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ABSTRACT

Co-expression networks have proven effective at as-

signing putative functions to genes based on the

functional annotation of their co-expressed partners,

in candidate gene prioritization studies and in im-

proving our understanding of regulatory networks.

The growing number of genome resequencing efforts

and genome-wide association studies often identify

loci containing novel genes and there is a need to in-

fer their functions and interaction partners. To facil-

itate this we have expanded GeneFriends, an online

database that allows users to identify co-expressed

genes with one or more user-defined genes. This

expansion entails an RNA-seq-based co-expression

map that includes genes and transcripts that are

not present in the microarray-based co-expression

maps, including over 10 000 non-coding RNAs. The

results users obtain from GeneFriends include a co-

expression network as well as a summary of the func-

tional enrichment among the co-expressed genes.

Novel insights can be gathered from this database

for different splice variants and ncRNAs, such as mi-

croRNAs and lincRNAs. Furthermore, our updated

tool allows candidate transcripts to be linked to dis-

eases and processes using a guilt-by-association ap-

proach. GeneFriends is freely available from http:

//www.GeneFriends.org and can be used to quickly

identify and rank candidate targets relevant to the

process or disease under study.

INTRODUCTION

The rapid expansion of microarray data over the past
decade has resulted in large repositories which have been
employed in various meta-analyses. This has led to a better
understanding of many biological processes and the iden-
ti�cation of gene functions, biomarkers and targets for sev-
eral diseases (1–3). Co-expression is a type of meta-analysis,
which describes the expression of genes relative to each
other and has been used for over a decade (4). This method

has proven effective at assigning putative functions to genes
based on the functional annotations of the genes they are
co-expressed with, as well as better understand the under-
lying regulatory networks (5–8). Examples of tools utilizing
co-expression data derived from public databases are Gene-
Friends (see below), COXPRESdb, CORNET, mouseMap,
Genevestigator and STARNET2 (9–15). All of these works
have used microarray data to construct co-expression net-
works, albeit using different metrics and approaches. Co-
expression analyses have identi�ed novel genes to be in-
volved in diseases such as cancer (8,16), schizophrenia (17)
and type 2 diabetes (18), or processes such as stem cell reg-
ulation (19) and the cell cycle (20).
Transcriptome sequencing (RNA-seq) is a powerful and

emerging technology that allows researchers tomeasure dif-
ferential expression of genes more accurately than when us-
ing microarrays (21). Like microarray databases, RNA-seq
databases are growing exponentially (Figure 1) (22), creat-
ing the opportunity for meta-analyses similar to those con-
ducted using microarrays, such as co-expression analysis.
RNA-seq also measures expression of different splice vari-
ants and non-coding RNAs (ncRNAs), which can play im-
portant roles in gene expression regulation (23,24). The ap-
proximately 20 000 human genes only make up a small por-
tion of the over 60 000 coding and non-coding RNAs (25)
that encode the over 200 000 transcripts measured using
RNA-seq (26), which greatly increases the challenges faced
by researchers when interpretingRNA-seq results. A bottle-
neck in RNA-seq analyses is that even though a large num-
ber of transcripts can be detected as differentially expressed,
often many have not been well studied. It is frequently un-
clear what possible functions poorly studied genes, specially
non-coding ones, may have. As such, interpreting results
from RNA-seq experiments and understanding the mech-
anisms involved in the disease or process under study is of-
ten impeded. Given the growing community of researchers
employing RNA-seq, there is an unmet need for resources
that help interpret results from such experiments.Moreover,
the growing number of genome resequencing efforts and
genome-wide association studies often associate loci con-
taining poorly studied genes, such as ncRNAs, with dis-
eases and traits (27,28), and there is a need to infer putative

*To whom correspondence should be addressed. Tel: +44 151 7954517; Fax: +44 151 7954408; Email: jp@senescence.info

