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ABSTRACT 
Motivation: Genetic networks are often used in the 
analysis of biological phenomena. In classical 
genetics, they are constructed manually from 
experimental data on mutants. The field lacks 
formalism to guide such analysis, and accounting for 
all the data becomes complicated when large 
amounts of data are considered. 
Results: We have developed GenePath, an 
intelligent assistant that automates the analysis of 
genetic data. GenePath employs expert-defined 
patterns to uncover gene relations from the data, 
and uses these relations as constraints in the search 
for a plausible genetic network. GenePath 
formalizes genetic data analysis, facilitates the 
consideration of all the available data in a consistent 
manner, and the examination of the large number of 
possible consequences of planned experiments. It 
also provides an explanation mechanism that traces 
every finding to the pertinent data. 
Availability: GenePath can be accessed at 
http://genepath.org. 
Contact: gadi@bcm.tmc.edu 
Supplementary information: Supplementary 
material is available at http://genepath.org/bi-supp. 

INTRODUCTION 
Geneticists use mutations to investigate biological 
phenomena, because mutations alter the behavior 
(phenotype) of the system and reveal possible 
components of the biological process. Initially, mutations 
help define genes that participate in a biological process. 

Relationships between genes are then determined using 
combinations of mutations in two or more genes. Genetic 
networks that outline the details of a biological 
mechanism are constructed by integrating the 
relationships between pairs of genes. The effort required 
for ordering gene function is minimal compared to that 
required for obtaining the data, but the task becomes 
complicated when the data sets are large. We describe a 
software tool, GenePath, which automates the 
consideration of all the data in a consistent manner and 
allows geneticists to examine the possible consequences 
of planned mutations. GenePath processes experimental 
data and prior knowledge, constructs a genetic network 
and presents it as a graph. The output allows the user to 
examine the experimental evidence and the logic behind 
each relationship without becoming an expert in the 
specific problem. 

GenePath infers genetic networks limited to non-
cyclical graphs in which non-terminal nodes correspond 
to genes, terminal nodes correspond to biological 
processes, and arcs are labeled either “inhibits” or 
“excites”. The genetic logic used in GenePath is similar to 
that described for regulatory networks (Avery and 
Wasserman, 1992). In regulatory networks, signals are 
integrated through a cascade of gene products until they 
exert an effect on the biological process. Experiments 
consist of inactivation or excessive activation of genes 
such that the state of upstream genes becomes irrelevant 
to the phenotype. When mutations are made in two genes, 
the prevailing phenotype is defined by the mutation of the 
epistatic or downstream gene. This is different from the 
analysis of metabolic pathways or of developmental 
‘dependent sequences’. In metabolic pathways, a mutation 
in an upstream node blocks the supply of metabolites to 
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downstream nodes, thus rendering downstream mutations 
irrelevant. In developmental pathways, a mutation in an 
upstream gene blocks the development of cells that would 
express downstream genes, thus making mutations in later 
genes ineffective. 

In one application, used as an illustration in this paper, 
GenePath was applied to study a process that regulates the 
transition from growth to development in the social 
amoeba Dictyostelium. Upon starvation, the amoebae stop 
growing and develop into a multicellular fruiting body. 
Figure 1 describes a network that regulates that transition 
and we show that GenePath can reconstruct this and other 
networks from experimental data and from prior 
knowledge. 

SYSTEM AND METHODS  

Genetic Data 
GenePath receives data in the form of phenotypes of 
single or double mutants. Table 1 lists genetic data for the 
aggregation of Dictyostelium, which will be used to 
illustrate the introduced concepts. The first experiment 
describes the wild-type phenotype and the other 
experiments describe mutations in one or two genes. In 
the mutants, genes are either inactivated (denoted by “-”, 
e.g., regA-, Table 1, experiment 7) or activated (denoted 
by “+”, e.g., acaA+, Table 1, experiment 8). The possible 
degrees of aggregation are: -, ±, +, ++. Degree “+” 
denotes wild-type aggregation, “++” excessive or rapid 
aggregation, “-” no aggregation and “±” reduced or 
delayed aggregation. GenePath typically considers 
qualitative phenotypes, but numerical values are also 
acceptable. The user must specify an ascending order of 
values, from weakest to strongest, from slowest to fastest, 
etc. 

