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Abstract: We derive a general formalism for bulk viscous solutions of the energy-conservation
equation for ρ(a, ζ), both for a single-component and a multicomponent fluid in the Friedmann
universe. For our purposes, these general solutions become valuable in estimating the order of
magnitude of the phenomenological viscosity in the cosmic fluid at present. H(z) observations are
found to put an upper limit on the magnitude of the modulus of the present-day bulk viscosity. It is
found to be ζ0 ∼ 106 Pa·s, in agreement with previous works. We point out that this magnitude is
acceptable from a hydrodynamic point of view. Finally, we bring new insight by using our estimates
of ζ to analyze the fate of the future universe. Of special interest is the case ζ ∝

√
ρ for which the

fluid, originally situated in the quintessence region, may slide through the phantom barrier and
inevitably be driven into a big rip. Typical rip times are found to be a few hundred Gy.
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1. Introduction

Recent years have witnessed a considerable interest in theories of the dark energy cosmic fluid in
the late universe. With present time defined as t = 0, this means the region t > 0. The interest in this
topic is very natural, in view of current observations of the equation of state parameter, commonly
called w. From the 2015 Planck data, Table 5 in [1], we have w = −1.019+0.075

−0.080. Writing the equation
of state in the usual homogeneous form:

p = wρ, w = constant ≡ −1 + α, (1)

with the parameter w here assumed constant for simplicity, we see that the value of α lies between
two limits,

αmin = −0.099, αmax = +0.056. (2)

It is thus quite conceivable that the cosmic fluid can be regarded as a dark energy fluid (the
region −1 < w < −1/3 is called the quintessence region, while w < −1 is the phantom region).
Observing that the dark energy fraction is so dominant, about 70%, it has, for the future universe,
been common to describe the cosmic fluid as a one-component fluid [2–9], for instance in the search
for future singularities. For some years, it has been known that if the cosmic fluid starts out from
some value of w lying in the phantom region, it will encounter some form of singularity in the remote
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future. The most dramatic event is called the big rip, in which the fluid enters into a singularity after
a finite time ts given by [2,10,11]:

ts =
2
|α|θ0

=
2

|α|
√

24πGρ0
, θ0 = 3H0, (3)

θ0 being the scalar expansion and H0 the Hubble parameter at present time. There exist also softer
variants of the future singularity where the singularity is not reached until an infinite time, called the
little rip [12–14], the pseudo rip [15] and the quasi rip [16].

In various previous contexts, the effects of relaxing the constancy of w have been investigated,
assuming instead that this quantity depends on ρ,

p = w(ρ)ρ, (4)

with:
w(ρ) = −1 + α ρ̃γ−1, with ρ̃ = ρ/ρ0, (5)

where α and γ are nondimensional constants (the subscript zero refers to t = 0). The ansatz
Equation (5) is meant to apply regardless of whether the fluid is in the quintessence or the phantom
region. On physical grounds, we expect that γ ≥ 1. If γ = 1, Equation (5) reduces to w = −1 + α, i.e.,
the same as Equation (1). If γ > 1 and the fluid develops as a phantom fluid, then the influence from
the density on the pressure becomes strongly enhanced near the big rip where ρ → ∞. The form (5)
has previously been investigated in [3,4,8,9].

In the present work, we will not consider the generalization contained in Equation (5) further.
Instead, we will generalize, at least in principle, by allowing for a multi-component fluid. There
are several earlier works in this direction; cf., for instance, [17–22]. Such a model means that the
total energy density is written as ρ = ∑i ρi. Treating ordinary matter and dark matter on the
same footing, we have, according to the ΛCDM model, Ω0m + ΩΛ + Ω0K = 1 (actually, Ω0K is a
one-parameter extension of the base model). Here, Ω0i denotes the relative density of component i at
present. i = m denotes matter (mainly dark matter), and i = K includes the curvature contribution.
Λ is the cosmological constant. Again, referring to the Planck data, Table 4 in [1], we have
ΩΛ = 0.6911± 0.0062, Ω0m = 0.3089± 0.0062, when 68% intervals are considered. This already adds
up to one, and the remaining one-parameter extension |Ω0K| < 0.005 will for the present purposes be
neglected. We shall, however, briefly consider the one-parameter extension of radiation, Ω0r.

As a second generalization, we will take into account the bulk viscosity of the cosmic fluid. As
is known, there exists also a second viscosity coefficient, the shear viscosity [23], to be considered
in the general case when one works to the first order deviations from thermal equilibrium. The
shear coefficient is of particular importance when dealing with flow near solid surfaces, but it can
be crucial also under boundary-free conditions, such as in isotropic turbulence (for cosmological
applications, cf. [14,24]). When the fluid is spatially isotropic, the shear viscosity is usually left out,
and we will make the same assumption here. Then, only the bulk viscosity ζ remains in the fluid’s
energy-momentum tensor. It is notable that in recent years, it has become quite common to include
viscous aspects of the cosmic fluid (readers interested in general accounts of viscous cosmology under
various circumstances may consult, for instance, [25–29]).

