions or disease states. We used the public reduced rep-
resentation bisulfite sequencing data of mouse (GSE62392) for evaluating software and
revealing novel biologically significant results to supplement the previous research. In
addition, the whole-genome bisulfite sequencing data of cattle (GSE106538) given the much
larger size was used for further evaluation.

Keywords: differentially methylated regions; DNA methylation; gene-based regions; geneDMRs;
R package.

1. INTRODUCTION

GENERALLY, GENE EXPRESSION IS RESTRICTED by DNA methylation. However, the presence of meth-
ylation in gene or gene body could result in promotion of gene transcription. Irizarry et al. (2009)
revealed the correlation between substantial portion of DNA methylation sites and gene expression along the
genome. DNA methylation in promoters usually restricts the genes in a long-term stabilization of repressed
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states, whereas most gene bodies are also extensively methylated in different status; therefore, methylation
of such regions can be the potential therapeutic targets (Jones, 2012; Yang et al., 2014). CpG islands, regions
of high density of DNA methylation of cytosine and guanine dinucleotides (CpGs), are playing the important
roles in gene regulation and transcriptional repression (Goldberg et al., 2007). Moreover, the shore regions
beyond CpG islands are also involved in modulating gene expression (Doi et al., 2009; Irizarry et al., 2009).

Identifying causal relationships via genotype—phenotype correlations is a substantial challenge, and
many studies across life sciences try to integrate multi-omics data sets in that effort (Suravajhala et al.,
2016). Recently, one of the largest genetic study investigated global gene expression and DNA methylation
patterns in 265 human skeletal muscle biopsies from the FUSION study with >7 million genetic variants.
This integrated approach led to potential causal mechanisms for eight physiological traits: height, waist,
weight, waist—hip ratio, body mass index, fasting serum insulin, fasting plasma glucose, and type 2 diabetes
(Taylor et al., 2019). This underlines the importance of having gene-based methylation rates to integrate
with differential expression or co-expression across physiological and phenotypic or disease states.

Studying DNA methylation patterns in biological samples using next-generation sequencing (NGS)
methods is becoming increasingly common. There are several tools available to detect differentially
methylated cytosine (DMC) [e.g., R package IMA (Wang et al., 2012), MethylKit (Akalin et al., 2012)] or
differentially methylated region (DMR) [e.g., R package COHCAP (Warden et al., 2013), ELMER (Silva
et al., 2018), MethylMix (Gevaert, 2015; Cedoz et al., 2018), Minfi (Aryee et al., 2014), MIRA (Lawson
et al., 2018), RnBeads (Assenov et al., 2014; Miiller et al., 2019)]. These packages mainly focus on specific
differentially methylated regions such as genes (DMGs) from cancer data set (Gevaert, 2015; Cedoz et al.,
2018) or only promoters (DMPs) (Assenov et al., 2014; Miiller et al., 2019). However, detections of DMRs
based on gene body features associated with CpG islands are scarce, such as DMRs in all exons (DMEs)
and introns (DMIs) or a specific exon and intron.

To the best of our knowledge, there are no tools that detect the DMP/DME/DMI/DMG associated with
CpG islands/CpG island shores. We present here a user-friendly R package GeneDMRs (gene-based differ-
entially methylated regions; https://github.com/xiaowangCN/GeneDMRs) to facilitate computing gene-based
methylation rate using NGS-based methylome data. GeneDMRs analyzes the methylation levels in each gene/
promoter/exon/intron/CpG island/CpG island shore or each overlapped region (e.g., gene/promoter/exon/intron
CpG island and gene/promoter/exon/intron CpG island shore). We evaluated GeneDMRs package using the
publicly available reduced representation bisulfite sequencing (RRBS) data from mouse (GSE62392) and
pig (GSE129385), and whole-genome bisulfite sequencing (WGBS) data from cattle (GSE106538).

