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Abstract. The classical condition for the contact angle of a phase interface at a

container wall is generalized to include both anisotropy and kinetics. The derivation,

which does not involve an assumption of local equilibrium, is based on a capillary force

balance, a dissipation inequality representing the second law, and suitable constitutive

assumptions.

1. Introduction. Consider a vessel containing phases a and /? separated by a sharp

interface. The classical condition for the contact angle 7 of the interface at the container

wall is

cos 7 = g/f, g = ga-gf3, (l-l)

where / and gp (p = a, /?) are constants with / the free energy of the interface and gp the

free energy of the contact layer between phase p and the container wall. The condition

(1.1) is generally derived from a condition of local equilibrium, and it seems reasonable

to inquire whether there is a dynamical generalization that accounts for the motion of

the contact point along the container wall.

Our main result is a general contact condition that allows for both anisotropy and

kinetics:

C(Q) • T(lo) = g(u>) + h(9,uj,v)v (1.2)

with /.i(0, u>,v) > 0 a kinetic modulus and

C(0) = /(0)T(0) + /'(0)N(0) (1.3)

the capillary force. Here v is the velocity of the contact point along the container wall,

0 is the normal angle of the interface, cj is the normal angle of the container wall, T(0)

and N(#) are the unit tangent and normal to the interface, and T(w) is the unit tangent

to the wall. (Although our derivation is in R2, the results apply also to M3, the relevant

plane being that spanned by the normal to the interface and the normal to the wall.

Precise definitions specifying orientations, etc. are given in the text.)
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If is independent of v, then, granted isotropy, we are led to a dynamical generalization

of (1.1):

/cos7 = g + /iv, COS7 = T(0) • T(k;); (1.4)

interestingly, (1.4) places a limitation on the magnitude of the velocity v.

We show that—granted certain assumptions—the contact condition (1.2) has two roots

0=Q±(u>,v), LU — 7T < Q~(tu,v) < LO < Q+(uJ,v) < (jJ + 7T. (1.5)

For n independent of 0 these roots can be obtained graphically using a procedure that is

most easily explained for the special case: /,t = 0,g(w) > 0. Plot the Frank diagrams ^

and 'S of / and g (3r, for example, is the graph, in polar coordinates, of r = f(0)~1).

Assume that is convex and enclosed by "S (the "wetting condition"). Then, given any

angle u>, consider the point xonf that corresponds to the angle u>. There are exactly

two lines through x that are tangent to ; the angles 6 corresponding to these points of

tangency are the roots 0 = 0±(w) of (1.2).

Our derivation of the general condition (1.2) is dynamical from the outset; it is based

on a capillary force balance for the contact point, a dissipation inequality representing

the second law for the restricted situation under consideration, and suitable constitutive

assumptions.

2. Balance of forces. We consider the motion of a two-phase system in a fixed

region fi in R2. We assume that the phases, labelled a and f3, are separated by a sharp

interface at each time. Our interest is in the behavior of the system near a given contact

point z(t) of the interface with the container wall adjacent to dfl. With this in mind, we

choose an arbitrary time to and write

3t(r) = SI fl {open disc of radius r centered at z(i0)}- (2.1)

We assume there is a sufficiently small r0 such that, for all t in a sufficiently small

neighborhood of to, z(i) is the only contact point in S>o =

We henceforth confine attention to the time interval ^ and to behavior

within 9>o.

We assume that the portion j(t) of the interface in S>o is a smoothly evolving curve

with a time-dependent parametrization whose arc length s increases away from z (t). In

addition, we choose a unit normal N(x, £) and unit tangent T(x, t) on n{t) oriented as in

Fig. 1.

We allow for boundary layers (of zero thickness) between the container wall and each

of the phases. We write fp(t), p — a,f3, for the portion of dil fl 3>o contained in phase

p, and we identify these boundary layers with Sa(t) and (t). We assume that 3Q.C

is smooth, we choose a parametrization in which arc length a increases as z(f) is crossed

from a to /?, and we choose a unit normal ^(x) and unit tangent t(x) to dfl fl as in

Fig. 1.
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Phase f3

Interface

Phase a

Fig. 1. The region S>o of interest. Sign conventions

Behavior within the interface is described by a capillary force C(x, t) on j{t) whose

tangential and normal components represent surface tension and surface shear [AG, GI-

GS]. Let 31 with initial and terminal points X] and X2 be a subcurve of j(t). Then

—C(xi,£) and C(x2,t) are the capillary forces exerted on 31 across 331 at Xi and X2.

We also allow for capillarity at the container walls described by forces Ga (x, t.) and

on /fa(t) and ifp(t), respectively. If 3§—with initial and terminal points Xi and

X2—is a subcurve of /a(£), then — Gq(xi, t) and GQ(x2, t) are the capillary forces exerted

on 38 across d38 at xi and X2, and similarly for (t).

Finally, we associate with z(t) a concentrated force P(£) acting at z(t); P(t) represents

the force exerted by the container at the junction (of the interface and the boundary

layers).

