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Abstract: An important image post-processing step for optical coherence

tomography (OCT) images is speckle noise reduction. Noise in OCT images

is multiplicative in nature and is difficult to suppress due to the fact that in

addition the noise component, OCT speckle also carries structural informa-

tion about the imaged object. To address this issue, a novel speckle noise

reduction algorithm was developed. The algorithm projects the imaging data

into the logarithmic space and a general Bayesian least squares estimate

of the noise-free data is found using a conditional posterior sampling

approach. The proposed algorithm was tested on a number of rodent (rat)

retina images acquired in-vivo with a newly developed ultrahigh resolution

OCT system. The performance of the algorithm was compared to that of the

state-of-the-art algorithms currently available for speckle denoising, such

as the adaptive median, maximum a posteriori (MAP) estimation, linear

least squares estimation, anisotropic diffusion and wavelet-domain filtering

methods. Experimental results show that the proposed approach is capable

of achieving state-of-the-art performance when compared to the other tested

methods in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio

(CNR), edge preservation, and equivalent number of looks (ENL) measures.

Visual comparisons also show that the proposed approach provides effective

speckle noise suppression while preserving the sharpness and improving the

visibility of morphological details, such as tiny capillaries and thin layers in

the rat retina OCT images.

© 2010 Optical Society of America

OCIS codes: (170.4500) Optical coherence tomography; (030.6140) Speckle; (100.0100) Im-

age processing; (100.2980) Image enhancement; (100.3008) Image recognition, algorithms and

filters.
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1. Introduction

Speckle is an inherent characteristic of images acquired with any imaging technique that is

based on detection of coherent waves, for example synthetic aperture radar (SAR), ultrasound,

coherent optical imaging, etc. Speckle carries information about both the structure of the im-

aged object as well as a noise component, and the latter is responsible for the grainy appearance

of the images. Optical coherence tomography (OCT) is an imaging technique capable of non-

contact, high resolution (few micrometers), 3D imaging of the structure of optically semitrans-

parent objects, including biological tissue. Since OCT is based on interferometric detection of

coherent optical beams, OCT images contain speckle. Speckle in OCT tomograms is dependent



on both the wavelength of the imaging beam and the structural details of the imaged object [1].

With the development of ultrahigh resolution OCT (UHROCT), cellular level resolution can

be achieved in biological tissue with this imaging technique. Achieving cellular level resolu-

tion enables the visualization of small morphological details in the UHROCT tomograms such

as individual tissue layers, small blood and lymph vessels, calcifications, lipid deposits, small

clusters of highly specialized cells, etc. Such small structural details can easily be obscured

by the presence of speckle noise in unprocessed UHROCT images, or by the blurring and /

or image artefacts introduced by speckle denoising algorithms that are currently used in com-

mercial and research grade OCT systems or have been published in the past. Furthermore,

the development of high speed UHROCT technology permits fast acquisition of high density,

large volume 3D images of biological tissue. The development of fast speckle noise reduc-

tion algorithms for UHROCT with very good preservation of boundaries of layered structure

or small morphological features is of high importance, since it can improve the quality of the

visual appearance of UHROCT images, hence allowing for zooming on small features in the

image without compromising the sharpness of the details in the 3D volume without compro-

mising image quality. Furthermore, speckle noise reduction algorithms can potentially improve

the precision and overall performance of other image post-processing algorithms such as layer

segmentation and pattern analysis that are often applied to UHROCT images for quantitative

analysis. However, speckle noise reduction in OCT images is particularly challenging, because

of the difficulty in separating the noise and the information components in the speckle pattern.

Many methods have been proposed over the years to tackle the challenge of speckle noise

reduction both for OCT and other imaging methods. Linear least-squares estimation methods

based on local statistics [2, 3, 4] and adaptive median filtering [5] were first employed for re-

ducing speckle noise. These methods provide insufficient noise reduction under high speckle

noise contamination, as well as result in significant loss of detail, which is undesirable for clin-

ical retinal analysis. Filtering approaches based on the rotating kernel transform [1] have been

shown to provide better contrast, however these methods suffer from significant loss of struc-

tural details in the case of high level of speckle contamination. Maximum a posteriori (MAP)