We will make the following ansatz for the bulk viscosity:

ζ(ρ) = ζ0

(
θ

θ0

)2λ

= ζ0

(
ρ

ρ0

)λ

, (6)

where λ ≥ 0 and ζ0 is the present viscosity. The above ansatz, for some power of λ, has often been
used in the literature, both for the early universe [30–33] and for the later universe [4,5,8,34–36]. The
two most actual values for λ are λ = 1

2 , whereby ζ ∝ θ ∝
√

ρ, and λ = 1, whereby ζ ∝ θ2 ∝ ρ. Again,
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considering the case of a dark fluid, we see that Equation (6) predicts ζ → ∞ near the big rip where
θ → ∞. In some of the previous literature mentioned above, both Equations (6) and (5) are assumed
at the same time, with γ− 1 = λ. As mentioned, Equation (5) is however not assumed in the present
work; for clarity, we take w = −1 + α throughout.

When dealing with the future universe, one needs to have information about the value of
the present-day viscosity ζ0 and the coefficient λ. To achieve this, one has to take into account
observations about the past universe (in our notation t < 0). We will work out below general
solutions from which estimates can be given for these two quantities. Especially the magnitude of
ζ0 is of interest, as little seems to be known about this quantity from before. We intend to come back
to an analysis of these general solutions in a later paper.

It is to be borne in mind that the inclusion of a bulk viscosity is done only on a phenomenological
basis. There might be fundamental reasons for the viscosity, based on kinetic theory; but this is a
different topic, and readers interested in such a line of research should consider, for instance, [27,37].
From an analogy with standard hydrodynamics, a phenomenological approach is obviously natural.

Let us now write down the standard FRW (Friedmann–Robertson–Walker) metric, assuming
zero spatial curvature, k = 0,

ds2 = −dt2 + a2(t) dx2. (7)

The energy-momentum tensor for the whole fluid is:

Tµν = ρUµUν + (p− θζ)hµν, (8)

where hµν = gµν + UµUν is the projection tensor. In co-moving coordinates (U0 = 1, Ui = 0) and
with the metric Equation (7), Einstein’s equation gives the two Friedmann equations:

θ2 = 24πGρ, (9)

θ̇ +
1
2

θ2 = −12πG (p− ζ(ρ)θ) , (10)

where ρ denotes the cosmological fluid as a whole. By Equation (8), the conservation equation for
energy and momentum becomes for the overall fluid:

Tµν
;ν = 0 ⇒ ρ̇ + (ρ + p)θ = ζ θ2 when µ = 0. (11)

The following point ought here to be noted. If we simply impose the conservation equation
Tµν

i ;ν = 0 for the matter subsystem i=m, we will get, for µ = 0,

ρ̇m + (ρm + pm)θ = ζmθ2, (12)

with ζm referring to the matter. Compare this to the balance equations for energy following from the
assumption about an interacting system consisting of matter and dark energy (DE) fluid,

ρ̇m + (ρm + pm)θ = Q, (13)

ρ̇de + (ρde + pde)θ = −Q, (14)

where Q is the energy source term. This is actually the way in which the coupling theory
is usually presented (cf., for instance, the recent references [22,38]). Comparison between
Equations (12) and (13) shows that the coupling is in our case essentially the viscosity. This
suggests that the viscosity should preferably be taken to depend on the fluid as a whole, thus
ζ = ζ(H), ζ = ζ(ρ), or ζ = ζ(z) (z being the redshift), instead of being taken as a function of the
fluid components.
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Our idea will now be to develop a general formulation for the viscous fluid and to compare
the theoretical predictions with measurements. As mentioned, similar approaches have been applied
in [17,18], but not in the general way here considered. Our main reason for developing this framework
is, as mentioned, to study the future universe. The formalism as such is applicable to the past, as well
to the future universe, and we need to use observations from the past universe in order to get an idea
about its future development. We intend also to relate various models presented in the literature to
each other.

Section 2 contains a central part of our work, as general bulk-viscous solutions are presented
for ζ(z) and ζ(ρ), respectively. We justify our approach and present the underlying assumptions. In
Section 3, we implement a definite model with the theoretical framework worked out in the foregoing
sections. The section also contains some simple non-linear regressions for three different models of
the bulk viscosity. In Section 4, we discuss our results, with emphasis on the model where ζ ∝

√
ρ.

Magnitudes of the viscosity suggested so far in the literature are considered. Finally, on the basis of
the obtained value for the viscosity, we return in Section 5 to the future universe. In particular, we
estimate the time needed to run into the big rip singularity.

