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Abstract The f (R, T ) gravity is a theory whose gravita-
tional action depends arbitrarily on the Ricci scalar, R, and
the trace of the stress–energy tensor, T ; its field equations
also depend on matter Lagrangian, Lm . In the modified the-
ories of gravity where field equations depend on Lagrangian,
there is no uniqueness on the Lagrangian definition and the
dynamics of the gravitational and matter fields can be differ-
ent depending on the choice performed. In thiswork, we have
eliminated the Lm dependence from f (R, T ) gravity field
equations by generalizing the approach of Moraes in Ref. [1].
We also propose a general approach where we argue that the
trace of the energy–momentum tensor must be considered
an “unknown” variable of the field equations. The trace can
only depend on fundamental constants and few inputs from
the standard model. Our proposal resolves two limitations:
first the energy–momentum tensor of the f (R, T ) gravity is
not the perfect fluid one; second, the Lagrangian is not well-
defined. As a test of our approach we applied it to the study
of the matter era in cosmology, and the theory can success-
fully describe a transition between a decelerated Universe to
an accelerated one without the need for dark energy.

1 Introduction

General Relativity (GR) is one of the cornerstones of modern
physics being stated as the standard model of gravitation and
cosmology. However, in the last years, shortcomings came
out in the Einstein’s theory and the investigations whether GR
is the fundamental theory capable of explaining the gravita-
tional interaction in different regimes initiated.

Combined data from Cosmic Microwave Background
Radiation (CMB) [2] and from Baryonic Acoustic Oscilla-
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tions (BAO), indicate that the Universe is spatially flat, it is
in accelerated expansion [3,4], and it is composed of 96%
of unknown matter-energy, commonly known as dark mat-
ter and dark energy, respectively. It is widely accepted that
the reason for the present accelerated expansion phase of the
Universe is due dark energy [5–7], while that an invisible
matter (or dark matter) accounts for the galaxies’ rotation
curves flatness [8,9].

To overcome this situation different researchers came
up with more sophisticated gravity theories by modifying
the Einstein–Hilbert action, which gave arise a new avenue
known as modified or extended theories of gravity. The
extended theories of gravity have born out as an opportunity
to solve problems which are still without explanation within
GR framework. The f (R) theory of gravity is one of the
most well studied theories, and consists of choosing a more
general action to replace the Einstein–Hilbert one, assuming
that the gravitational action is an arbitrary function of the
Ricci scalar, R as discussed in Refs. [10,11].

In this work, we are particularly interested in the f (R, T )

theory of gravity that is a generalization of f (R) type the-
ories. The f (R, T ) gravity, proposed by Harko et al. [12],
consists of choosing a gravitational action as an arbitrary
function of the Ricci scalar and also the trace of the energy–
momentum tensor, T . Moraes [1] has used f (R, T ) =
R + f (T ) to calculate the trace of the f (R, T ) gravity field
equations. In this case, the author describes only a minimal
coupling between the Ricci tensor and an arbitrary function of
the energy–momentum tensor, i.e., a specific model. Here, we
are going further in calculating the trace of the f (R, T ) grav-
ity field equations and also deriving a new field equation for
the theory that does not depend on the matter Lagrangian. In
our approach matter and curvature can have a more complex
coupling, i.e., it is a general approach. As pointed by [13], a
more rich phenomenology could arise from a non-minimal
geometry-matter coupling, what is within the motivations
behind the present work.
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This new general approach eliminates the Lagrangian
ambiguity choice. We argue that the trace of the energy–
momentum tensor is the macroscopic description of the more
fundamental gravity structure, i.e., it is the quantity that
encodes the degree of freedom of the matter to the scalar
curvature. We show that our proposal resolves two limita-
tions: the Lagrangian choice, and the fact that the energy–
momentum tensor cannot be the perfect fluid. From this novel
approach we consider that the trace of the energy–momentum
tensor is an “unknown” variable, and thus, the trace of the
field equations can be exploited to eliminate it.