2. MATERIALS AND METHODS
2.1. Data structure in DNA methylation

Genome-wide DNA methylation analysis is mainly based on three approaches, that is, enzyme digestion,
affinity enrichment, and bisulfite conversion (Laird, 2010). WGBS aims to find the whole methylome
(Frommer et al., 1992), whereas RRBS primarily focuses on the enrichment of CpG-rich regions by rec-
ognizing the CmCGG site after restriction enzyme Mspl digestion (Meissner et al., 2005), but both techni-
ques rely on bisulfite conversion. From WGBS or RRBS data, cytosine site information (e.g., chromosome
and position) and its methylation status can be obtained using available bioinformatics tools. GeneDMRs
package can directly use the resulting methylation coverage file (i.e., .bismark.cov) from Bismark software
(Krueger and Andrews, 2011) or similar file with chromosome, start position, end position, methylation
percentage, number of methylated read, and number of unmethylated read (five or six columns). With such
data set, we provide below the statistical framework to compute gene-based methylation rate.

2.2. Gene-based DMRs and analysis workflow

The gene-based regions could be divided into windows, genes, promoters, exons, introns, CpG islands,
and CpG island shores and their overlapped feature regions including gene-CpG islands, gene-CpG island
shores, promoter-CpG islands, promoter-CpG island shores, exon-CpG islands, exon-CpG island shores,
intron-CpG islands, and intron-CpG island shores (Fig. 1).

The methylation mean of a cytosine site by weighting for one group (a case or control) is calculated by
Equation (1):
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FIG. 1. The analyzed targets in the GeneDMRs package including widows, genes (promoters, exons, introns), CpG
islands (CpGis, Shores), and the overlapped feature regions [e.g., (A) Promoter-Shorel, (B) Exonl-Shorel, (C) Exonl-
CpGi, (D) Intron1-CpGi, (E) Exon2-CpGi, (F) Exon2-Shore2, (A + B) Gene-Shorel (C+D + E) Gene-CpGi, (F + G)
Gene-Shore2]. GeneDMRs, gene-based differentially methylated regions.

MR;
Z?: 1 TR; ,

where MR; and TR; are the methylated and total read numbers at a given cytosine site of individual i, and n
is the total number of individuals in one group.

For a window/gene (promoter, exon, intron)/CpGi/other overlapped region (Fig. 1) of one group, the
methylation mean by weighting is calculated by Equation (2):

er'ﬂ:l MR;;
Z?:l Z}n:l TRij |

where MR;; and TR;; are the methylated and total read numbers of the involved cytosine/DMC j at a given
gene/CpGi/other region of individual i, m is the total number of cytosines/DMCs involved in this region,
and n is the total individual number of one group. For the target region, the cytosine/DMC within the region
is chosen for the methylation mean calculation of each group. Here, the DMCs refer to the DMC sites after
Significant_filter(siteall_Qvalue, qvalue=0.01, methdiff=0.05). Thus, if the users want to use DMCs for
methylation mean, they should filter out the DMCs at first (Fig. 2). This step was also used in our previous
study for methylation difference calculation to discover hyper- and hypomethylated DMGs (Wang and
Kadarmideen, 2019a).
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FIG. 2. Overall workflow of GeneDMRs package.
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Logistic regression model was used to fit methylation levels with the different groups following the
method of R package MethylKit (Akalin et al., 2012):

ln< i >:u+[3T,~, 3)
1—-m;

L

where m; is the methylation mean of a cytosine calculated by Equation (1) or the methylation mean of
a window/gene (promoter, exon, intron)/CpGi/other overlapped region calculated by Equation (2), u is the
intercept, and T; is the group indicator.