2. General Solutions, Assuming ζ = ζ(ρ)

In the present section, we let the viscosity be dependent on the overall density ρ of the cosmic
fluid, i.e., ζ(ρ). We start by solving Equation (11) (restated below) with respect to ρ(a, ζ). Thereafter,
this solution is used in the first Friedmann Equation (9) to find E(a, ζ), where E = H/H0 is the
dimensionless Hubble parameter. We introduce the definition:

B ≡ 12πGζ0, (15)

as a useful abbreviation, where ζ0 is the present viscosity (divide by 1/c2 to convert to physical units).
This definition differs from that found in [17] only by the omission of Tδ

0 , since we do not consider
temperatures in this approach. In physical units, the dimension of B is the same as that of the Hubble
parameter, [B] = [H0] =s−1. One may for convenience express B in the conventional astronomical
units, km ·s−1Mpc−1 . If we denote this quantity as B[astro.units], we obtain:

ζ0 = B[astro.units]× 1.15× 106 Pa·s, (16)

which is a useful conversion formula. Now, consider the energy conservation Equation (11) following
from Equation (8),

a∂aρ(a) + 3[ρ(a) + p] = 3ζ(ρ)θ (17)

when rewritten in terms of the scale factor a. Evidently the viscosity here refers to the fluid as
a whole . By the inclusion of ζ in the Equation (8) for Tµν, we have ensured a divergence-free
total energy-momentum tensor Tµν

;ν = 0 by construction. However, the interpretations of the
phenomenologically included ζ is to an extent open, as we have already anticipated. It depends
essentially on whether we take the fluid to be a one-component or a multicomponent system (cf. a
closer discussion in Appendix A). This is a matter of physical interpretation and does not need to
be specified for the purposes of the present section. We do not here require that T µν

i ;ν = 0 for each
component i. See also the brief discussion on this point in Appendix B.

We have so far made no assumption about the form of ρ(a). For a general multicomponent fluid
with an arbitrary number of components, we can however write ρ = ∑i ρi, where the sum goes over
an arbitrary number of components. First, if there is no viscosity, we have:

Assumption 1.
p = ∑

i
wiρi, (18)
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which means that each component i contributes linearly to the overall pressure p. In this case, the
energy-conservation-equation is easily verified to have the homogeneous solution (i.e., ζ = 0):

ρh(a) = ∑
i

ρhi(a) = ∑
i

ρ0ia−3(wi+1), (19)

where ρ0i are the present densities (a0 = 1). Thus, in the absence of viscosity, the overall fluid
would evolve as Equation (19). Now, including viscosity, we let the general solution be a sum of a
homogeneous and a particular one, so that:

ρ(a) = ∑
i

ρhi(a) + ρp(a, ζ) = ∑
i

ρhi(a) [1 + ui(a, ζ)] = ∑
i

ρ0ia−3(wi+1) [1 + ui(a, ζ)] , (20)

where ui(a) are functions to be determined by substituting Equation (20) for ρ in the
energy-conservation Equation (17). Doing so, we find the differential equation:

∑
i

ρhi(a)
∂ui(a, ζ)

∂a
= 3

ζ(ρ)

a
θ. (21)

Inserting θ from the first Friedmann Equation (9), we find:

∑
i

ρhi(a)
∂ui(a, ζ)

∂a
= 9

ζ(ρ)

a

√
8πG

3 ∑
i

ρhi(a) [1 + ui(a, ζ)]. (22)

This equation, as it stands, is not particularly useful. In principle, one might solve it for one
component ui(a, ζ), but since the equation is non-linear in ρ, the superposition principle cannot be
used to find the solution for a multicomponent fluid with density ρ(a). This would mean that different
uis must be calculated, since the viscosity effect would be different for the different components.
We will follow a simpler approach; by noting that the above equation can be solved if all of the
ui(a, ζ)s are equal; ui(a, ζ) → u(a, ζ). In this way, the non-linearity of Equation (22) in ρ is avoided.
Physically, this means introducing a phenomenological viscosity for the overall fluid. Equation (20)
now becomes:

Assumption 2.
ρ(a) = ρh(a) [1 + u(a)] , (23)

This assumption simplifies the formalism. Note that the relative contributions of the fluid
components for any redshift remain unaltered compared to the inviscid case. By the above
assumption, Equation (22) becomes:

∂u(a)
∂a

= 9
ζ(a)

aρh(a)

√
8πG

3
ρh(a) [1 + u(a, ζ)]. (24)