estimation approaches [6] have also been investigated for speckle noise reduction. Since these

methods rely on specific parametric noise distribution models, they are ill-suited in situations

where the noise distribution model is unknown. In recent years, two classes of approaches have

been heavily investigated for speckle noise reduction. The first class of approaches that became

popular in recent years for speckle noise reduction are wavelet-based methods [7, 8, 9, 10],

where the data undergoes multi-scale decomposition using wavelet transforms and wavelet co-

efficients associated with the speckle noise are suppressed in the individual sub-bands. While

wavelet-based methods provide improved speckle noise suppression and reduced detail loss

compared to earlier approaches, such methods can introduce significant artifacts that relate

to the choice of wavelet used, which is undesirable for clinical retinal analysis. The second

class of approaches that has gained popularly in recent years for speckle noise reduction are

anisotropic diffusion-based methods [11, 12, 13, 14]. While such methods provide improved

noise suppression and reduced detail loss compared to traditional methods and do not intro-

duce artefacts into the processed images as the wavelet-based methods do, they provide limited

speckle noise suppression under high speckle noise contamination, which is often the case with

OCT retinal images. All of the above algorithms do not deliver sufficient noise suppression un-

der high speckle contamination for two main reasons. First, these methods use a small number

of pixels to estimate the original signal, which does not provide sufficient information for ac-

curate estimation under high speckle noise contamination. Second, these methods do not learn

the underlying noise statistics from the noise-contaminated images and do not account for the

complex nature of OCT imagery, which is important for accurate estimation under high speckle



noise contamination. Hybrid methods that require both acquisition and algorithmic processes

have also been introduced, such as the phase domain processing and zero-adjustment procedure

proposed by Yung et al. [15].

In addition to algorithmic approaches to speckle noise reduction, design changes to the OCT

imaging technique have been proposed to reduce the presence of speckle noise on the imaging

side. Kim et al. [18] proposed the use of a partially spatially coherence broadband light source

to reduce the presence of speckle noise. Pircher et al. [19] proposed a frequency compound-

ing method which makes use of two incoherent interferometric signals to reduce speckle noise

while maintaining high spatial resolution. Iftimia et al. [20] proposed an angular compound-

ing approach based on path length encoding, which was also found to reduce the presence of

speckle noise. More recently, Desjardins et al. [21] was able to achieve speckle noise reduction

through the use of angular compounding at multiple backscattering angles. Finally, Jorgensen

et al. [22] proposed a spatial diversity approach, where the probe beams focal plane is shifted

to achieve speckle reduction. Other spatial diversity based approaches [23, 24, 25], as well as

polarization diversity based approaches [26] have also been investigated. However, such meth-

ods require significant changes to the design of the OCT system, longer data acquisition time

and in most cases the effect of speckle denoising is limited. Therefore, the development of al-

gorithmic approaches to speckle noise reduction remains an important part of the OCT images

post-processing.

Here we present a novel speckle noise reduction algorithm based on nonlinear log-space gen-

eral Bayesian least squares estimation. The novelty of the algorithm stems from the conditional

posterior sampling approach used to estimate the posterior distribution of the noise-free data in

a non-parametric fashion. This allows the algorithm to learn the underlying noise distribution of

the observed data dynamically to provide significant speckle noise suppression while preserv-

ing image details. When applied to UHROCT images, acquired in-vivo from rodent (rat) retinas,

the novel algorithm shows significantly improved overall image quality and clear preservation

of small structural features in the retinal images.

2. Theory

Let S be a set of sites on a discrete lattice L which defines an OCT image and let s ∈ S be

a site in L . Let M = {M(s)|s ∈ S}, A = {A(s)|s ∈ S}, and N = {N(s)|s ∈ S} be fields on S.

Given the measured data M(s) that we have acquired, let A(s) and N(s) be random variables

representing noise-free data and speckle noise of unknown distribution at site s respectively.