More categorical variables can also be incorporated in this model as the additional covariates by Logic_
regression(covariates = NULL). Chi-squared (y?) test was used to determine the statistical significance of
methylation differences among different groups and then to achieve the p-values. To account for multiple
hypothesis testing, p-values of the analyzed cytosines or windows/genes (promoters, exons, introns)/CpGis/
other overlapped regions can be adjusted to Q-values by various methods, for example, ‘‘bonferroni,”
“holm”” (Holm, 1979), “hochberg” (Hochberg, 1988), “hommel’’ (Hommel, 1988), “BH’’ (Hochberg, 1995),
“fdr”’ (Hochberg, 1995), and “BY”’ (Benjamini and Yekutieli, 2001).

Differentially methylated windows or gene-based DMRs or DMCs (Fig. 2) are mainly filtered by
Q-values and methylation level differences between two groups, for example, Significant_filter(qvalue =
0.01, methdiff=0.05). The methylation difference can be calculated in Logic_regression(diffgroup=
c(“‘groupl”, “‘group2’’)) by selecting any two groups. The DMGs can be defined as the hyper-/
hypomethylated genes when the methylation differences are positive/negative after case—control compar-
isons (e.g., group2—groupl). Therefore, DMRs for specific regions are detected, such as genes (DMGs),
promoters (DMPs), exons (DMEs), introns (DMlIs), CpG islands (DMCpGis), CpG island shores
(DMShores), and the overlapped regions such as gene-CpG islands (DMG-CpGis), gene-CpG island shores
(DMG-Shores), promoter-CpG islands (DMP-CpGis), promoter-CpG island shores (DMP-Shores), exon-
CpG islands (DME-CpGis), exon-CpG island shores (DME-Shores), intron-CpG islands (DMI-CpGis), and
intron-CpG island shores (DMI-Shores; Fig. 2). Furthermore, the ordinal positions of exons and introns
were identified for each gene, which can be used in the further analysis, for example, the correlations of
methylation levels between all promoters and all first exons (Wang and Kadarmideen, 2020). The overall
workflow of GeneDMRs package includes file input, quality control (QC), methylation mean calculation,
statistical test, significant filter, and results visualization (Fig. 2).

2.3. Application to real data

The RRBS data for testing the package were download from Gene Expression Omnibus (GEO) with
the accession number GSE62392 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62392). The
downloaded data were originally generated from RRBS of sorted common myeloid progenitor (CMP)
populations that were isolated from three pools of GO as control group and two pools of G5 as case group of
mice samples (Colla et al., 2015). Mouse data here are used as an example, and GeneDMRs package is
applicable to all species. We applied several pre and postmapping QC to these data as follows. Adapters
and reads less than 20 bases long of RRBS data were trimmed by Trimmomatic software (version 0.36)
(Bolger et al., 2014). The clean reads were mapped to the mice reference genome by Bowtie 2 software
(version 2.3.3.1) (Langmead and Salzberg, 2012). The house mouse (Mus musculus) reference ge-
nome (mm10) used in this study was downloaded from the University of California Santa Cruz (UCSC)
website (http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/mm10.2bit). The .2bit file was subse-
quently converted to .fasta file by twoBitToFa software (http://hgdownload.cse.ucsc.edu/admin/exe/
linux.x86_64/twoBitToFa). Finally, read coverages of detected methylated or unmethylated cytosine sites
and their methylation percentages were obtained by using Bismark software (version 0.19.0) (Krueger and
Andrews, 2011).

2.4. Input and QC

The resulting methylation coverage files from Bismark software of five mouse RRBS data were directly
used as input in GeneDMRs package. The public mouse (mm10) bed file (i.e., .bed) for Reference Sequence
(refseq) and CpG island (cpgi) database was downloaded from the UCSC web site (http://genome.ucsc.edu/
cgi-bin/hgTables). RefSeq and CpG island bed files were used as input files in GeneDMRs package, which
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then can output four files (inputrefseqfile, inputcpgifile, inputgenebodyfile, and inputcpgifeaturefile) by
altering the feature parameter in the file reading function, for example, Bedfile_read(feature =TRUE/
FALSE). Bedfile_read() function divides each gene of refseq bed file into four gene body features (i.e.,
promoters, exons, introns, and TSSes) and each CpG island of cpgi bed file into two CpG island features
(i.e., CpG islands and CpG island shores) based on R package genomation (Akalin et al., 2015). Moreover,
Bedfile_read() function annotates specific gene to each promoter. If the strand of one promoter is ““+/*‘—,”
the middle position of this promoter will be the start/end position of the matched specific gene. However,
for the specific genes with more than one National Center for Biotechnology Information (NCBI) ID,
GeneDMRs package will choose the first one. For example, the adenosine Al receptor gene (Adoral) has
four NCBI IDs (i.e., NM_001291930, NM_001282945, NM_001039510, and NM_001008533) and only
the first ID (NM_001291930) will be chosen.