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 b
y
 g

u
est o

n
 Jan

u
ary

 1
8
, 2

0
1
5

h
ttp

://n
ar.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://www.GeneFriends.org
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, Database issue D1125

Figure 1. Exponential growth curve (log scale) of RNA-seq data taken
from the Short Read Archive (SRA) (25).

functions and interaction partners of new candidate genes
(27,29).
Given the rapidly evolving sequencing technologies, there

are now more RNA-seq samples available than there were
microarrays at the time of the construction of the �rst
widely used plant (30) and mammalian (31) co-expression
websites. Recently the �rst co-expression analysis using
RNA-seq data was conducted using 21 striatal samples and
showed that co-expression networks created from RNA-
seq data are more robust than those created from microar-
ray data (32). This co-expression map, however, is striatal-
speci�c and is not available online to the research com-
munity. No RNA-seq-based co-expression database is cur-
rently available for humans or for biomedical models (co-
expression tools like CORNET, Genevestigator and COX-
PRESdb are based on microarray data). In this work, we
developed the �rst online RNA-seq co-expression database
for the bioscience community.
We had previously created an online co-expression anal-

ysis platform using over 3000 microarray data sets to facil-
itate the identi�cation of candidate gene targets based on
a user-de�ned list of disease- or process-related genes (13).
This tool, entitled GeneFriends, can be used to assign pu-
tative functions to poorly studied genes using a guilt-by-
associationmethod (i.e. by investigatingwhich genes a given
poorly-studied gene is co-expressed with); it can also iden-
tify and prioritize novel candidate genes for further study
based on a seed list of genes associated with a given dis-
ease or process, effectively allowing researchers to identify
novel genes related to their study without the need for con-
ducting amicroarray orRNA-seq experiment. This tool has
been successfully used to identify novel cancer-related genes
that were validated experimentally (13). Whilst many tools
are available to identify the function of genes and associate
new genes with a seed list based on different interaction
data (15,33–35) information on interaction of non-coding
RNAs is more limited. Therefore in this work we have cre-
ated and integrated into GeneFriends a co-expression map
constructed from RNA-seq data, which allows for a bet-

ter understanding of the regulatory patterns of ncRNAs
in relation to mRNAs. Since RNA-seq allows researchers
to assess the expression of different transcripts rather than
only the gene level expression, we have also constructed a
transcript co-expression map. This is particularly of interest
since different transcripts originating from the same gene
can have different functions (36) and co-expression is an
easy way to detect different expression partners, suggesting
different functionality.
Understanding the regulated and coordinated changes

that occur between ncRNA and coding (inc. splice variants)
expression may reveal novel important players in biological
processes and diseases. Furthermore, RNA-seq has a larger
dynamic range and measures expression of more genes in-
cluding those previously un-annotated. These include ncR-
NAs such as microRNAs and long intergenic non-coding
RNAs (lincRNAs), which may be crucial in understand-
ing themechanisms behind disease and biological pathways.
This co-expressionmap allows these RNAs to be associated
with known genes for inferring their function as well as with
diseases, processes and pathways, leading to new associa-
tions that can be further investigated experimentally. Gene-
Friends is freely available on http://www.genefriends.org.

CONSTRUCTION OF THE RNA-SEQ-BASED CO-
EXPRESSION MAP

The RNA-seq-based addition to GeneFriends represents
two co-expression maps: one containing genes (both coding
and non-coding) and the other containing transcripts. The
RNA-seq-based co-expression map was constructed using
4133 quality-controlled RNA-seq samples across 240 stud-
ies obtained from the SRA database (37) (Supplements 1).
Our aim is to create a co-expressionmap that de�nes the be-
havior of genes under different circumstances (Supplements
1). For condition-speci�c genes a co-expressionmap created
from a smaller set of samples may result in a more accurate
result (14,38), but this is not the purpose of this tool, which
is aimed at identifying the general role and associations of
genes and transcripts.
Each sample complied with the following criteria:

1. Measured using the Illumina HiSeq2000 platform (al-
though in future updates we anticipate also incorporat-
ing more recent platforms, like HiSeq2500)