Consider an arbitrary "control volume" 3f(r) (r < ro). Let

<(r,()=<(()n®W, /p(r,()=/p(f)n9(r), (2.2)

and let z(t) and y(r,t) denote the initial and terminal points of j(r, i); Xi(r) and z(t)

the initial and terminal points of /Q(r, t)\7,{t) and X2(r) the initial and terminal points
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Gp(x2(r))

y{r)

C{y{r))

Ga(xi(r))

Fig. 2. Forces on a control volume 3)o(r)

of /p(r,t). Then, suppressing the argument t, we consider balance of forces for 3!{r) in

the form (Fig. 2)

C(y(r)) + G/j(x2(r)) - GQ(xi(r)) + P + o(l) = 0 (2.3)

as r —> 0, and therefore arrive at the following force balance for the contact point:

C — G + P = 0 at (z(t),t), (2.4)

where

G(t) = Ga(z(t),t)-Gp(z(t),t), (2.5)

and where, for example, Gp(zrepresents the limit of Gp(x,t) as x —> z{t) from

The term of o(l) represents continuously distributed forces whose net contribution

vanishes as r —> 0.

3. Dissipation inequality.

a. Free energies. We write /(x,i) > 0 for the free energy, per unit length, of the

interface j(t), and, for p = a,(3, we let gp(x,t) > 0 denote the free energy, per unit

length, of the boundary layer /p(£); then, granted the equivalence of surface tension and

free energy,

/ = C • T, gp = Gp ■ r. (3.1)
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The total free energy % (r, t) of the interface and boundary layer in a "control volume"

3!{r) is given by

f(r, i) = f fds+f gadcr+[ gp da, (3.2)

where here and in what follows we use the notation in the paragraph containing (2.2).

Thus, suppressing the argument t,

/dsj = /(y(r))y» • T(y(r)) - /(z)z' • T(z) + f (...)ds, (3.3)
v Kr) ) J*(r)

where the integrand (...) is unimportant, and where a superscript dot denotes differen-

tiation with respect to t (cf. [G2], Eq. (2.24)). Similar expressions apply to the other two

integrals in (3.2); these and (3.3) imply that, as r —> 0,

g"(r) = /(z)[y'(0) • T(z) - z • T(z)] + gz ■ r(z) + o(l), (3.4)

where

g(t) = ga(z(t), t) - gp{z(t), t), (3.5)

and where y'(0) denotes the limit of y'(r) as r —* 0.

The theory under consideration is purely mechanical, with the interface driven by bulk

free-energy differences. If Fa and Fp, assumed constant, denote the bulk free energies of

a and (3, then, letting F(x,t) denote the piecewise constant function that has the value

Fa in phase a and Fp in phase f3, the total bulk energy E(r,t) of 3? (r) is given by

/J 31
E{r,t) = I F(x,t)da. (3-6)

r)

The rate E'(r,t) is then the integral over j(r) of Fa — Fp times the normal velocity of

*{r), and therefore, as r —> 0,

E'(r,t) = o( 1). (3.7)

b. Expended power. We suppose that the total power expended on (r) is given by

3°{r,t) = C(y(r,t),t) -y'(r,t) + o( 1) (3.8)

as r —> 0. The forces GQ(xi(r),i) and Gp(x2(r),t) act on d3?(r), but do not perform

work, since xi(r) and X2(r) do not vary with time; the forces C(z(t),t),Ga(z(t),t), and

Gp(z(t),t) do not enter (3.8), since they act internally to @>(r). Finally, the force P(£)

acts on d2>(r) at z(t), and although P(t) is transported with z(t), P(t) performs no

work, since the boundary layer itself is stationary.
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c. Dissipation inequality. We base the theory on a dynamical version of the second

law, the dissipation inequality, which requires that the energy of a control volume (r)

change at a rate not greater than the power expended on 3>(r)\

<£"(r,t) + E'(r,t) < &>(r,t). (3.9)

Letting r —> 0, we conclude, with the aid of (3.4), (3.7), and (3.8), that

/(z)[y'(0) • T(z) - z • T(z)] + gz • r(z) < C(z) • y'(0), (3.10)

where we have again suppressed the argument t.

We denote by V(t) the normal velocity of the interface at the contact point, and by

v(t) the velocity of the contact point along the container wall:

V = N{z) • y'(0) = N(z) • z', z'-vt(z). (3-11)

By (2.5) and (3.5),

g = G(z) • r(z), (3.12)

and using (2.4), (3.11), and (3.12), we can reduce the inequality (3.10) to the simple form

PtauV < 0, (3.13)

which asserts that the tangential force

Pf,m = P • t (3.14)

exerted by the container wall on the junction of the interface and the boundary layers

dissipates energy over the velocity of the junction along the container wall.