We may at this point refer to [18], where rather general remarks are made in the case of ζ → ζ(ρi).
Equation (24) may now be solved for u(a, ζ), if ζ(ρ) is known. Inserting our ansatz Equation (6) for ζ

we find:
1

(1 + u)λ+1/2
du
da

=
9ζ0

aρλ
0

√
8πG

3
(ρh(a))λ−1/2 , (25)

where the arguments of u were suppressed for brevity. The solution is:

u(z, B, λ) =


[

1− (1− 2λ)
B

H0

∫ z

0

1

(1 + z)
√

Ω
1−2λ

dz

] 2
1−2λ

− 1 for λ 6= 1
2 ,

(1 + z)−
2B
H0 for λ = 1

2 ,

(26)
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where we have rewritten in terms of the redshift through a = 1/(1+ z) and where the initial condition
was chosen, such that ρ(z = 0, ζ = 0) = ∑i ρ0i. Furthermore, for brevity,

Ω ≡∑
i

Ω0i(1 + z)3(1+wi) where Ω0i =
ρ0i
ρc

and ρc =
3 H2

0
8π G

(27)

and as defined previously; B = 12πGζ0. By Equation (23), Friedmann’s first Equation (9) now gives
the dimensionless Hubble parameter E(z) as:

E2(z) = Ω [1 + u(λ, ζ0)] , (28)

where u(λ, ζ0) is given by the solution Equation (26). Initial condition E(z = 0) = 1 is fulfilled. In
the case of zero viscosity, Equation (28) reduces to the first Friedmann equation (with k = 0) on the
standard dimensionless form. This is as expected and shows that the particular solution is needed
in order to account for the viscosity properly. Since the above equations are valid for any number
of components, it should be possible to apply them in many different scenarios, also inflationary
scenarios, for instance, as a natural extension of the case studied in [22]. The general solution of the
integral in Equation (26) is quite involved, but we solve it for the specific cases λ = 1/2 and λ = 1,
which, as mentioned in the Introduction, are among the most popular choices. We end this section
by noting that also one-fluid models, such as the kind found, for instance, in [4], naturally becomes
a special case of our general solutions. Equation (28) presents the cases that we shall study further
in the present work. However, before that, we shall briefly comment on the theoretical aspects of
the case ζ(z).

Comments on the Case ζ(z)

The energy-conservation-equation is solvable also in the case of ζ(z). A redshift-dependent
viscosity might be more natural in some cases, like the treatment given in [17]. Following the same
procedure as in the case ζ(ρ) presented above, one this time finds:

E2(z) = Ω [1 + u(ζ)] where u(ζ) =

[
1− B

H0

∫ z

0

ζ(z)
(1 + z)

√
Ω

dz

]2

− 1, (29)

when initial condition E(z = 0) = 1 is fulfilled. We shall not use these solutions any further in
this paper.

3. Implementing the Theory with Realistic Universe Models and Determining ζ0

3.1. Restricting the Number of Components in the Fluid Model

Now that the general bulk-viscous framework is in place, one may attempt to implement
specific universe models. In particular, what needs to be determined, is which components one
should include in the cosmic fluid and what kind of viscosity. In [39], one finds Hubble parameter
measurements back to redshifts∼2.3. As Table 1 shows, this stretches deep into the matter-dominated
epoch. As is known, at redshift z = 0.25 dark energy becomes the main constituent. Taken all
together, it is natural as a first approach to assume the universe consisting of dust (w = 0) and a
constant dark energy term (w = −1). With ρ(z)→ ρm(z) + ρde, we find:

E2(z) = [Ωde + Ω0m(1 + z)3] (1 + u) , (30)

where u now is given by Equation (26), since we intend to give the viscosities as function of ρ.
We intend in the following to give an estimate of the viscosity useful for future properties of the
cosmic fluid, such as singularities like the big rip. In the previous investigations to this end, a
phenomenological one-component approach has been used (cf. the Introduction). Since we want
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to follow the well-established ΛCDM (Lambda cold dark matter) model as closely as possible, we
will not consider a one-component fluid. However, we will assign a bulk viscosity only to the fluid
as a whole. This gives a natural transition into a one-component phenomenological description of
the future cosmic fluid. In the following, we shall implement the three most used cases ζ = constant,
ζ ∝

√
ρ and ζ ∝ ρ in order to estimate the magnitude of the viscosity ζ0. The whole point with

estimating ζ0 is in the present context to determine its impact on properties of the future cosmic fluid.

Table 1. Overview of cosmological time as a function of redshift. The first three columns are based
on [40]; the last column contains useful approximate redshifts.