When a polymerase chain reaction experiment suffers from duplication bias, some clonal reads will
impair accurate determination of methylation (Akalin et al., 2012). In addition, lower read coverages (e.g.,
lower than 10) will cause the biases for methylation percentage calculation (Wang and Kadarmideen,
2019b). Therefore, cytosines with a percentile of read coverage higher than the 99.9th and read cover-
ages lower than 10 were discarded for the qualified reads by Methfile_ QC(high_quantile=99.9, low_
coveragenum = 10).

2.5. Biological enrichment for the DMGs

The enrichments of gene ontology (GO) terms and pathways for DMGs were analyzed and visualized by
Enrich_plot(enrichterm=c(““GO”’, “‘pathway’’), category =TRUE/FALSE) based on R package cluster-
Profiler (Yu et al., 2012). If the category =TRUE, the enrichment will display in hypermethylated and
hypomethylated categories. In addition, the differentially expressed genes (DEGs) with Log fold change
(LogFC) information can also be used in Enrich_plot(expressionfile_significant=NULL), then the visu-
alized enrichment will be in four categories that are hyper-/hypomethylated and up-/downregulated genes.
The up-/downregulated DEG can be defined when the LogFC is positive/negative. Here, we use the
previous results for multiple-category enrichments that are downregulated and upregulated genes in G4/GS5
compared with GO CMP (fdr <0.05) of mice samples (https://ars.els-cdn.com/content/image/1-s2.0-
S51535610815001403-mmc2.xlsx) (Colla et al., 2015).

3. RESULTS AND DISCUSSION
3.1. Comparisons of different R packages for methylation analysis

Currently, a series of R packages can analyze methylation data to detect DMCs or DMRs (Table 1). Most
of them are not, however, completely focusing on the regions in genes or within gene bodies or CpG
islands, and hence, GeneDMRs package could be a complementary tool. As shown in Table 1, ELMER
package reconstructs altered gene regulatory network by combining enhancer methylation and gene
expression (Silva et al., 2018). IMA (Wang et al., 2012) and MethylKit (Akalin et al., 2012) aim at genome-
wide cytosine sites analysis for BeadChip and RRBS data, respectively. Generally, COHCAP, methy-
Analysis, MethylationArrayAnalysis, and Minfi are packages for specific purposes, where COHCAP refines
the region boundaries for the consistent methylation patterns through a clustering step (Warden et al.,
2013), methyAnalysis applies CpG island information to visualize in the heat map plot, and Minfi can find
the hypomethylation blocks (Jaffe et al., 2012; Aryee et al., 2014). If considering methylated genes,
MethyIMix package mainly focuses on identifying disease specific hypo- and hypermethylated genes, and it
defines the methylation difference of a methylation state with the normal methylation state (Gevaert, 2015;
Cedoz et al., 2018), whereas RnBeads package could consider the gene, gene promoter, CpG island, and
genomic tiling regions (Assenov et al., 2014; Miiller et al., 2019). Overall, none of these R packages works
for gene components, but GeneDMRs package is extended to exon and intron regions, and their interactions
with CpG island features.