Let m = {m(s)|s ∈ S}, a = {a(s)|s ∈ S}, and n = {n(s)|s ∈ S} be realizations of M, A, and N

respectively. Speckle in OCT imagery arises from the constructive and destructive interference

of the backscattered signal from biological issues [16], and can be modeled as multiplicative

noise that is dependent on the wavelength of the imaging beam and the structural composition

of the imaged object [17],

m(s) = a(s) ·n(s). (1)

The data-dependent nature of speckle noise, as well as the fact that the speckled noise dis-

tribution can vary depending on the optical design of the imaging system, makes the problem of

separating the noise-free data a(s) from the speckle noise n(s) very challenging. We propose to

tackle these issues associated with speckle noise reduction by estimating the noise-free data in

the logarithm space using a general Bayesian least squares estimation approach based on con-

ditional posterior sampling. The proposed speckle noise reduction algorithm can be described

as follows. To handle the data-dependent nature of speckle noise, the noise-free data a(s) and

the speckle noise n(s) are decoupled by projecting the measured data m(s) into the logarithm

space,



logm(s) = ml(s) = log [a(s) ·n(s)] = log{a(s)}+ log{n(s)}= al(s)+nl(s). (2)

In the logarithm space, the general Bayesian least squares estimate of al(s) can be defined by

the expression,

âl(s) = argmin
al(s)

{

E
[

(al(s)− âl(s))
2 |ml(s)

]}

. (3)

What the general Bayesian least squares estimate does is minimize the average squared error of

the noise-free data estimate âl(s) based on the measured data ml(s). Minimizing the expression

in Eq. 3 gives,

âl(s) =

∫

p(al(s)|ml(s))al(s)dal(s). (4)

What the expression in Eq. 4 shows is that the optimal Bayesian estimate of the noise-free

data al(s) is essentially the statistical average based on the measured data ml(s). The posterior

distribution p(al(s)|ml(s)), which represents the probability distribution of the noise-free data

al(s) based on the knowledge of the measured data ml(s), can be highly complicated and non-

linear in nature, making it difficult to solve for âl(s) using Eq. 4. Typically, simpler Bayesian

linear least squares estimators [2] and estimators based on specific parametric posterior dis-

tribution models [6] have been used instead for speckle noise reduction. However, given the

complex nature of the OCT images, such estimators provide poor signal-noise separation and

hence result in significant loss of structural detail. To address these issues, we propose to em-

ploy a conditional posterior sampling approach to estimate p(al(s)|ml(s)).
What conditional posterior sampling does is select information from the measured data ml(s)

to estimate the posterior distribution p(al(s)|ml(s)) based on conditions that identify the rel-

evance of that information to accurate estimation. For example, when estimating the poste-

rior distribution of a pixel with strong boundary characteristics, conditional posterior sampling

adaptively selects information from the measured data that has similar boundary characteristics

to estimate the posterior distribution, as that would allow the boundary characteristics to be

preserved while averaging out the speckle noise.

The conditional posterior sampling approach we used to estimate p(al(s)|ml(s)) can be de-

scribed as follows. In Markov-Chain Monte Carlo density estimation [27], an unknown target

distribution (in our case, p(al(s)|ml(s))) is estimated in an indirect manner by first sampling

from a known initial probability distribution Q. Similarly, in the proposed approach, a random

site s′ in S is determined based on an initial probability distribution Q(s′|s). Q(s′|s) is defined

as a Gaussian distribution centered at s,

Q(s′|s) =
1

2πσspatial

e
−

(

‖s′−s‖2

2σ2
spatial

)

, (5)

where ‖s′− s‖2
denotes the squared Euclidean distance of a site s′ from s, and σspatial repre-

sents the spatial variance of the initial probability distribution Q(s′|s), which is set to 7 pixels

as it was shown to provide accurate estimates during testing. Testing under different imaging

conditions as well as different resolutions have shown that the use of σspatial = 7 allows for

consistently accurate results, thus making that setting suitable for a wide range of imaging sce-

narios. The reason for the strong performance using this setting is that the algorithm is adapts to

the underlying statistics of the image and as such performs well as long as the selected area to

select samples from is large enough to obtain good statistics from, irrespective of the resolution

of the image. This initial probability distribution Q(s′|s) generates sites that tend to be in closer



proximity to site s. Given the drawn site s′, the inclusion of s′ as a realization of p(al(s)|ml(s))
is determined based on the condition,

|µ (s)−µ
(

s′
)

|< 2σ , (6)

where µ(s) is the local mean of the neighborhood centered at s and σ is the estimated image