Cosmological Evolution

Cosmic Time Scale Factor a Era Redshifts

t = 13.8 Gy 1 present 0
9.8 Gy< t < 13.8 Gy a(t) = eH0t DE dominance -
t = 9.8 Gy 0.75 onset of DE dominance 0.25
47 ky< t < 9.8 Gy a(t) ∝ t2/3 matter dominance -
t = 47 ky 1.2× 10−4 onset of matter dominance 3400
t < 47 ky a(t) ∝ t1/2 radiation dominance -
t = 10−10 s 1.7× 10−15 electroweak phase transition -
10−44s< t < 10−10s a(t) ∝ t1/2 possible inflation or bounce -
t < 10−44 1.7× 10−32 Planck time 5.9× 1031

3.2. Explicit Formulae for E(z, ζ0) Obtained for the Three Cases ζ =constant, ζ ∝
√

ρ and ζ ∝ ρ

Solving the integral in Equation (29) for u(z) in the three different cases, Equation (30) becomes:

E(z) =



√
Ω(z)

[
1− 2B

3H0
√

Ωde
arctanh

(√
Ω(z)
Ωde

)
+ I0

]
when ζ = constant,√

Ω(z)(1 + z)−
B

H0 when ζ = ζ0

(
ρ
ρ0

)1/2
,

√
Ω√

1 + 2B
3H0

[√
Ω
(

1−
√

Ωde√
Ω

arctanh
√

1 + Ω0m
Ωde

(1 + z)3
)]

+ C
when ζ ∝ ρ.

(31)

where we have rewritten the expressions in terms of relative densities. The definition (15)
has also been used. The integration constants are readily determined by the initial condition
E(z = 0) = Ω(z = 0) ≡ Ω0 = 1.

3.3. Data Fitting

Before we go on to discuss the future universe, we need an estimate of the magnitude of the
viscosity. For the present purposes, an estimate of order of magnitude suffices, and hence, we will
apply a simple procedure. From the formulae in the previous section, we are able to estimate an
upper limit on the magnitude of the modulus of ζ0. This was done by minimizing:

χ2
H(H0, ζ) =

N

∑
i=1

[
Hth(zi; H0, ζ)− Hobs(zi)

]2

σ2
H,i

, (32)

where N is the number of data points, Hth(zi) is the theoretical Hubble parameter value at redshift
zi, Hobs(zi) is the observed value at redshift zi and σ2

H,i is the variance in observation i. To the best of
our knowledge, [39] contains the most up-to-date set of independent H(z) observations. To estimate
orders of magnitude from the prescriptions found therein, we minimize Equation (32) through a
non-linear least square procedure. Table 2 compares the fit of the different assumptions made for
ζ. In the most recent Planck data, Table 4 in [1], one finds the values H0 = 67.74 km s−1 Mpc−1,
Ω0m = 0.3089, Ωde = 0.6911. These values were used in our regression.
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Table 2. Results of the different models that have been compared to observations.
(CI: Confidence Interval).

Summary of Model Fitting

Model for ζ
Adjusted R2 Fit-Value for B 95% CI

[−] (km · s−1 · Mpc−1)

ζ = constant 0.9601 0.6873 (−2.788, 4.163)
ζ ∝ ρ1/2 ∝ H 0.9604 0.7547 (−1.706, 3.215)
ζ ∝ ρ ∝ H2 0.9609 0.5906 (−0.8498, 2.031)

Much more could be done to obtain accurate estimates of ζ0, especially by including different
datasets. However, this is not necessary for our purposes, and we leave it for future investigations.

4. Discussion and Further Connection to Previous Works

Additional information should be taken into account in order to help with deciding between the
three cases ζ0, ζ ∝

√
ρ and ζ ∝ ρ discussed above. In this section, we make comments on this point

and also on the expected magnitude of ζ0.

4.1. The Evolution of ζ

The three functional forms implemented in this paper appear to be widely accepted (cf. the
Introduction). As [34] formulates it, the most common dependencies ζ ∝ ρ and ∝

√
ρ are chosen

because they lead to well-known analytic solutions. Any attempt at extrapolating the theory into
the future will involve knowledge about the functional form of ζ. In the following, we consider
the option ζ ∝

√
ρ and wish to point out that this form for ζ, at least from a dynamical point of

view, has the characteristic property that it is subject to multiple possibilities of interpretation. Going
back to the energy-conservation equation, Equation (17) and inserting ζ = ζ0θ/θ0, we can move the
right-hand side over to the left-hand side and find:

a∂aρ(a) + 3[ρ(a) + p] =
3ζ0

θ0
θ2 → ∑

i

[
a∂aρi(a) + 3(1 + wi −

2B
θ0

)ρi

]
= 0. (33)

p = ∑i wiρi and B = 12πGζ0 are used as before. From the above equation, it is clear that we
dynamically could obtain the same result by shifting each equation of state parameter wi, such that:

w′ = w− 2B
θ0

, (34)

where w′i is the new equation of state parameter. This property is pointed out from another
perspective, also in, e.g., [3,18]. The result is seen to confirm the solution of Equation (28), with
λ = 1/2. Note that B ∼ 1 km·s−1Mpc−1 would correspond to a shift in w of ∼ 0.01 according to
the above equation. By interpreting the viscosity as a result of the interplay between various fluid
components with homogeneous equations of state (treated in more detail in [27]), we show in A that
one is led to a phenomenological viscosity of the form:

ζ =
H0

8πG

[
w− w1

Ω1(z)
Ω(z)

− w2
Ω2(z)
Ω(z)

]√
Ω(z), (35)

where Ω(z) includes all fluid components. This expression accounts for the phenomenological
viscosity resulting when two of the components (i = 1, 2) in a multi-component fluid are seen as
one single fluid component with a single equation of state parameter w. Note the functional form
of ζ in the above equation: if the square bracket is well approximated by a constant, the functional
form of ζ approaches ζ ∝

√
Ω(z) ∝

√
ρ. Inserting B ∼ 1 km·s−1Mpc−1 and the corresponding
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w = 0.01, we find such a regime for redshift values −1 < z < 1 when extending the base ΛCDM
model by including radiation and baryons as one effective matter/radiation component (ρmr). This
means that we now deal with a phenomenological fluid consisting of three components ρde, ρdm and
ρmr. The kind of viscosity that we here consider, originating from lumping two or more components
together, may be simplifying, though obviously phenomenological. However, it is of definite interest
in making predictions for the future universe, which we will do in a later section.

4.2. The Magnitude of ζ0

The magnitude is of comparable size for all three functional forms here tested. Using
Equations (15) and (16) for the B-values listed in Table 2, we seem to be on safe ground by saying
that ζ0 < 107 Pa·s. This is largely in agreement with [17] and also [41], wherein bulk-dissipative dark
matter is considered. As pointed out in the same paper, this is 10 orders of magnitude higher than
the bulk viscosity found in, for instance, water at atmospheric pressure and room temperature. We
mention also the even better agreement with the conservative estimate recently given in [6,42], where
the interval 104 Pa · s < ζ0 < 106 Pa · s is found. Furthermore, [43] seems to find a bulk viscosity
ζ0 ∼ 107 Pa · s in the case of bulk viscous matter when constant viscosity ζ0 is considered. Since
in fluid mechanics the viscosity coefficients appear in connection with first order modification to
thermodynamical equilibrium, it becomes natural to expect that the pressure modification caused by
the bulk viscosity should be much smaller than the equilibrium pressure. Using the critical density
(ρc ∼ 10−26 kg·m−3) as a measure of the present day pressure in the universe and estimating the
equation of state parameter w to be of order unity, the above restriction reduces to:

|p| = |wρ| � |ζ0θ| → |ζ0| � 108 Pa·s (36)

in SI units. p here means the pressure in the overall fluid, and ρ is the overall density. This result
shows that the viscosity coefficient actually can be extremely high compared to the intuition given
by kinetic theory applied on atomic and molecular scales. Our regression found the upper limit
on the magnitude of the modulus of the present-day viscosity to be ζ0 ∼ 106 Pa·s, consistent with
thermodynamics and 1% of the estimated equilibrium pressure.

5. Future Universe: Calculation of the Rip Time

Armed with the above information, we can now make a quantitative calculation of the future
big rip time, based on a chosen model for the bulk viscosity. As before, we let t = 0 refer to the
present time, and we shall in this section adopt the formulation for which ζ = ζ(ρ). As before, ρ

here refers to the cosmological fluid as a whole. Since we are looking at the future universe, we
shall in this section go back to the much-studied one-component model discussed in Section 1. Using
Friedmann’s equations and the energy conservation under the assumptions k = 0 and Λ = 0, we
obtain the following governing equation for the scalar expansion θ [6,8]:

θ̇ +
1
2

αθ2 − 12πGζ(ρ)θ = 0, (37)

which can be rewritten in terms of the density as:

ρ̇ +
√

24πG αρ3/2 − 24πGζ(ρ)ρ = 0. (38)

The solution is:
t =

1√
24πG

∫ ρ

ρ0

dρ

ρ3/2
[
−α +

√
24πG ζ(ρ)/

√
ρ
] . (39)

We will henceforth consider two models for the bulk viscosity:
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Case 1: ζ equal to a constant. We put for definiteness the value of ζ equal to its present value,

ζ = ζ0 = 105 Pa · s, (40)

i.e., the mean of the interval given previously in Section 4.2. It corresponds to the viscosity time
(in dimensional units):

tc =
c2

12πGζ0
= 3.58× 1020 s. (41)

The rip time becomes in this case [6]:

ts = tc ln
(

1 +
2

|α|θ0tc

)
, (42)

where we have taken into account that in this case, α has to be negative to lead to a big rip. For
definiteness, we choose:

α = −0.05, (43)

which is a reasonable negative value according to experiment; cf. Equation (2). With
θ0 = 6.60× 10−18 s−1, we then get:

ts = 6.00× 1018 s = 190 Gy, (44)

thus much larger than the age 13.8 Gy of our present universe.