2. Contained at least 10 million reads
3. Used a cDNA library preparation protocol
4. A minimum of 60% of the reads mapped to the Ensembl

GRCh37 human genome (25)

The samples were mapped using STAR (39) and read
counts per gene were determined by a custom Java pro-
gram named ReadCounter. We opted to create our own
counting tool since the widely used HTseq tool (40) was
too slow for our purposes. ReadCounter is more ef�cient
running approximately 3-fold faster on a single core (not
shown). Additionally ReadCounter utilizes multithreaded
technology which, using eight cores on our system, resulted
in a 15–20-fold faster runtime. For benchmarking, Read-
Counter has extra options that allow results to be identi-
cal to those obtained from HTseq, albeit at a much faster
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rate. Moreover, ReadCounter can more accurately assess
the gene of origin in case multiple genes are overlapping on
the genome, utilizing the overlap size of the reads with the
different genes in a certain region. This advantage has been
utilized when constructing our co-expression map. Further-
more, ReadCounter has another advantage of automati-
cally counting the number of reads mapping to introns as
well as reporting ambiguously mapping genes in a sepa-
rate column. ReadCounter is written in Java and can be
run using a command line in the terminal or command
prompt (Mac/Linux/Windows) without the requirement
for installation. The tool is free to use and publicly avail-
able at http://www.genefriends.org/ReadCounter. A more
elaborate description is included on the website. To de�ne
the gene regions, the Homo sapiens.GRCh37.75.gtf anno-
tation �le was used which is based on the human genome
assembly 37 (41). For normalization, the expression per
gene/transcript was divided by the combined expression of
all genes/transcripts per sample (note that reads that do
not map to genes are excluded from the normalization pro-
cedure). The resulting data were used to construct the co-
expression maps.
To create our co-expression maps, we employed the

same approach that coXPRESDB used to construct their
microarray-based co-expression map (31). For each possi-
ble gene pair combination, a weighted Pearson correlation,
based on sample redundancy, was calculated. The sample
redundancy is calculated based on the number of similar
samples in the dataset, and the sample similarity is mea-
sured by the correlation between samples (http://coxpresdb.
hgc.jp/help/coex cal.shtml) (30). Next, a mutual rank was
calculated based on the ranking of each gene with its part-
ner. Themutual rank is the average rank of geneA to gene B
and gene B to gene A. This causes genes, such as ribosomal
genes, that are strongly co-expressed with many other genes
to have a lower ranking. This is preferred since these genes
are often not of interest for functional enrichment analysis
or candidate gene prioritization.

DATABASE CONTENT AND USER GUIDE

The GeneFriends database, constructed from RNA-seq
data, contains co-expression data for 44 248 human genes
and for 114 936 transcripts. Transcripts/genes that were not
expressed (expression< 10 reads) in at least 10% of the sam-
ples were excluded from the co-expression map. As a result,
19 430 out of 63 678 genes and 100 234 out of 215 170 tran-
scripts were excluded. A list of the types of genes found in
the co-expression map are shown in Table 1.

To employ GeneFriends the user can submit one or mul-
tiple gene/transcript IDs. The results then contain the fol-
lowing sections: (i) a list of the 50 strongest co-expressed
genes and the corresponding HGNC annotation for each
gene; (ii) a list of the 25 strongest co-expressed transcription
factors; (iii) top 20 functional enrichment categories of the
co-expressed list of genes, including GO (42), KEGG (43)
and OMIM (44). To assess functional enrichment among
the co-expressed genes, DAVID web services (45) are used,
which is a commonly used tool to assess overrepresenta-
tion of functional categories among a list of genes. To
obtain the DAVID web results the top 1500 co-expressed

Table 1. List of genes present in the co-expression maps

Genes Transcripts

protein coding 18658 82528
pseudogene 9483 9888
lincRNA 4997 6221
antisense 4537 6476
miRNA 1024 1017
snRNA 819 814
snoRNA 444 448