Prior Knowledge 
Prior knowledge can also be included. In our example we 
included the following data: 
1) acaA → pkaC (acaA excites pkaC; Pitt et al., 1992; 
Taylor et al., 1990) 
2) pkaR –| pkaC (pkaR inhibits pkaC; Mutzel et al., 
1987; Taylor et al., 1990) 
3) regA → pkaR (Shaulsky et al., 1998) 
4) pufA –| pkaC (Souza et al., 1999) 

Relation “–|” denotes inhibition, e.g. 2), pkaR inhibits 
pkaC, and “→” denotes excitation, e.g. 3), regA excites 
pkaR. 

Inference Patterns 
The genetic logic in GenePath is defined through a set of 
inference patterns like “IF a certain combination of data is 
found , THEN a certain relationship between a gene and a 
biological process is hypothesized”. The patterns belong 
to one of the following categories: 

1. Influence: does a gene influence the biological 
process? 

2. Parallelism: do two genes act in parallel paths of a 
genetic network? 

3. Epistasis: does one gene act after another in the 
genetic network? 

The patterns are described below with examples on the 
data set in Table 1. 

Influence 
These patterns relate genes to biological processes. They 
search for evidence that a gene influences a biological 
process and determine the influence type. GenePath 
includes two ‘influence’ patterns: inf and infTC. 

inf: IF a mutation in a gene changes the phenotype 
relative to an otherwise identical strain, THEN the gene 
influences the biological process. 

This pattern is straightforward and relates all the genes 
to the biological process in our example (Table 1). 
GenePath also determines the sign of the influence. If an 
activating mutation increases the phenotype, then the 
influence is positive and the gene “excites” the biological 
process (e.g., Table 1, experiments 8, 9). The same 
applies if a gene inactivation decreases the phenotype 
(e.g., Table 1, experiments 2, 5). The influence of a gene 
is negative if either the phenotype increases after gene 
inactivation (e.g., Table 1, experiments 3, 4 ) or decreases 
after gene activation. 

The second ‘influence’ pattern, infTC, defines 
relationships between genes and biological processes even 
in the absence of direct experiments. This pattern relies on 
the ‘epistatic’ relation (see below). 

infTC: IF gene B is epistatic to gene A AND gene B 
influences the biological process, THEN gene A 
influences the biological process. 

The pattern is applied iteratively: it finds genes that match 
the condition, asserts the relation into a data base, and 
repeats the process until no more new relations are found. 

Parallelism 
When genes act in parallel, their influence on a common 
downstream element is the integrated contribution of the 
influence of each gene alone. By finding parallel genes, 
GenePath determines that they cannot function in a single 
path of genetic network. The following pattern finds such 
genes: 

parDiff: Two genes are in parallel genetic paths IF 
mutations in either gene have an effect on the biological 
process AND the phenotype of the double mutant is 
different from either mutation alone. 

The genes yakA and pkaR match this pattern. They are 
considered to act in parallel because the phenotypes 
caused by the single gene mutations in (Table 1, 
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experiments 2, 4) are different from each other and from 
the phenotype of the double mutant (experiment 12). 

Epistasis 
The patterns for epistatic relations consider two genes and 
determine their order. 

epMut: IF two different mutations (in genes A, B) result 
in two different phenotypes AND the phenotype of the 
double gene mutation is the same as the phenotype of the 
single gene B mutation, THEN that gene B is epistatic to 
gene A. 

Notice that if gene B is epistatic to gene A then there is a 
directed path in the genetic network from A to B. The 
pattern epMut applies to several sets of experiments in 
Table 1. For instance, in experiments 5, 7, and 10, 
inactivation of pkaC reduces aggregation, inactivation of 
regA increases aggregation, and inactivation of both genes 
results in reduced aggregation, respectively. 
Consequently, GenePath concludes that pkaC is epistatic 
to regA. Similarly, GenePath finds that pkaC is epistatic 
to yakA (experiments 2, 9, 15) and pufA  is epistatic to 
yakA (experiments 2, 3, 11). 