The performance of the package was tested in a personal computer (CPU: 2.70 GHz, RAM: 8.00 GB)
comparing with MethylKit package (Akalin et al., 2012). For all reference genes (n=31,702) of mouse
RRBS data with around 0.7 million analyzed CpG sites, GeneDMRs package took around 15 minutes while
gene body interacted with CpG island required the longest time; thus, the performance of the package is
generally related to the number of analyzed targets (Fig. 3). In addition, we applied another two data sets
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TABLE 1. COMPARISONS OF DIFFERENT R PACKAGES FOR METHYLATION ANALYSIS

R package Target Analysis feature Issued time
COHCAP (Warden et al., Site and region of Identify differentially methylated CpG islands 2013
2013) differential and show the consistent methylation patterns
methylation among CpG sites by refinement of region
boundaries through a clustering step
ELMER (Silva et al., DMR Reconstruct altered GRN by combining 2018
2018) enhancer methylation and gene expression
IMA (Wang et al., 2012)  Site-level and region-level Summarization for individual site as well as 2012
methylation annotated region
methyAnalysis DMR Chromosome location-based DNA methylation 2018
analysis and heat map plot with CpG island
MethylationArrayAnalysis Probe-wise differential Differential variability analysis, estimating cell- 2019
methylation and DMR type composition and gene ontology testing
MethylKit (Akalin et al.,  Base or region of DNA Functions for clustering, sample quality 2012
2012) methylation visualization, differential methylation
analysis, and annotation feature
MethylMix (Gevaert, DMR of gene Automate the construction of DNA methylation 2015/2018
2015)/MethylMix 2.0 and gene expression data set from TCGA
(Cedoz et al., 2018)
Minfi (Jaffe et al., 2012; DMP and bump hunting  Block finding to identify hypomethylation block 2014
Aryee et al., 2014) of DMR
MIRA (Lawson et al., DMR Take advantage of genome-scale DNA 2018
2018) methylation data to assess regulatory activity
RnBeads (Assenov et al., DMR of gene/promoter/  DNA methylation-based prediction of age and  2014/2019

2014)/RnBeads 2.0
(Miiller et al., 2019)

CpG island sex; LOLA-based region set enrichment

analysis for biological interpretation

DMP, differentially methylated position; DMR, differentially methylated region; GRN, gene regulatory network; TCGA, The
Cancer Genome Atlas.

given the much larger size using the same parameters as mouse data set for performance test. One was
download from GEO with the accession number GSE129385 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE129385) that is also RRBS sequencing data from nine porcine testis samples (Wang
and Kadarmideen, 2019a, 2020). Another one was downloaded from GEO with the accession number
GSE106538 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE106538) that is WGBS sequencing

600
1

Gene bod! x 46244)

500

400

Minute

Gene body (n = 499860)

200
1

Gene * CpG island (n = 31702 x 46244)

Gene (n= 31702) CpG islands(n = 46244) Cytosine lethylKit)

T T T T T
1 2 3 4 5 &

Scenario

FIG. 3. The performance of GeneDMRs package.
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data from four bovine sperm samples (Zhou et al., 2018; Fang et al., 2019). For all reference genes (n=4475)
and all gene bodies (n=77,022) of porcine RRBS data with around 1 million analyzed CpG sites, GeneDMRs
package completed the whole DMR detections in around 1 minute and 1 hour, respectively. While using
bovine WGBS data for all reference genes (n=14,391) analysis with around 7 million sites, it only needed 10
minutes. When increasing the analyzed targets for all gene bodies (n=279,903), the analyzing time increased
to 3 hours. However, keeping all the raw sites ~50 million, 6 hours or longer time were required for all
reference genes or gene bodies.