Case 2: ζ ∝
√

ρ. We take:
ζ(ρ) = ζ0

√
ρ̃, ρ̃ = ρ/ρ0, (45)

with ζ0 the same as above. From Equation (39), we then get:

t =
1√

24πG
2

−α + ζ0
√

24πG/ρ0

(
1
√

ρ0
− 1
√

ρ

)
, (46)

The remarkable property of this expression, as pointed out already in [8], is that it permits a big
rip singularity even if the fluid is initially in the quintessence region α > 0. The condition is only that:

− α + ζ0
√

24πG/ρ0 > 0. (47)

If this condition holds, the universe runs into a singularity (ρ = ∞) at a finite rip time:

ts =
1√

24πGρ0

2
−α + (ζ0/c2)

√
24πG/ρ0

, (48)

here given in dimensional units. Identifying ρ0 with the critical energy density ρc = 2× 10−26 kg/m3

(assuming the conventional h parameter equal to 0.7), we can write the rip time in the form:

ts =
2

−α + 0.0056
× 1017 s, (49)

which clearly shows the delicate dependence on α. If the universe starts from the quintessence
region, it may run into the big rip if α < 0.0056, thus very small. If the universe starts from
the phantom region, it will always encounter the singularity. In the special case when α = 0, we
obtain ts = 3.6× 1019 s, thus even greater than the previous expression Equation (44) for the constant
viscosity case. If α = −0.05 as chosen above, we find ts = 3.59× 1018 s = 114 Gy.
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6. Conclusion

We may summarize as follows:

• The main part of this paper contains a critical survey over solutions of the
energy-conservation-equation for a viscous, isotropic Friedmann universe having zero spatial
curvature, k = 0. We assumed the equation of state in the homogeneous form p = ∑i wiρi, with
wi = constant for all components in the fluid. With ρ meaning the energy density and ζ the
bulk viscosity, we focused on three options: (i) ζ =constant, (ii) ζ ∝

√
ρ and (iii) ζ ∝ ρ. We

here made use of information from various experimentally-based sources; cf. [17,39], and others.
Our analysis was kept at a general level, so that previous theories, such as that presented in [4],
for instance, can be considered as a special case. We also mentioned the potential to include
ζ(z) cases and component-dependent cases ζi(ρi), such as those treated in, for instance, [17,18].
Note that our solutions also have the capability to include component extensions of the base
ΛCDM model, such as the inclusion of radiation. This was so because we assumed a general
multicomponent fluid.

• A characteristic property as seen from the Figure 1 is that the differences between the predictions
from the various viscosity models are relatively small. It may be surprising that even the simple
ansatz ζ = constant reproduces experimental data quite well. These models however tend to
underpredict H(z) for large redshifts. In the literature, the ansatz ζ ∝

√
ρ, is widely accepted.

z   (-)
0 0.5 1 1.5 2

H
(z

) 
  (

km
/s

/M
pc

)

0

50

100

150

200

250
B1=0.59056 km/s/Mpc
B2=0.75469 km/s/Mpc
B3=0.68734 km/s/Mpc

Evolution of H(z) with different ansatzes for the viscosity

Best fit (lambda=1)
Best fit (lambda=1/2)
Best fit (const. visc.)
B=0

Figure 1. Friedmann’s first equation for H(z) (km·s−1Mpc−1) with three different ansatzes for the
viscosity. The fit-values used for B are (i) B1 = 0.590 km·s−1Mpc−1 for ζ ∝ ρ (solid, black line),
(ii) B2 = 0.755 km·s−1Mpc−1 for ζ ∝

√
ρ (stippled, dotted red line) and (iii) B3 = 0.687 km·s−1Mpc−1

for constant viscosity (stippled, green line). The dotted blue line gives the corresponding evolution
for B = 0 (no viscosity).

• As for the magnitude of the bulk viscosity ζ0 in the present universe, we found, on the basis of
various sources, that one hardly does better than restricting ζ0 to lie within an interval. We
suggested the interval to extend from 104 to 106 Pa·s, although there are some indications that
the upper limit could be extended somewhat. In any case, these are several orders of magnitude
larger than the bulk viscosities encountered in usual hydrodynamics.