A more detailed list can be found in Supplements 9.

genes/transcripts are used (or fewer if there are fewer genes
signi�cantly co-expressed (cutoff P-value < 10−6; since cor-
rection for multiple testing using the Bonferroni correction:
0.05/44248 = 1.12*10−6 (13)). Additionally, full lists can be
downloaded, as well as a network �le that can be imported
into Biolayout (46) or Cytoscape (47) for visualization and
further analyses. Lastly, there is an option to download the
functional enrichment of those genes that have an expres-
sion pattern which negatively correlates with the expres-
sion of the gene(s) of interest, thus those genes with an op-
posing expression pattern. This is especially interesting for
genes/RNAs that downregulate expression of others. Fur-
ther details can be found on http://www.GeneFriends.org/
RNAseq/about/. A graphical overview of the steps involved
in retrieving results from GeneFriends is depicted in Fig-
ure 2.

GENE CO-EXPRESSION VALIDATION

To validate our co-expression map and determine the ex-
pected false positive rate associated with the calculated
Pearson correlations, we scrambled the data and recon-
structed the co-expression map. In a previous work we used
the top 5% co-expressed genes to investigate functional
enrichment as opposed to a co-expression strength cut-
off to avoid biases against genes with lower co-expression
strengths. To be consistent we used the same approach in
this work. To inspect the expected false positive rate us-
ing this cut-off, we assumed the values in the co-expression
map created from scrambled data as negatives, represent-
ing those values that associate with genes that are not
co-expressed. The co-expression values present in the co-
expression map created from the true data represent the
positives. From this we constructed an ROC curve (Supple-
ments 2) and calculated that at a sensitivity of 95% the ex-
pected false discovery rate is 4.4%, which occurs at a Pear-
son correlation > 0.12. The ROC space was 98.3% suggest-
ing that in the top 5% there is a clear distinction between
the false positives and the true positives (Supplements 2).
One of the two main purposes of GeneFriends is that

users can input a poorly annotated gene or transcript and
utilize the functional enrichment of co-expressed genes to
associate it with speci�c biological processes. To validate
this approach, we tested nine genes for which the functions
are well established. We previously used this approach to
validate our microarray-based co-expression map (13) and
decided to use the same set of genes. We initially picked
three categories: cell cycle, immune system and fatty acid
metabolism and picked three genes which we expected co-
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Figure 2. A graphical overview of the steps involved in retrieving results from GeneFriends: (1) Insert genes (2) Validate input (3) Retrieve co-expressed
genes (4) Investigate functional enrichment (5) Visualize network of co-expressed genes using Bioloayout (6) Use Biololayout to select the network of
interest selecting different thresholds.
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expressed partners to be functionally enriched for these
categories based on known associations. As a result we
postulated the following genes to associate with these cat-
egories; the cell cycle: CDC6, CDC7, CDCA8; the im-
mune system: IL10, CD4, CD8; fatty acid metabolism:
ACADM, PPARA, ACAA2 (Supplements 3). We used
DAVID (45,48) to identify functional enrichment among
the top 5% co-expressed genes. For all genes this showed sig-
ni�cant enrichment for the predicted categories, supporting
the notion that this approach can be used to elucidate which
processes poorly annotated genes play a role in. Moreover,
for some genes the more speci�c roles, such as mitochon-
drial oxidation for ACADM and ACAA2 within these gen-
eral processes, showed the strongest enrichment, which are
annotated to these speci�c categories (42). Others such as
PPARA, that are known to be associated with a wider range
of processes (49,50), showed enrichment also for these other
processes, underlining the potential of this approach. From
these results, we conclude that co-expression results ob-
tained from GeneFriends can be used to predict the pro-
cesses the genes/transcripts are associated with.