GenePath also determines the sign of the influence 
(excitation or inhibition) between the two genes based on 
the sign derived from the “influences” relation: if the 
genes influence the phenotype in the same way, then the 
upstream gene excites the epistatic one, e.g., both yakA 
and pkaC excite aggregation, hence yakA → pkaC. 
Otherwise, the upstream gene inhibits the epistatic one, 
e.g., regA –| pkaC because regA inhibits aggregation. 

The second epistasis pattern, epTC, defines relations 
based on other relations rather than on direct data. Like 
influence pattern infTC, epTC is applied iteratively. 

epTC: IF gene B is epistatic to gene A AND gene C is 
epistatic to gene B, THEN gene C is epistatic to gene A. 

Pattern epTC applies to three pairs of genes in our 
example (Table 1): 1) acaA → pkaC because acaA –| 
pkaR and pkaR –| pkaC (prior knowledge 1 and 2); 2) 
regA –| pkaC because regA → pkaR and pkaR –| pkaC 
(prior knowledge 2 and 3); 3) yakA → pkaC because yakA 
–| pufA (from the epMut pattern) and pufA –| pkaC (prior 
knowledge 4). The sign of an epTC relation is determined 
as in the relation epMut. 

Construction of Genetic Networks 
A genetic network hypothesized by GenePath consists of 
nodes and edges. The nodes represent genes or biological 
processes and the edges represent excitatory ( → ) or 
inhibitory ( –| ) relations. Notice that while consistent 
with a standard convention for drawing genetic networks, 
these symbols have different meaning than when used to 
denote epistasis and influence relations. GenePath 
constructs a genetic network by considering all the 

relations as constraints over the possible networks, and 
attempting to find a network that satisfies the constraints. 

GenePath first checks for conflicts between the 
constraints. A typical conflict is a pair of genes that show 
both epistatic and parallel relations. Another conflict 
occurs if a gene influences the biological process and 
there is evidence for both negative and positive 
influences. Conflicts are reported to the user who may 
resolve them by assessing the reliability of the data or by 
performing additional experiments. 

Next, GenePath considers the epistatic relations. It 
identifies pairs of genes with epistatic relations and 
examines their adjacency. Two genes are considered 
adjacent if GenePath cannot find other genes between 
them. For example, the following epistatic relations were 
found in the data: acaA → pkaC, acaA –| pkaR, pkaR –| 
pkaC. Is acaA adjacent to pkaC? Relation acaA → pkaC 
suggests that this may be possible, but pkaR is epistatic to 
acaA (acaA –| pkaR) and inhibits pkaC (pkaR –| pkaC), so 
acaA and pkaC are not adjacent. On the other hand, acaA 
and pkaR are adjacent because pkaR is epistatic to acaA 
and there is no evidence for intervening genes. Similarly, 
we find that pkaR and pkaC are adjacent, so we can infer 
a fragment of the network: acaA –| pkaR –| pkaC. 

Finally, GenePath draws the hypothesized genetic 
network. It places genes and biological processes as nodes 
in a graph, drawing corresponding edges between 
adjacent nodes. Genes that are not followed by other gene 
are directly linked to the biological process with an edge 
that shows their influence. In our example, pkaC is the 
only terminal node. The network inferred by GenePath is 
as presented in Figure 2. 

A BLIND TEST 
GenePath was tested successfully on several data sets (see 
http://genepath.org/bi-supp), but in all cases we were 
aware of the desired genetic network. To test GenePath 
more stringently, we used a blind schema where one of 
the authors selected a published genetic problem, coded it 
and gave the data to the other authors who analyzed it 
using GenePath. 

The data (Table 2) include 79 experiments with 16 
genes. Each experiment consists of a mutation in zero, 
one, or two genes. The phenotype was either “+” or “-”. 
Single mutant phenotypes are defined by the intersection 
of a specific row and the wild-type (WT) column, or vice 
versa. Double mutant phenotypes are defined by the 
intersection of the respective row and column. 