noise variance. The local mean µ(s) is computed in a 7× 7 region centered at s in the current

implementation, as that provides sufficient information to obtain good statistics from, irrespec-

tive of the resolution of the image. Furthermore, in the current implementation of the proposed

method, the noise variance σ was estimated by taking the local variance within a 7×7 region

for the same reason of obtaining good statistics. Eq. 6 enforces the inclusion of s′ as a realiza-

tion of p(al(s)|ml(s)) within two standard deviations, which accounts for the effect of noise

variations. The inclusion of s′ as a realization of p(al(s)|ml(s)) is based on the assumption that

the local mean is a reasonable initial estimate of al(s). This conditional sampling is repeated

until the maximum number of sites used to estimate the original signal, denoted as γ , is drawn.

Given the set of γ sites drawn from Q(s′|s), denoted as Ω = {s′1,s
′
2, . . . ,s

′
γ}, the weight

associated with each site s′i in estimating al(s), denoted as w(s′i|s), is computed using the

following Gibbs-based likelihood function based on the local means of s′i and s,

w
(

s′i|s
)

= exp

[

−

(

|µ (s′i)−µ (s)|

2σ2

)]

. (7)

Eq. 7 allows for a more reliable estimate of p(al(s)|ml(s)) by weighing sites with local means

similar to the local mean of site s higher since they are more likely to be true realizations of

p(al(s)|ml(s)).
Given a set of sites Ω = {s′1,s

′
2, . . . ,s

′
γ} and the associated set of weights W =

{w(s′1,s) ,w(s′2,s) , . . . ,w
(

s′γ ,s
)

}, the posterior distribution p(al(s)|ml(s)) is then estimated

using a weighted histogram approach. Suppose that the discrete range of possible measured

data values (ml) be [Lmin,Lmax], where Lmin and Lmax are the minimum and maximum possi-

ble values, respectively. Let the discrete range of possible noise-free data values (al) also be

[Lmin,Lmax]. Furthermore, let h(rk) be a weighted histogram, defined over [Lmin,Lmax], where

rk is the kth possible noise-free data value. For each site s′i, the weight w(s′i|s) is accumulated

in the histogram bin of the weighted histogram that corresponds to ml(s
′
i) (i.e., h(rk =ml(s

′
i))).

After constructing the weighted histogram, each histogram bin is then divided by the sum

of all weights to construct a normalized histogram representing p(al(s)|ml(s)). Therefore,

p̂(al(s)|ml(s)) can be formulated as

p̂(al(s)|ml(s)) =

∑
k=Ω

w(s′k|s)δ
(

al −ml(s
′
k)
)

Z
, (8)

where δ (.) is the Dirac delta function and Z is a normalization term such that

∑
al

p̂(al(s)|ml(s)) = 1.

Finally, the estimate of a(s) can be found by back-projecting the Bayesian estimate of

al(s) computed using the estimated p(al(s)|ml(s)) (Eq. (4)) from the logarithm space using

â(s) = exp [âl(s)]. A flowchart detailing a step-by-step breakdown of the proposed despeckling

algorithm is shown in Fig. 1.

3. Results and Discussion

To evaluate the effectiveness of the proposed log-space general Bayesian estimation approach

for speckle noise suppression in OCT tomograms, the method was applied to a set of UHROCT



Fig. 1. Step-by-step flowchart of the proposed despeckling algorithm.

images of the rat retina acquired in-vivo with a research grade UHROCT system. Two repre-

sentative images acquired at and away from the optic disc of the rat eye (Fig. 2) are discussed.

The images were acquired with a state-of-the art, research grade high speed, UHROCT sys-

tem operating in the 1060nm wavelength region. A detailed description of the system can be

found in [28]. Briefly, the UHROCT system is based on a spectral domain design powered with

a super-luminescent diode (λc = 1020nm, δλ = 110nm, Pout = 10mW) and data is acquired with

a 47kHz data rate, InGaAs linear array, 1024 pixel camera (SUI, Goodrich) interfaced with a

high performance spectrometer (P&P Optica). The UHROCT system provides 3µm axial and

5µm lateral resolution in retinal tissue and 100dB SNR for 1.3mW optical power incident on

the rat cornea.