This article is organized as follows: Sect. 2 presents a
basic overview on general properties of the f (R, T ) grav-
ity, in Sect. 3 we derive the traceless field equations for a
generic f (R, T ) functional, in Sect. 4 we present a consis-
tent approach for the Lagrangian ambiguity choice, in Sect. 5
we apply the theory to describe the matter era of cosmology
and show that a transition between a decelerated Universe
to an accelerated one is possible in f (R, T ) cosmology and
finally in Sect. 6 we conclude and discuss possible applica-
tions of the theory presented here.

2 f (R, T ) gravity

The f (R, T ) gravity is derived by adopting the following
gravitational action [12]

S =
∫

d4x
√−g

(
f (R, T )

16π
+ L

)
, (1)

where f (R, T ) is a generic function of the Ricci scalar R,
and to the trace T of the energy–momentum tensor Tμν . L
represents the matter Lagrangian density. Natural units are
adopted and metric signature -2.

By variation of the action (1) with respect to the metric
tensor gμν , one obtains the field equations of the f (R, T )

gravity theory as follows

fR Rμν − 1

2
gμν f + (gμν� − ∇μ∇ν) fR

= 8πTμν + fT (Tμν − gμνL ), (2)

where � is the D’Alambertian operator, Rμν is the Ricci ten-
sor and ∇μ represents the covariant derivative associated with
the Levi–Civita connection of gμν . For sake of simplicity, we
defined fR ≡ ∂ f (R,T )

∂R and fT ≡ ∂ f (R,T )
∂T .

3 Traceless f (R, T ) gravity

Taking the trace of (2) we obtain

L = fT T − fR R + 2 f − 3� fR + 8πT

4 fT
. (3)

Combining (2) with (3) yields
(
Rμν − 1

4
gμνR + 1

4
gμν� − ∇μ∇ν

)
fR

= 8πTμν − 2πgμνT + fT

(
Tμν − 1

4
gμνT

)
. (4)

The covariant derivative of the stress–energy tensor is
given by

∇μTμν = fT
8π + fT

[
(gμνL − Tμν)∇μln fT

−1

2
gμν∇μT + gμν∇μL

]
, (5)

where L can be eliminated from Eq. (3). As one can see, the
four-divergence is non-null and in a traceless formulation of
the field equations, the f (R, T ) shares a similarity with the
unimodular gravity as will see ahead.

3.1 f (R, T ) gravity and unimodular gravity, connection
through energy–momentum violation

Trying to deal with elementary particles in a geometrical
framework, Einstein proposed [14,15] in 1919 a trace-free
field equation

Rμν − 1

4
gμνR = 8π

(
Tμν − 1

4
gμνT

)
. (6)

The formulation derived from the Einstein–Hilbert was
persuaded in order to have an understanding in the right-
hand side of the field equations of General Relativity. The
gravitational field equations involve only traceless parts of
the Riemann/energy–momentum tensor.

Nowadays, this formulation was reborn as “unimodu-
lar gravity”, due to a fixation on the metric determinant -
detgμν ≡ g = 1, and it is applied to solve the problem of
the discrepancy between the vacuum energy density and the
observed value of the cosmological constant [16–20].

In Eq. (6), the Bianchi identity still holds for the Einstein
tensor, ∇μGμν = 0, but the vanishing of the four-divergence
of energy–momentum tensor, ∇μTμν = 0, is not a geo-
metrical consequence. As have been shown, the difference
between the field equations in unimodular and in GR is a
scalar stress 1/4(T + R/8π)gμν [16].
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The field equations are derived by restricting the varia-
tions preserving the volume form. These restrictions lead to
violations of the energy–momentum conservation. For a con-
servative case, the condition

∇μ

(
8πTμν − 8π

4
gμνT − 1

4
gμνR

)
= 0, (7)

must be satisfied and it leads to GR with cosmological con-
stant, i.e., dark energy.