We also compared the co-expressed gene lists from the
RNA-seq-based co-expression map to our previously con-
structed microarray-based map (13). Unlike the RNA-seq-
based map, the microarray version was created using a
vote counting approach and includes a wider range of
data with data from over 4000 experiments rather than
the 240 included in the construction of the RNA-seq ver-
sion. Although these 240 studies describe a wide range
of conditions, certain conditions might be overrepresented
in sample numbers. We counted the prevalence of terms
in the summaries of each sample (Supplements 1) and
used Wordl, an application to visualize the prevalence of
words in text (http://www.wordle.net/) (Supplements 4).
We found the most prevalent terms are ‘stem’ and ‘lym-
phoblastoid’ which were present in 723/4133 (17.6%) and
716/4133 (17.3%) sample summaries, respectively. There
was no strong over representation for any disease related
terms with ‘cancer’ (259 samples) being the most preva-
lent. Since co-expression data have been reported to be
tissue- and condition-dependant (14,51), we anticipate dif-
ferences between microarray- and RNA-seq-based maps.
Although the expression ratios of the microarray version
cannot be directly compared to the Pearson correlation or
mutual rank calculated for the RNA-seq version, it is still
possible to compare the ranking of each gene to one an-
other. Only genes present in both co-expression maps were
included in this analysis. Doing so for the nine genes de-
scribed above showed an average overlap of 27% (stdev 9%)
of the top 5% co-expressed genes in the microarray with
the top 5% co-expressed genes in the RNA-seq version (Ta-
ble 2). This supports the notion that the co-expressionmaps
are dependent on the data they are constructed from. Nev-
ertheless either co-expressionmap proves effective at detect-
ing the correct functional enrichment for the nine annotated
genes, suggesting that the different co-expressed genes asso-
ciate with the same or similar functional categories.

Table 2. Overlap of the microarray-based co-expression compared to the

RNA-seq-based co-expression

Top 5% vs Top 5%

ACAA2 24%
ACADM 24%
CD4 39%
CD8A 34%
CDC6 31%
CDC7 31%
CDCA8 25%
PPARA 9%
IL10 17%

A more elaborate table can be found in Supplements 10.

NCRNA VALIDATION

To investigate if it is possible to use GeneFriends to pos-
tulate the function of non-coding RNAs, we investigated
the functional enrichment of genes co-expressed with 3 an-
notated non-coding RNAs. One non-coding RNA, EVF-2,
known to cooperate with DLx2 which plays a critical role
in neuronal differentiation and migration as well as cran-
iofacial and limb patterning during development (52) and
two lincRNAs: XIST, a lincRNA active during embryoge-
nesis and associated with X-chromosome inactivation (53)
and HOTAIR, a lincRNA that is required for silencing of
HOXD genes which if absent causes severe limb and genital
abnormalities (54,55).

We found that genes co-expressed with EVF-2
(ENSG00000231764) are strongly enriched for synaptic
transmission (1.61E-50) and neuron projection (1.71E-
44) (Supplements 5), which is in accordance with our
expectations (Bonferroni corrected P-values are marked
in brackets). XIST was enriched for embryogenic mor-
phogenesis (1.75E-3) and was most strongly enriched for
co-expression genes that are involved in transcription
(9.10E-57), cell cycle (1.70E-18), chromosome organization
(2.33E-21) and zinc �nger regions (5.72E-35) (Supplements
5), which are terms we would expect to observe during
embryogenesis. We found the co-expressed genes for HO-
TAIR were enriched for the HOX homeodomain (2.37E-3)
and are most strongly enriched for the functional term
spermatogenesis (1.72E-13) and reproduction (1.94E-16)
(Supplements 5). These results support the notion that
GeneFriends can be used to predict functions of ncRNAs.
Since we were curious if functional enrichment could also

be detected for genes for which no functional annotation is
yet available we also randomly selected poorly annotated
genes until we found three with signi�cant functional en-
richment. As a result we tested four genes and found signif-
icant enrichment for functional categories for three of these
genes (Supplements 6), supporting the notion that Gene-
Friends can assign putative roles to these poorly-studied
genes. The following functional enrichment was found for
these three genes, which are all genes that have been as-
sociated with the lncRNA class (Bonferroni corrected P-
values marked in brackets): ENSG00000271947, synapse
(3.23E-29); ENSG00000258776, visual perception (4.22E-
69); ENSG00000232862, sexual reproduction (5.19E-21).
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TRANSCRIPT-SPECIFIC CO-EXPRESSION