2D and 3D images were acquired from the retinas of living Long Evans rats and the imaging

procedure was carried out in accordance with the University of Waterloo ethics regulations.

The two selected images, one acquired at the optic disc of the retina (Fig. 2A), and one 2mm

away from the optic disc (Fig. 2B), containing different morphological features, were selected

to test the performance of the speckle noise reduction algorithm. Both images show clear vi-

sualization of all intraretinal layers, as well as small morphological details such as the tiny

capillaries ( 10µm in diameter) in the inner- and outer plexiform layers (red arrows) and the

larger choroidal blood vessels (yellow arrows). For comparison purposes, the same images were

also processed with some of the high performance wavelet- or diffusion-based image process-

ing algorithms, such as the adaptive median filter proposed by Loupas et.al. [5], the linear least



Fig. 2. UHROCT images of the rat retina acquired near the optic disc (A) and away from the

optic disc (B). NFL nerve fiber layer; GCL ganglion cell layer; IPL inner plexiform layer;

INL inner nuclear layer; OPL outer plexiform layer; ONL outer nuclear layer; ELM

external limiting membrane; IS inner segment; OS outer segment of the photoreceptor

layer; RPE retinal pigmented epithelium; C- choroid and S sclera. The red arrows mark

tiny capillaries imbedded in the retinal OPL, while the yellow arrows mark large blood

vessels in the choroid. The red line boxes mark sections of the retinal image that were

enlarged for more direct visual comparison of the performance of the speckle denoising

algorithms (see figs.3,4 and 5).

squares estimator proposed by Frost et al. [3], the wavelet-based method proposed by Pizurica

et al. [9], the MAP method proposed by Lopes at el.[6], the anisotropic diffusion method pro-

posed by Yu and Acton [12], and the Type II Fuzzy anisotropic diffusion method proposed by

Puvanathasan and Bizheva [13]. All tested methods were implemented in as computationally

efficient a manner as possible, using the parameters proposed in the associated research liter-

ature. Testing shows that these parameters provide the strongest results that can be obtained

using these methods for the tested images, as changes to these parameters yield no improve-

ments in terms of the results. For the proposed method, the number of sites used to estimate the

original signal at each site, denoted as γ , was set to 64 and 7×7 neighborhoods were used, as

they was shown to produce good estimates of p(al(s)|ml(s)). Tests performed under different

imaging conditions and resolution and the testing have shown that selection of these parameters

work well for a wide variety of different imaging scenarios. The reason for the strong perfor-

mance using such parameters is that the proposed algorithm adapts to the underlying statistics

of the image and as such performs well as long as the selected area to select samples from is

large enough to obtain good statistics from, irrespective of the resolution of the image. As such,

the use of the presented parameters should provide strong speckle noise reduction performance

for most practical situations. All algorithms were implemented in MATLAB and tested on an

Intel Pentium 4, 3 GHz machine with 1 GB of RAM. For direct comparison of the algorithms

performance, 3 regions of the retinal image (fig.2B) were selected (red-line boxes), focusing

on specific morphological features such as the retinal capillaries and surface blood vessels (box

#1), the boundaries between retinal layers (box #2), the choroidal blood vessels (box #3).

Fig. 3 shows qualitative, visual comparisons of the original and processed UHROCT retina

images acquired away from the optic disc. All retinal layers, as well as small features, such

as the tiny capillaries imbedded in the inner plexiform layer of the retina (red arrows) and

choroidal blood vessels (yellow arrows) are visible in the image. Blue and red coloured, num-

bered boxes in the original images mark the regions of interest used in the quantitative com-



parison of the processed images described below. Although morphological features are visible

in the images, presence of speckle noise causes the grainy appearance of the UHROCT un-

processed tomogram. As a result, segmentation algorithms applied to this image may fail to

identify properly the boundaries of all retinal layers, specifically the thin retinal layers such as

the external limiting membrane (ELM) and the inner plexiform layer (IPL), as well as to define

well the inner boundaries of the choroidal blood vessels. Precise determination of choroidal and

retinal blood vessels diameter is essential for the precise calculation of retinal blood flow.