In the case of f (R, T ) gravity, which is a theory with
a presence of coupling in the gravitational field, the non-
vanishing of the energy–momentum tensor, Eq. (5), arises
without restrictions in the variations and it is associated with
particle creation in a quantum level, being plausible that grav-
itational field theories intrinsically contain effective parti-
cle creation in a phenomenological description [21]. Parti-
cle creation is a feature in quantum field theories described
in curved spacetime and in noncommutative quantum field
theories, which is field theory in a noncommutative space-
time and can be interpreted as a low energy limit of a quan-
tum gravity theory. As we stated in a previous work [22],
the energy nonconservation in a four dimensional spacetime
can be related to a noncommutative compact extra dimen-
sion with circular topology. In this regard, a letter by Jos-
set et al. [23] considered the unimodular gravity with viola-
tion of the conservation of energy–momentum, investigating
sources of nonconservation in quantum mechanics. In a first
scenario studied by them, is evoked a Markovian equation
(used to describe creation and evolution of black holes) of the
density matrix ρ̂. This leads to a non-constant average energy
〈E〉 ≡ Tr[ρ̂, Ĥ ]. In the second scenario the nonconservation
arises naturally from quantum gravity. In a more recently
letter [24], exploring this second case, they showed that the
nonconservation arises from the discreteness at the Planck
level, similar to our line of thought [22]. They have shown
that these quantum phenomena are relevant in a cosmological
scale, i.e., the underline granularity of the spacetime would
lead to the emergence of an effective dark energy. The rel-
evance of the discreteness arises by the interaction of the
gravity with scale-invariance-breaking fields (massive fields
could interact with quantum gravity structure and exchange
energy with it). The quantity that would describe macroscop-
ically the phenomenon is the trace of the energy–momentum
tensor T , which for a perfect fluid is given by T = ρ − 3p,
the trace characterizes the breaking of the conformal and
scale invariance [25], and it is related to the scalar curvature,
therefore captured geometrically by scalar curvature R. A
non-vanishing of trace leads to a trace anomaly [26,27].

As we can see, the trace is an important ingredient in the
quantum and gravitational level description, and it is intrin-
sically associated with energy violations. We will use it in a

more consistent approach to the Lagrangian ambiguity issue
in f (R, T ) gravity in the next section.

4 A more consistent approach to the Lagrangian
ambiguity choice

In this section we present a new approach to the Lagrangian
ambiguity problem in f (R, T ) gravity. Our approach con-
sists of considering the trace of the energy–momentum tensor
as a variable of the field equations.

Taking the general definition [13] of the energy–momentum
tensor given by

Tμν = (p + ρ)uμuν + gμνL , (8)

and calculating the trace we obtain that

L = T − (p + ρ)

4
, (9)

then, the field equations become

fR Rμν − 1

2
gμν f + (gμν� − ∇μ∇ν) fR

= 8πTμν + fT
(
Tμν − gμν

4
(T − (p + ρ))

)
. (10)

In this way, the field equations become independent of the
matter Lagrangian. In a flat spacetime limit, the trace is free
of anomaly, however, considering a coupling, we can have
trace anomaly, i.e., correction terms to energy–momentum
tensor, which would lead to phenomenological implications
as pointed by Perez and Sudarsky [24].