Since one of the bene�ts of the RNA-seq-based co-
expression map is that it also contains transcripts, we in-
vestigated if it is possible to differentiate between the func-
tion of different transcripts originating from the same gene.
To this end we have selected a gene that has multiple
transcripts, with different co-expression partners, that are
known to be involved in different processes: MACF1. This
is a protein that binds to actin and microtubules (56) and is
important for cell motility (57–59).
We identi�ed the two transcripts with the least overlap-

ping partners, ENST00000360115 and ENST00000482035,
which shared only 80 out of the 5747 (top 5%) co-expression
partners. We next investigated the functional enrichment
for the co-expressed transcripts of the two transcripts orig-
inating from the same gene. We found that the functional
enrichment shows different categories. The top 5% co-
expression partners of the ENST00000360115 transcript
showed strong enrichment for the GO terms (Bonfer-
roni corrected P-values are marked in bracket) ‘synapse’
(2.46 E-27) and ‘neuron projection’ (3.88E-21) whereas
ENST00000482035 partners show strong enrichment for
‘regulation of cell motion’ (8.19E-12) and ‘extracellular ma-
trix’ (7.82E-14). The top categories that ENST00000360115
was associated with were not present in the enrichment re-
sults for ENST00000482035 and vice versa (Supplements
7). This shows that there can be a clear distinction between
the co-expression results obtained fromdifferent transcripts
originating from the same gene and that it is possible to pos-
tulate which genes encode transcripts that lead to proteins
involved in different processes.
Next we aimed to identify how often transcripts originat-

ing from the same gene are co-expressed with different tran-
scripts. Doing so for each gene) resulted in 294 829 compar-
isons. Of these 294 829 comparisons, 123 650 have less than
10% of overlapping transcripts in the top 5% co-expressed
transcripts. This suggests that different transcripts arising
from the same gene are often expressed under different con-
ditions and are likely to play roles in different processes or
maybe some are non functional transcripts.

GENE SET CO-EXPRESSION

The second purpose of GeneFriends (13) is that users can
submit a list of genes or transcripts associatedwith a speci�c
disease or biological process to �nd other genes/transcripts
associated with it. This is particularly of interest with
the RNA-seq-based co-expression map as it contains non-
coding genes which may play crucial roles in understanding
the mechanisms underlying these diseases/processes.
Similar to our previous analysis (13), we used a set

of causative cancer genes (60) and identi�ed genes co-
expressed with this list of genes. Interestingly, this in-
cluded a number of genes that one would not �nd in any
microarray-based co-expression map. Using this approach
83 pseudogenes, one microRNA (microRNA 4444–1) and
two antisense RNAs (EMC3-AS1, UBL7-AS1) were as-
sociated with the cancer seed list (Supplements 8). Genes
co-expressed with microRNA 4444–1 (Supplements 8) are
strongly enriched for genes involved in transcription (Bon-

ferroni corrected P-value: 8.67E-20) and chromatin organi-
zation (Bonferroni correctedP-value: 2.58E-14), suggesting
this microRNA may exert a role in cancer by affecting the
expression pro�le in cancer cells. This is an example of how
GeneFriends can be used to associate non-coding factors
with diseases/biological processes and how it can help elu-
cidate possible roles of poorly annotated factors uncovered
trough this procedure.