Visual comparison of the processed images reveals that the adaptive median filter (AMF)

preserved image detail but provided limited noise suppression. The linear least squares esti-

mation method (LLSQ) provided better noise suppression but at the cost of significant loss

of image detail. The wavelet noise reduction methods provided both improved noise suppres-

sion and detail preservation, but introduced wavelet related artifacts (Fig. 4). The MAP and

anisotropic diffusion (AD) methods provided good noise suppression and detail preservation

with minimal appearance of image artifacts. In contrast, application of the proposed method re-

sulted in noticeably improved detail preservation and noise suppression compared to the other

tested methods. Areas with fairly homogeneous structure, for example the inside of the inner

and outer nuclear layers, as well as part of the sclera (see regions marked with red numbered

boxes in Fig. 2B) show excellent removal of the grainy appearance characteristic of the origi-

nal image and most of the other post-processed images and associate with presence of speckle

noise. While the speckle noise removal with the new algorithm results in blurring of the ho-

mogenous regions of the image, image features corresponding to actual morphological details

in the retina remain very well preserved and show improved visibility (contrast).

To emphasize the difference in edge preservation and contrast improvement between the

proposed method and the other algorithms, three regions in the original image (Fig. 2B) were

selected and marked with red line, numbered boxes, and enlarged views of these regions are

shown in Figs. 4, 5, and 6. These regions were chosen to contain image details such as very thin

retinal layers, tiny capillaries and cross-sections of larger retinal and choroidal blood vessels,

in order to evaluate the performance of the individual algorithms under different conditions.

Fig. 4 shows a section of the original image (Fig. 2B) marked with red box #1, containing

a cross-section of a large blood vessel imbedded in the NFL, and the cross-sections of three

capilaries positioned at the interface between the IPL and INL. The original inset shows that

the presence of speckle noise reduces the image quality to the extent that the cross-section

of the second (middle) capillary is barely visible, while the outlines of the rest of the blood

vessels appear blurred. The application of the AMF algorithm does not improve image quality

significantly, while the LLSQ method blurs the image to the extent that the outlines of blood

vessel cross-sections cannot be easily distinguished. Both the AD and wavelet methods improve

the overall contrast of the image and the visibility of the blood vessel cross-sections, however

these methods introduce significant artifacts in the processed images that blur the contours of

the blood vessel cross-sections. Both the MAP and the Type II Fuzzy AD approaches appear

to significantly improve the contrast and visibility of the blood vessel cross-sections, but some

residual blur is still present in the contours of the cross-sections.

The proposed algorithm removes speckle noise from the homogeneous regions of the IPL and

INL layers and greatly improves the contrast and visibility of the image features. Furthermore,

the edge preservation of this method is effective, as the outlines of all blood vessels appear

sharp and well defined.

Fig. 5 shows a region of the original image (Fig. 2B) marked with red box #2, containing

sections of the RPE layer (thin black line) and the IS / OS portion of the photoreceptor layer

(pale and dark gray alternating layers). The original inset shows that the presence of speckle

noise reduces the overall image quality and blurs the boundaries of the individual layers. The



Fig. 3. An OCT image of the rat retina acquired away from the optic disc and processed with

the following filters: Original image, Adaptive median filter, Linear least square estimation,

Anisotropic Diffusion, MAP estimation, general Wavelet, Type II Fuzzy AD, and the new

proposed algorithm. The blue and red-line boxes in the original image mark regions in

the image used for quantitative comparison of the performance of all image processing

algorithms applied to the original image.



application of other tested algorithms causes significant blur of the layers boundaries and in

the case of the AD and Wavelet methods, introduces image artifacts. Overall, the best perfor-

mance in terms of improved image contrast and visual appearance, and best edge preservation

with practically no image artifacts, for the case of layered structures in the UHROCT image is

achieved with the proposed algorithm.