Rewriting the energy–momentum tensor we have

Tμν = (p + ρ)uμuν + gμν

(
T − (p + ρ)

4

)
. (11)

We can also calculate the four divergence of the energy–
momentum tensor by replacing (9) into Eq. (5). One must
realize that, from now on, field equations depend only on
energy–momentum tensor and its trace, rather than mat-
ter Lagrangian. In previous works in f (R, T ) gravity the
trace of the energy–momentum tensor depends on matter
Lagrangian, being not well-defined. Assuming the trace to
be an unknown entity, we can treat it as a variable of the
f (R, T ) theory. To solve this issue one can take the trace of
the field equations to obtain

8πT + 2 f + fT (p + ρ) = fR R + 3� fR . (12)

When taking the trace of the field equations one more equa-
tion is added to the problems to be solved. It is worth to
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quote that in this approach the trace, T , will have a similar
role as the curvature scalar, R, in f (R) gravity theories. This
approach has two major advances: it solves the Lagrangian
choice problem; and it also respects the fact that in f (R, T )

gravity the energy–momentum tensor cannot be the one for
perfect fluids. As the energy–momentum tensor is not well-
defined as in GR our proposed approach solves this issue by
coupling the trace of the field equation to themselves.

5 Cosmology in the general approach for the
Lagrangian ambiguity

5.1 Model I: f (R, T ) = R + λT

Taking (10) and using f (R, T ) = R + λT , which is an
extensively studied case, one obtains the field equations

Gμν = (8π + λ)Tμν + gμν

λ

4
(T + p + ρ). (13)

Therefore, the trace of the energy–momentum tensor
becomes

T = − R + λ(p + ρ)

8π + 2λ
, (14)

which states that the trace, T not only depends on pressure
and energy density but it also depends on the curvature scalar,
R.

Defining an effective energy–momentum tensor

T eff
μν I =

(
1 + λ

8π

)
Tμν + λ

32π
(T + p + ρ)gμν, (15)

we write the field equations in a compact form Gμν =
8πT eff

μν I . Considering the FLRW metric for these field equa-
tions we have

R = −6(Ḣ + 2H2) (16)

and

3H2 = 8πρeff
I , (17)

2Ḣ + 3H2 = −8πpeff
I , (18)

where H is the Hubble parameter.
Substituting (16) into (14), and then this result into (15),

we get

ρeff
I = (3λ + 24π)(p + ρ) + R

32π
, (19)

and

peff
I = (λ + 8π)(p + ρ) + R

32π
. (20)

From (17) and (18), we obtain

Ḣ = −1

2
(λ + 8π)(p + ρ). (21)

By assuming that pressure and energy density must be posi-
tive, Eq. (21) provides that, if λ > −8π the Hubble parameter
is decreasing, if λ < −8π , H is increasing, and in case of
λ = −8π , H becomes a constant in time.

Considering the matter era (p = 0) and isolating ρ in both
(17) and (18) and combining the results, one can arrive at

Ḣ = −2H2, (22)

whose solution is straightforward

1

H(t0)
− 1

H(t)
= 2(t0 − t). (23)

This equation gives a new model for the evolution of the Hub-
ble constant with time, where H(t) is noticeably a decreasing
function.

By solving a(t) = a0 exp
[∫ t

t0
Hdt

]
the solution for the

scale parameter is

a(t) = a0(2H0t − 2H0t0 + 1), (24)

which gives the deceleration parameter q = −äa/ȧ2 = −8.
So, in this linear case, the theory does not predict a transi-
tion between a decelerated Universe to an accelerated one.
This indicates that a linear functional on T (a well studied
case in the literature) cannot explain the observational data.
However, the f (R, T ) theory is still possible from the point
of view of others functional, as we are going to show.

5.2 Model II: f (R, T ) = R + λT 2

Assuming now that f (R, T ) = R+λT 2, one can obtain the
field equations as Gμν = 8πT eff

μν , where T eff
μν reads now

T eff
μν II =

(
1 + λT

4π

)
Tμν + λT

16π
(p + ρ)gμν. (25)

In this case, the effective energy density and pressure are
given by

ρeff
II =

(
1 + λT

4π

) [
(p + ρ) + T − (p + ρ)

4

]

+ λT

16π
(p + ρ) (26)
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Fig. 1 Evolution of the deceleration parameter with time. A change of
signal on q is presented, therefore, the theory, for f (R, T ) = R+λT 2,
predicts a transition between a decelerated Universe to an accelerated
one, without the need for dark energy

peff
II = −

(
1 + λT

4π

)(
T (p + ρ)