Initially, GenePath revealed several epistatic relations 
that resulted in a cyclic path within a genetic network 
(e.g., 1 → 3, 3 → 2, 2 → 17, 17 → 1). GenePath indicated 
that all the cycles involved gene number 2. No cycle-free 
networks were found. After removing the data for gene 2, 
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we obtained a conflict-free set of relations where all the 
genes influence the biological process through 54 
epistatic relations. GenePath proposed a genetic network 
that is consistent with all the data (Figure 3). 

The original publication from which Table 2 was 
extracted describes a network that regulates dauer larva 
formation in C. elegans (Riddle et al., 1981). The genetic 
network hypothesized by GenePath is identical to that 
proposed by the original authors, excluding gene number 
2. That gene (daf-2) was also problematic in the original 
publication and was hypothesized to function in a parallel 
path that involved only some of the other genes (Riddle et 
al., 1981). Subsequent studies showed that daf-2 has 
additional functions that may have confounded the 
original analysis (Lin et al., 2001). Some of the original 
results are now considered inaccurate and a revised view 
of the process has been published (Thomas et al., 1993). 
In that regard, GenePath cannot detect erroneous data that 
are internally consistent. 

The data of Riddle et al. represent a relatively large set 
of experiments. GenePath was able to handle the data and 
to propose a network within seconds. Overall, the results 
of the blind test demonstrate that GenePath performed its 
logical task correctly, and was capable of solving a 
complicated genetic problem and of calling the user’s 
attention to special circumstances. 

IMPLEMENTATION 
GenePath’s core is implemented in the Prolog 
programming language, and embedded in a server-based 
application in Visual Basic that provides for a web-based 
interface. Prolog (Programming in Logic), a declarative 
computer language that is often associated with 
development of Artificial Intelligence-based applications 
(Bratko, 2001), is effective in defining and reasoning with 
patterns (more in http://genepath.org/bi-supp). The web-
based interface makes GenePath platform independent 
and easy to use. Data entry includes the definition of 
genes and biological processes, specification of prior 
knowledge and entry of experiments. The data can be 
saved to a local file for later use, revision, or 
dissemination. 

A particular advantage of GenePath is explanation: 
clicking on any edge (arrows) reveals a list of 
experiments that provide evidence for the relation and text 
that explains the underlying logic. Clicking on any node 
reveals all the experiments that involve the selected gene 
and its relation to other genes and to the biological 
processes. Figure 4a gives an example of a GenePath 
results window (corresponding to Figure 2) and Figure 4b 
provides the explanation for the relation yakA –| pufA. 

DISCUSSION 

Utility 
The most significant advantage of GenePath is its 
formalism: the program applies a fixed set of rules to all 
the data whereas manual use may lead to inconsistent 
application of the rules. For example, there are no formal 
rules that justified the decision to split the dauer larva 
regulatory genetic network in C. elegans as described in 
the blind test above, but the authors proposed an original 
solution that accounted for all the data (Riddle et al., 
1981). Instead, GenePath called our attention to the 
problem with gene number 2 and presented a number of 
partial genetic networks that were consistent with all the 
data. Other such examples are given in the supplement 
(http://genepath.org/bi-supp). 

GenePath analyzes the data and returns a genetic 
network in a fraction of the time required to perform that 
task manually. GenePath also alerts the user to conflicts 
that may otherwise be ignored and prompts the user to 
document the reasons for ignoring some of the data. The 
interface allows the user to explore the reason for each 
relation and facilitates the exploration of the network by 
non-experts. This feature may also be useful for teaching 
the principles of genetic analysis. GenePath can be used 
to test genetic models and to help design new experiments 
by entering new mutations along with possible 
phenotypes and finding which experiments would be the 
most informative. GenePath also allows researchers to 
document and communicate their data in a consistent 
manner. 