Fig. 6 shows the performance of the different algorithms in terms of improving the appear-

ance of choroidal blood vessels to allow for more precise segmentation and measurement of

the blood vessel diameter. For this purpose, we have selected a region in the original image

(Fig. 2B) marked with red box #3, that contains a part of the blood vessel longitudinal cross-

section. The presence of speckle noise in the original image in Fig. 6 blurs the contours of the

blood vessel to the extent that precise determination of the blood vessel diameter is not possi-

ble. The application of the AMF algorithm does not improve image quality significantly. The

LLSQ, MAP and Fuzzy type II AD algorithms result in significantly improved contrast between

the blood vessels and the surrounding choroidal tissue, at the expense of significant blur of the

blood vessel contours, which is most extreme in the case of the LLSQ method. Although the

Wavelet approach results in the best contrast improvement, it introduces image artifacts that

can compromise the overall visual appearance of the processed image. Both significant blur

and image artifacts are present in the image processed with the AD method. The proposed ap-

proach generates an optimal combination of improved image contrast, visual appearance and

sharp boundaries of the blood vessel cross-section.

Fig. 7 shows qualitative, visual comparison of the original and processed OCT retina images

acquired at the optic disc of the rat retina (Fig. 2A). Again, all intra-retinal layers, as well

as small features, such as tiny capillaries imbedded in the inner plexiform layer of the retina,

and choroidal blood vessels are visible in the image. The cross-section of the remains of the

hyaloids blood vessel is also visible. Blue and red colored, numbered boxes mark the regions

of interest used in the quantitative comparison of the processed images described below. In

addition to improving the visual appearance of the layered retinal structure, as in Fig. 2, here

the novel speckle noise reduction algorithm results in better visualization of the outline of the

optic disc funnel, as well as clearly defined inner and outer boundaries of the hyaloid blood

vessel. The interface between the retinal nerve fiber layer (RNF) and the IPL is also significantly

sharper with better contrast as compared to the original and the rest of the processed images.

The sharper appearance of the optic disc funnel and overall layered retinal structure can aid

and significantly improve the performance of automatic segmentation algorithms targeting to

evaluate the RNF thickness and optic disc diameter in healthy and diseased retinal images.

Quantitative analysis of the RNFL thickness and the dimensions of the optic disk are used in

clinical studied for improved and early diagnostics of glaucoma.

To compare the tested methods in a quantitative manner, the average SNR, contrast-to-noise

ratio (CNR), equivalent number of looks (ENL), and edge preservation (η) over the in-vivo

OCT retinal images were computed for each tested method. The image quality metrics used are

the same as the metrics used in [7, 10, 13], and are defined as follows:
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Fig. 4. 3X enlargement of the region in the original OCT image marked with the red box #1

in Fig. 1B and processed with the following filters: AMF (adaptive median filter); LLSQ

(linear least square estimation); AD (adaptive diffusion); general Wavelet; MAP (maxi-

mum a posteriori estimation); Type II fuzzy AD (fuzzy rules controlled adaptive diffusion).

Features in the original image such as the large blood vessel in the NFL and the three cap-

illaries positioned at the boundary between the IPL and INL appear very sharp and distinct

on the image processed with the proposed algorithm. In contrast, the same image features

appear with low contrast and blurred boundaries on the images processed with the rest of

the algorithms.
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)(
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·∑
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, (12)

ENL measures the smoothness of a homogenous region of interest, while CNR measure the

difference between an area of image feature and an area of background noise. Edge preserva-

tion is a correlation measure that indicates how the edges in the image are degrading. A value

close to 1 indicates the filtered image is similar to the reference image. In the expression for

SNR, A and σ2 represent the linear magnitude image and the variance of the background noise

region in the linear magnitude image respectively. In the expression for ENL, µh and σ2
h rep-

resent the mean and the variance of the hth homogenous region of interests respectively. In the

definition for CNR, µb and σ 2
b represent the mean and the variance of the same background

noise region as in SNR and µr and σ2
r represent the mean and the variance of the rth region of

interest which includes the homogeneous regions. In the edge preservation measure, ∇2M and

∇2A represent the Laplacian operator performed on the original image and the filtered image

respectively. Also, ∇2M and ∇2A represent the mean value of a 3× 3 neighbourhood around

the pixel location of ∇2M and ∇2A respectively.