4

)
− λT

16π
(p + ρ). (27)

The modified Friedmann equations are

3H2 = 8πρeff
II , (28)

2Ḣ + 3H2 = −8πpeff
II . (29)

To solve (28) and (29), we use (27) and (26) and assume
the matter era. Solving this numerically gives us the solutions
for the Hubble parameter and energy density, ρ. From the
solution one can obtain the evolution of the scale parameter
and, hence, obtain the deceleration parameter, q. The initial
conditions for the solutions used in this work were: H0 =
67.4 km s−1 Mpc−1 and ρ0 = 6 × 10−16 kg m−3 [28].

The result for q is shown on Fig. 1, which indicates that
the f (R, T ) gravity can predict a transition between a decel-
erated Universe to an accelerated one for λ ≈ 1.6π . In this
second model, we have an agreement with the observational
data, which shows a transition between a decelerated Uni-
verse to an accelerated one.

6 Discussion

The f (R, T ) gravity has attracted a lot of researchers atten-
tion in the last few years [29–43]. Nevertheless, a few
works have addressed the Lagrangian choice problem in the
f (R, T ) gravity and modified theories of gravity [1,13,44–
46]. In general, choices for matter Lagrangian among those
works are L = ρ or L = −p. In some works it is shown
that Lagrangian may be an arbitrary function of pressure and
energy density, L = L (p, ρ), or considering an equation
of state the dependence on pressure can be eliminated to give
L = L (ρ).

Moraes [1] has provided a solution for the Lagrangian
choice problem by deriving a field equation for the f (R, T )

gravity that does not depend on the matter Lagrangian. How-
ever, he considered the specific case f (R, T ) = R + f (T ).
The case studied by Moraes is an advance on f (R, T ) grav-
ity research field, in the sense that now researchers have the
possibility to study f (R, T ) gravity with no need for choos-
ing a specific matter Lagrangian, thus, working on a general
basis. In addition to Moraes’ approach, we consider in this
letter a generalization of his seminal idea. Here, we work
with no specific case, so, the f (R, T ) functional remains as
arbitrary as possible. This study was inspired by the work
of Fisher and Carlson [13], where they studied the on-shell
Lagrangian problem in f (R, T ) gravity. In their work, they
suggest that only cross terms between matter and geometry
could survive as a theory which brings new insights for the
gravitational theory. Our work here is then presented as a pos-
sible way to eliminate the matter Lagrangian1 as a variable of
the field equations. This is done for any f (R, T ) functional,
and hence it is also valid for cross terms between matter and
geometry.

Another way to remove the matter Lagrangian form field
equations is also presented here. Our approach was again
motivated by the work of Fisher and Carlson [13], in the
sense that they have shown that the energy–momentum ten-
sor cannot be given by the perfect fluid definition. In this
work, we take the general definition of the energy–momen-
tum tensor to remove the dependence on matter Lagrangian of
the field equations. We also argued that trace of the energy–
momentum tensor becomes an unknown variable that can
be obtained from the trace of the field equations. Hence,
this approach unfolds two problems of the f (R, T ) grav-
ity, which are the Lagrangian choice one and the energy–
momentum tensor that becomes not well-defined.

Finally, we have applied our results to cosmology, consid-
ering two specific cases: model I and model II. In the case
of model I, we have shown the cosmological inviability of
the functional, i.e., the linear case cannot explain a transition
between a decelerated Universe to an accelerated one. Never-
theless, for the case II, where we have f (R, T ) = R + λT 2,
we found a viable functional which predicts a transition
between an decelerated era to an accelerated one, being in
agreement with the cosmological data without the introduc-
tion of dark energy.

Forthcoming applications of our approaches can be
applied to flat rotation curves of galaxies, astrophysical sys-
tems and so on. Others functional are also encouraged.
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