3.2. DMG-based regions and cytosine sites

Five methylation coverage files from Bismark software were used in GeneDMRs package, and their sta-
tistical summary is listed in Supplementary Table S1. The GeneDMRs package will automatically read the files
with the file name such as “1_1,” “1_2,” “2_1,” and “2_2” for group and replicate numbers. The meth-
ylation patterns of all genes and DMGs in different CpG island regions by Group_cpgfeature_boxplot() and
Genebody_cpgfeature_boxplot() are shown in Supplementary Figure S1. Results suggest that the methylation
levels of DMGs were higher than before, and they are the same of CpG islands lower than shores (Supple-
mentary Fig. S1). All data sets for genes (regiongeneall_Qvalue), genes with CpG island features (region
geneall_cpgfeature_Qvalue), gene bodies with CpG island features (genefeatureall_cpgfeature_Qvalue), and
cytosine sites (genefeatureall_cpgfeature_Qvalue) are listed in Supplementary Files S1-S4, respectively.
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FIG. 5. Circular graph of the global methylation levels. From the outermost track to innermost circle, the circles
indicate genome chromosomes (i.e., mouse), DMGs, gene densities, CpG island densities, CpG island shore densities,
and methylation levels. The densities and methylation levels were calculated by 1,000,000bp windows, that is,
Window_divide(windowbp = 1000000).
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The methylation difference of all cytosine sites involved in the gene was centralized to a mean, so
statistical power seemed be lower than before (Fig. 4 and Supplementary Fig. S2). In addition, GeneDMRs
package can detect various gene body regions (e.g., promoter, exon, and intron), CpG island regions (e.g.,
CpGi and shore regions), and their overlapped regions by Methmean_region(cpgifeaturefile =inputcpg
ifeaturefile/NULL, featureid= ‘‘c(‘‘chr1’’,*“chr2’’)/all/alls”’, featurename=c(‘‘promoters’’,‘‘exons’’,*‘in-
trons’’,*“TSSes’”)/c(“‘CpGisland”, *“‘Shores’”)).

According to these results, we found that DNMT3A was a hypomethylated gene (NM_001271753), but
the gene and one intron interacted in both CpG island and shore features were in hypermethylation status
when G5 CMP was compared with GO CMP (Supplementary Files S1-S3). Therefore, GeneDMRs package
can accurately find significantly and biologically methylated gene body and CpG island regions along the
whole genome and supplement the previous research (Colla et al., 2015).

If we only use the DMCs to recalculate the methylation mean by replacing the cytosine sites, that is,
DMC_methfile_QC(inputmethfile_QC, siteall_significant), the methylation difference will be more obvi-
ous than before (Supplementary Fig. S3). The global DMC-based methylation levels (Fig. 5) can be real-
ized by Circos_plot(inputcytofile, inputmethfile_QC, inputrefseqfile, inputcpgifeaturefile) based R package
RCircos (Zhang et al., 2013).

3.3. Biological enrichment for DMGs

The enrichments for groups, GO terms, and pathways can be analyzed and visualized with/without
categories following R packages clusterProfiler (Yu et al., 2012). For example, the GO terms can be vi-
sualized in no/one/two categories (Fig. 6) by incorporating hyper-/hypomethylated and up-/downregulated
gene information. Thus, based on the DMGs and enrichments for GO term and pathway, GeneDMRs
package can help to detect the specific significant regions, reveal the biological mechanism, and enhance
the previous studies that methylation pattern changes in specific regions were involved in causing diseases
(Colla et al., 2015).

4. SUMMARY

Currently, there is no easy-to-use R package that could compute methylation levels at gene-based level.
GeneDMRs, a user-friendly R package, can facilitate computing gene-based methylation rate using NGS-based
methylome data. This package aims to analyze the methylation levels in gene/promoter/exon/intron/CpG
island/CpG island shore and their overlapped regions. Then, the differentially hyper-/hypomethylated genes
can be visualized for enrichments of GO terms and pathways and reveal the biological mechanism accord-
ingly. Such gene-based methylation analyses contribute to interpreting complex interplay between methylation
levels and gene expression differences or similarities across physiological conditions or disease states.

AVAILABILITY AND IMPLEMENTATION

GeneDMRs is freely available at https://github.com/xiaowangCN/GeneDMRs
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