RNA-SEQ-RELATED BIASES

While GeneFriends provides a unique opportunity to eluci-
date the roles of unstudied genes, it is important to mention
a few possible biases that might be present in the RNA-seq
co-expression map. Since the co-expression map is created
fromRNA-seq data, any biases existing in this type of anal-
ysis will propagate to the co-expression map, in particular:

(i) In the library preparation of RNA-seq experiments
there is a bias against smaller RNAs (61) for which rea-
son measurements for shorter RNAs such as microR-
NAs may be less accurate.

(ii) One important step in RNA-seq analysis is to assign
reads to genes based on their coordinates. However,
in some cases genes overlap with each other, mak-
ing it hard to assess from which gene the read origi-
nates. As a result the read is then ignored. This means
that genes that are fully overlapped by other genes can
never show expression and becomes amajor issuewhen
mapping to transcripts rather than genes as they com-
monly overlap each other. For this reason we consid-
ered ambiguously overlapping reads to represent the
expression of each transcript it overlaps with rather
than ignoring it. This will mean that transcripts spawn-
ing from the same gene are much more likely to show
strong co-expression, which is to be considered when
retrieving transcript co-expression results from Gene-
Friends.

(iii) We observed a bias toward positive correlation as op-
posed to negative correlation. This may be due to the
biological nature of the data as negative correlation
as a result of negative transcriptional regulation is ex-
pected to be much rarer than positive correlation as
genes involved in the same biological processes more
often co-operate rather than inhibit each other. How-
ever, it is not unreasonable to state that the normaliza-
tion procedure has not yet been optimized for RNA-
seq data and normalizing by total read counts has
been reported to introduce biases (62). The most com-
monly applied correction in the past few years calcu-
lates FPKM/RPKM values, which correct for gene
length. However, these have been extensively debated
(62) and new metrics have been suggested (63), which
have also been challenged (64). Since none of these nor-
malization protocols have been proven to be perfect,
we opted to normalize samples by the total expression
of all genes (reads that do not map to genes are ex-
cluded as these are more likely to introduce biases),
until one of these metrics becomes generally accepted,
at which point we will reconstruct the co-expression
maps.We are, however, con�dent that these biasesmin-
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imally affect the results of our tool, since our aforemen-
tioned validation tests have proven consistent with the
literature.

CONCLUDING REMARKS

Over the past century research has led to a better under-
standing of many diseases and biological processes, how-
ever the underlying mechanisms often remain unclear. In
research there is a tendency to focus on genes that have al-
ready been studied to a broader extent and ignore poorly
annotated genes. Yet, it is reasonable to assume that some
of the unstudied genes play a crucial role and that with-
out studying them we might never be able to fully under-
stand these diseases and processes. GeneFriends allows re-
searchers to quickly identify poorly annotated genes that
are associated with genes that have already been associ-
ated with the disease/process under study. This unveils
new venues for research and helps uncover new �ndings as
shown for example in (13). This is particularly interesting
since GeneFriends also allows association of non-coding
RNAs such as microRNAs and lincRNAs. These RNAs
have been indicated to play crucial regulatory roles in mul-
tiple studies (65–67). Additionally, it is not uncommon that
unannotated genes are present in the results of a study, yet
since no knowledge is available, they tend to be ignored.
GeneFriends can help identify possible roles of these genes
which will help experimental design.
Since Next-Generation Sequencing (NGS) is an emerg-

ing technology, our proposed RNA-seq co-expression tool
will be useful for a growing number of researchers to gather
clues regarding the many poorly studied transcripts de-
tected by this approach. Unstudied transcripts or genes dif-
ferentially expressed in a given RNA-seq analysis can be in-
put into GeneFriends to assess the functional enrichment
of co-expressed genes, effectively assigning a putative role
to the query transcript/gene and identifying possible inter-
action partners. Knowing the potential roles of these tran-
scripts will allow the assessment of the most interesting
transcripts among those differentially expressed in the pro-
cess under study and generate hypothesis for testing. This
addresses an unmet need for the bioscience community and
will help drive post-genome science. GeneFriends is freely
available from http://www.GeneFriends.org.
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