GenePath handles classical genetic data, which consist 
of mutations in single or in multiple genes and the 
corresponding phenotypes. Normally these data sets 
contain a dozen or so genes, but GenePath was also 
developed in anticipation of the accumulation of vast 
amounts of genetic data. Work in S. cerevisiae has 
demonstrated the feasibility of generating hundreds of 
double mutants (Tong et al., 2001) and others 
demonstrated the feasibility of analyzing thousands of 
mutants in parallel (Ross-Macdonald et al., 1999; 
Winzeler et al., 1999). Such experiments are being 
performed in other organisms (Kuspa et al., 2001; 
Sucgang et al., 2000), so the need for automated methods 
for genetic network analysis is evident. For the data 
presented in this paper, GenePath constructed a network 
within 1 second of CPU time (Pentium IV, 900 MHz). 
We also tested GenePath on several large artificial data 
sets (see supplement) and found that GenePath effectively 
handles data on a hundred genes and several hundred 
experiments within 5 seconds, and data on 1000 genes 
and several thousand experiments within 40 minutes. 
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Limitations 
GenePath proposes a single genetic network that accounts 
for the relations found in the data, but there may be many 
networks that are consistent with the data. Out of the 
plausible networks, GenePath proposes the one that orders 
the genes in a single path only if corresponding epistatic 
relations are found. Future versions of GenePath will 
propose a number of plausible networks and rank them 
according to expert-defined complexity measures. 

It should be emphasized that GenePath is intended to 
construct a genetic network in much the same way as a 
geneticist would. Therefore GenePath mimics expert 
geneticist’s reasoning about genetic data. For this 
purpose, GenePath uses rules (inf, infTC, parDiff, epMut, 
and epTC) whose formal definition closely follows the 
informal inference patterns actually used by the 
geneticists when manually constructing genetic networks. 
There are important mathematical questions regarding 
these inference rules. Are these set of rules logically 
sufficient and/or necessary? That is, do they suffice to 
derive from data all the gene-gene and gene-phenotype 
relations that are actually logically implied by the data? 
Are they a minimal (non-redundant) set of such rules? At 
the moment we do not have mathematical proofs to 
answer these questions. However, the geneticists who 
defined the patterns believe (based on their extensive use 
and experience) that these rules are sufficient in the 
abovementioned sense. We know that the set of rules is 
not minimal (rule parDiff is not necessary), but the 
geneticists find some redundancy useful as additional 
justification for conclusions inferred from data. 

Currently, GenePath is only capable of pointing out 
conflicting constraints, the experiments that cause them 
and the conflict-free relationships. The user must evaluate 
the data and decide whether some experiments should be 
repeated or modified. 

Many biological processes rely on feedback 
mechanisms to regulate the activity of their components. 
Feedback mechanisms appear in genetic networks as 
loops in which two or more genes regulate each other. 
The current version of GenePath does not address loops 
explicitly, but it enables the researcher to recognize 
potential loops if they occur in the data. 

Genetic analysis is limited by the quality of the data it 
uses. GenePath was trained on a set of data that included 
mostly null alleles and a few selected constitutive alleles. 
Such mutations are usually the most simple to interpret, 
but they are not always available and not always the most 
informative. Mutants generated in genetic screens may 
involve a partial loss- or a partial gain-of-function, which 
may exhibit a variety of phenotypes. GenePath treats 
them as if they were null alleles or constitutive alleles and 
the user must address the partial effects of the mutations 
by different means. 

The genetic method used in GenePath follows the logic 
of signaling pathways, whereas the logic of metabolic 
pathways and developmental pathways is usually 
reversed. It is easy to adapt the program to the solution of 
metabolic or developmental pathways by inverting the 
logical patterns, but the user must decide what type of 
genetic network is being analyzed. GenePath assists the 
user only by removing the need to analyze and document 
the data in a consistent manner. 

Related work 
The set of rules used in GenePath is widely used by 
geneticists but no other publications have stated these 
rules except for Avery and Wasserman (Avery and 
Wasserman, 1992). GenePath’s novelty is in the 
formalization and automated application of these rules 
and in the public application of the program through the 
World Wide Web (http://genepath.org). 