Table 1 shows the quantitative performance measure values for the original imaging data and



Fig. 5. 3X enlargement of the region in the original OCT image marked with the red box #2

in Fig. 1B and processed with the following filters: AMF (adaptive median filter); LLSQ

(linear least square estimation); AD (adaptive diffusion); general Wavelet; MAP (maximum

a posteriori estimation); Type II fuzzy AD (fuzzy rules controlled adaptive diffusion). The

RPE, IS and OS of the photoreceptor layers of the retina appear very sharp and distinct

on the image processed with the proposed novel algorithm. In contrast, the same image

features appear with low contrast and blurred boundaries on the images processed with the

rest of the algorithms.

the filtered data. The application of the proposed method resulted in significant performance

improvements over the original image and the other tested methods, with SNR improvements

of over 17 dB compared to the original image and over 2 dB compared to the next best method,

which is the wavelet noise reduction method proposed by Pizurica et al. [9]. This demonstrates

the effectiveness of the proposed method for speckle noise suppression. Furthermore, the pro-

posed method produced the second highest edge preservation of the tested methods with an

edge preservation score of 0.8860. This demonstrates the effectiveness of the proposed method

in terms of preserving image details, which is very important for clinical retinal analysis. The

CPU runtime of the novel algorithm is better than most of the tested methods with the excep-

tion of the MAP [6] and anisotropic diffusion method [12] methods, but is still recognized as

a fast method. Note that the computational complexity of the proposed method is O(n), and as

such the computational speed scales linear with the number of pixels in the image, which is a

desirable property especially when dealing with high resolution imagery.

4. Conclusion

In this paper, we have proposed a novel algorithm for speckle noise reduction in retinal OCT

imagery based on log-space general Bayesian estimation. When compared to existing speckle

noise reduction methods from research literature, the proposed method demonstrates superior



Fig. 6. Magnified view of a choroidal blood vessel, corresponding to the area marked with

red box #3 in the original image (Fig. 1B) and processed with the different speckle reduc-

tion algorithms. AMF adaptive median filter; LLSQ linear least square estimation; AD

anisotropic diffusion; general Wavelet; MAP maximum a posteriori estimation; Type II

fuzzy AD (fuzzy rules controlled adaptive diffusion). The proposed method results in very

clear delineation of the blood vessel walls as compared to the significant blur and / or image

artefacts introduced by the other speckle denoising methods.

Method SNR (dB) ENL CNR (dB) η CPU Time (s)

Original 24.2524 44.80 0.9901 N/A N/A

Adaptive median filter [5] 30.7016 130.80 1.3889 0.9147 3.7030

Linear least squares estimation [3] 35.3002 964.80 2.0788 0.5037 1.0470

Wavelet noise reduction [9] 39.9004 3962.7 2.8267 0.7213 1.8290

MAP estimation [6] 32.9120 403.40 1.9117 0.0843 0.3300

Anisotropic diffusion [12] 30.6513 118.10 2.0446 0.8540 0.5460

Type II Fuzzy anisotropic diffusion [13] 31.9467 266.60 2.1689 0.6232 15.671

Proposed method 41.9210 3738.9 3.6000 0.8860 0.6359

Table 1. Image quality metrics evaluated for the rat retina image (Fig. 2B). Values are

relative to the original image.

noise suppression and detail preservation. Results using in-vivo retinal images show that the

proposed method results in SNR improvements of over 17 dB and 2 dB compared to the next

best tested method. The proposed method shows great potential in not only improving the over-

all visual appearance of retinal OCT images, but also the accuracy of image segmentation, reg-

istration, and other post-processing algorithms for analyzing OCT tomograms. Furthermore,

the novel algorithm has the advantages of providing high contrast and very sharp appearance of

zoomed-in sections of the original image, minimal presence of image artifacts, as well as result-

ing in best performance regardless of the type of image features layered or irregularly shaped

structures in the original image. When combined with segmentation algorithms designed for

retinal layers or blood vessels, the proposed algorithm can result in improved precision of the

quantitative evaluation of individual retinal layer thickness, or measurement of the blood vessel

diameter, a parameter necessary for the precise evaluation of retinal and choroidal blood flow.



Fig. 7. An OCT image of the rat retina acquired at the optic disc and processed with the

following filters: Original image, Adaptive median filter, Linear least square estimation,

Anisotropic Diffusion, MAP estimation, general Wavelet, Type II Fuzzy AD, and the new

proposed algorithm. The blue and red boxes in the original image mark regions in the image

used for quantitative comparison of the performance of all image processing algorithms

applied to the original image.
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