• In Section 5, we considered the future universe, extending from t = 0 onwards. For definiteness,
we chose the value ζ0 = 105 Pa·s. We focused on the occurrence of a big rip singularity
in the far future. The numerical values found in the earlier sections enabled us to make a
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quantitative estimate of the rip time ts. With α defined as α = w + 1, we found that even the case
ζ = ζ0 = constant allows the big rip to occur, if α is negative, i.e., lying in the phantom region.
This is the same kind of behavior as found earlier by Caldwell [10] and others, in the non-viscous
case. Of special interest is, however, the case ζ ∝

√
ρ, where the fate of the universe is critically

dependent on the magnitude of α. If α < 0, the big rip is inevitable, similarly as above. If α > 0
(the quintessence region), the big rip can actually also occur if α is very small, less than about
0.005. This possibility of sliding through the phantom divide was actually pointed out several
years ago [8], but can now be better quantified. Typical rip times are found to lie roughly in the
interval from 100 to 200 Gy.

Acknowledgments: We thank Kåre Olaussen for valuable discussions.

Author Contributions: The authors contributed to this work equally. All of the authors have read and approved
the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Viscosity in Expanding Perfect Fluids

We first point out a simple though noteworthy property of an expanding universe consisting of
many fluid components with homogeneous equations of state: the composite fluid when seen as one
single fluid cannot itself have a homogeneous equation of state if ζ = 0. This statement is consistent
also with that of Zimdahl [27], who investigated this issue in more detail through a different approach.
Recall the energy-conservation equation for a inviscid fluid with equation of state p = wρ resulting
from Tµν

;ν = 0:
a∂aρ + 3(ρ + p) = 0 with solution ρ(a) = ρ0a−3(1+w). (A1)

Now, assume ρ = ∑ ρi, where the components are distinguished by different homogeneous
equations of state, for which the wis are all known. For simplicity, we consider only two components
(the argument holds also for more components),

ρ = ρ1 + ρ2, (A2)

Inserting Equation (A2) into the energy-conservation equation in Equation (A1) and summing,
we find:

∑
i
[a∂aρi + 3(1 + wi)ρi] = 0, (A3)

from which we obtain after some simple manipulations:

a∂aρ + 3(1 + w)ρ = 3 ∑
i
(w− wi)ρi. (A4)

Can we here choose an overall equation of state parameter w, such that the right-hand side of
the last equation vanishes? If so, we would have constructed a phenomenological homogeneous
(inviscid) fluid ρ as the sum of two inviscid fluids possessing homogeneous equations of states. For
this to happen, we must require:

w =
∑i ρiwi

ρ
→ wρ = ∑

i
ρiwi → p = ∑

i
pi (A5)

which is nothing but Dalton’s law for partial pressures, If this requirement is not satisfied, there will
be an additional contribution to the pressure balance, which phenomenologically may be attributed
to a viscosity. Additionally, it is clear that Equation (A5) has to be broken: taking w1 and w2 both
constants, but different from each other, it follows that Equation (A5) cannot hold for w =constant.
The densities ρ1 and ρ2 evolve differently with respect to the scale factor a. We thus see that even
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though ρ1 and ρ2 have homogeneous equations of state, ρ = ρ1 + ρ2 cannot be seen as one effective
fluid with a homogeneous equation of state, without also introducing a phenomenological viscosity ζ.

We can use the formalism above to give a more detailed derivation of the previous expression
Equation (35) for ζ. Equating the right-hand side of Equation (A3) to 3ζθ (cf. Equation (17)), we find:

3θζ = 3 ∑
i
(w− wi)ρi (A6)

which, by θ =
√

24πGρ, becomes:

ζ =
∑i(w− wi)ρi√

24πGρ
. (A7)

For a general multi-component fluid (ρ = ρ1 + ρ2 + ... + ρn) of which two components i = 1, 2
are viewed as one component, the resulting expression for the viscosity will, according to the above
formula, be:

ζ =
1√

24πG

[
w
√

ρ− w1
ρ1√

ρ
− w2

ρ2√
ρ

]
. (A8)

Note that now ρ = ρcomb + ρ3 + ...+ ρn, where ρcomb denotes the two components i = 1, 2 viewed
as one component. The above expression may be rewritten as:

ζ =
H0

8πG

[
w− w1

Ω1(z)
Ω(z)

− w2
Ω2(z)
Ω(z)

]√
Ω(z), (A9)

in agreement with Equation (35).

Appendix B. Comment on a Universe Filled Solely with ρΛ

Our final comment concerns the case where the only component in the fluid ρ is the cosmological
constant (ρ→ ρΛ) obeying the equation:

p = −ρΛ. (B1)

Then, since ρΛ = constant, the energy-conservation equation reduces to, if we reinstate the
curvature parameter k,

ζΛθ2 = ζΛ

(
−k
a2 +

Λ
3

)
= 0, (B2)

where the first Friedmann equation is used in the last equality. This leaves us with two options: (i)
Λ = 3k/a2; or (ii) ζΛ = 0. Imposing k = 0, one is left only with the last option. We can thus conclude
that in flat space, a cosmological fluid entirely consisting of a cosmological constant (i.e., w = −1)
cannot be viscous.
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