Computationally, GenePath borrows concepts like 
explicit encoding of knowledge, logic programming and 
utility of expert-based patterns in data analysis from 
Artificial Intelligence (AI) and performs abductive 
reasoning (see Kakas et al., 1998, and 
http://genepath.org/bi-supp) to find relations from the 
genetic data. While probably the best known AI system in 
genetics is an expert system for planning gene-cloning 
experiments in molecular genetics MOLGEN (Stefik, 
1981), there are a number of contemporary systems that 
use some AI concepts and apply them in discovery of 
genetic networks. For instance, Friedman at al. (2000) use 
Bayesian networks to discover and Shrager et al. (2002) 
use heuristic search to revise genetic network, and Akutsu 
et al. (2000) infer genetic networks in the form of 
Boolean or qualitative networks. All mentioned systems 
derive genetic network from microarray data, and to the 
best of our knowledge GenePath is the only computer-
based system to assist in classical genetic analysis. Like 
in GenePath, most contemporary systems infer networks 
which are directional and include both excitation and 
inhibition links. Compared to related work, GenePath is 
also unique in its explanation capabilities, where each 
finding can be traced back to experiments that support it. 
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Table 1. Experimental data on Dictyostelium aggregation 
 
Exp # Genotype Aggregation 
    {-, ±, +, ++} 
1 wild-type + 
2 yakA- - 
3 pufA- ++ 
4 pkaR- ++ 
5 pkaC- - 
6 acaA- - 
7 regA- ++ 
8 acaA+ ++ 
9 pkaC+ ++ 
10 pkaC-, regA- - 
11 yakA-, pufA- ++ 
12 yakA-, pkaR- + 
13 yakA-, pkaC- - 
14 pkaC-, yakA+ - 
15 yakA-, pkaC+ ++ 

 
Table 2. Genetic data for the double-blind test 
 
 WT 1 2 4 7 8 11 14 
WT - + + + + + + + 
3 - - + - - - - - 
5 - - + - - - - - 
6 - + + + - - - - 
10 - + + n/a + + + + 
12 - - + - - - - - 
16 - - - + - - - - 
17 - + - + - - - + 
18 - + + + + - - + 
20 - - - + - - - - 
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Figure 1. The transition from growth to development in Dictyostelium 

a. During growth, YakA is inactive and cell division is not inhibited 
(Souza et al., 1998). The PufA protein binds the pkaC mRNA and 
inhibits the translation of PkaC, the catalytic subunit of PKA (Souza et 
al., 1999). Production of cAMP by the adenylyl cyclase AcaA is also 
low due to low levels of acaA gene expression (not shown). The 
phosphodiesterase RegA degrades cAMP to 5’AMP and as a 
consequence the regulatory subunit of PKA (PkaR) can associate with 
the PkaC protein and inhibit its protein kinase activity (Mutzel et al., 
1987; Shaulsky et al., 1998; Taylor et al., 1990). As a result, the activity 
of PkaC is low in growing cells and the entry into development is 
inhibited.  

b. Upon starvation, activation of YakA leads to inhibition of cell 
division and to inhibition of PufA activity (Souza et al., 1999). 
Consequently, pkaC mRNA is free to be translated and high levels of 
PkaC protein are produced. Production of cAMP by AcaA is also 
increased, mainly due to induction of the acaA gene expression (Pitt et 
al., 1992). Upon binding to cAMP, the PKA regulatory subunit PkaR 
loses its ability to bind and inhibit the catalytic subunit PkaC (Mutzel et 
al., 1987). PkaC is activated and development begins. 
 

 
Figure 2. A regulatory network for Dictyostelium aggregation. The 
network was derived by GenePath from the data shown in Table 1. See 
text for detail. 
 

 
Figure 3. A blind test of GenePath. The network was derived by 
GenePath from the data shown in Table 2. See text for detail. 
 

 
 

 
Figure 4. GenePath user interface on the World Wide Web 
a. A GenePath results window with a list of epistatic relations for the 
Dictyostelium aggregation data set. 
b. A GenePath window with an explanation for the relation yakA –| 
pufA. 
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