Note that, by (3.12), the tangential part (with respect to r) of the force balance (2.4)

yields

C-T-g + Ptea =0. (3.15)

4. Constitutive assumptions. It is convenient to introduce the angle 9{t) from

the (l,0)-axis in 3R2 to the normal N(z(t),t) and the angle u(t) from the (l,0)-axis to

the normal is(z(t),t), with both angles measured counterclockwise. Then N(z(t),£) and

T(z(t),t) may be considered as functions of 6{t)\

N(0) = (sin0, cos0), T(0) = (— cos0,sin0). (4.1)

Further, using the functional relations (4.1), we can write v(z(t),t) and r(z(i),i) as

i/(z (t),t) = N(v(t)), r(z(t),t) = T (u(t)). (4.2)

As constitutive assumptions we assume that the free energy of the interface at the

contact point is a function of the normal angle of the interface, and that the difference
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(3.5) in the boundary energies of the two phases at the contact point is a function of the

normal angle of the container wall:

f = f(9), 9 = 9(w)- (4-3)

In addition, we assume that the free energy f{9) generates the capillary force C through

the constitutive equation [AG, Gl, G2]

C = C(9) = f(9)T(9) + f'(9)N(9). (4-4)

Finally, we assume that the tangential force is a function Ptan = Ptan($, w, v) of 9,uj,

and the tangential velocity v; granted smoothness, the most general such relation of this

form consistent with the dissipation inequality (3.13) is

ftan = ~h(6,uj,v)v, (4.5)

with w, v) > 0, the kinetic modulus, a constitutive property.

The contact point is constrained to move along the container wall, and the normal force

P • N(w) is a reaction to this constraint; for that reason we do not write a constitutive

equation for P • N(u>), but consider it instead as determined by the normal component

of the force balance (2.4).

5. Contact-angle conditions. Combining the constitutive equations (4.2)-(4.4)

with the force balance (3.15) yields the general contact condition

C{9) • T(u>) — g(u) + ^(9, uj,v)v. (5.1)

In contrast to more classical conditions, (5.1) is dynamical; it furnishes a condition

relating the normal angle of the interface, the normal angle of the container wall, and

the velocity of the contact point along this wall.

Assume that /i is independent of v; then, granted isotropy, /, g, and // are constants

and

fT(9) • T(w) = g + txv- (5.2)

thus, defining 7 € [0,7r] as the angle between T(0) and T(u>), so that

C0S7 = T(9) • T(w), sin7 = N(0) • T(w), (5.3)

we find that

f cos^f = g + fiv, (5.4)

which is a dynamical counterpart of the classical condition / cos 7 = g for the contact

angle 7. If we assume that n> Q and \g\ < /, which is the classical "wetting condition",

we arrive at a limiting condition on the velocity:

M < (//m)(1 +e), £=\9/f\- (5-5)

The dynamical condition (5.4) can also be written in terms of the normal velocity V.

Indeed, (3.11) yields V = vN(9) • T(w), so that

/cos 7 = g + LiVsinj. (5.6)

Thus, in contrast to v, the normal velocity V is not limited in size; in fact, for g = 0,

V = (f/fj,)cot 7, (5.7)

so that V goes from +00 to —00 as 7 goes from 0 to n.



564 SIGURD ANGENENT and MORTON E. GURTIN

6. Solution of the general contact condition.

a. Solution without kinetics. Here we restrict attention to the equilibrium condition

C(f)-TH=sH. (6.1)

If g{u>) = 0, then (5.3) and (6.1) yield

tan7 = -f'(9)/f(0), (6.2)

which results in the classical condition 7 = it/2 when / is constant. We henceforth

assume that

g(uj) never vanishes. (6-3)

To find solutions 9 = O(o>) of the contact condition (6.1), we introduce the Frank

diagram SF of the interfacial energy is the graph, in polar coordinates (r,9), of

r = f(9)~1. Any point yon^" thus has the form

y = N(9)/f(9), (6.4)

and, by (4.4),

f(9)2C(9) = ~(d/d9){N(9)/f(9)}; (6.5)

hence, C(9) has the same direction as the tangent line / to & at the point (6.4). A

short computation shows that / is the set of points x that satisfy

x.QC(0) = l, (6.6)

where Q is the rotation with QT = N. Our final step is to rewrite (6.1) as

*(0,u) := QC(0) • {NH/ffH} = 1, (6.7)

which asserts that the point N(w)/g(w) lies on the tangent / to the Prank diagram &

at the angle 9 (Fig. 3). Thus, if lu is given, we can find all roots 9 = 0(u>) of (6.1) by

drawing all lines through N(w)/<?(w); those that are tangent to & give rise to roots of

(6.1), and the angles 9 that correspond to the tangencies are precisely these roots.

In what follows we will assume that the "wetting condition"

g(tp) < f(ip) for all angles tp if g > 0,

—g(f) < f(<p + 7r) for all angles tp if g < 0 ^ ^

is satisfied, so that N(uj)/g(ij) is always exterior to .

Case 1. The Frank diagram is smooth and strictly convex (curvature bounded

away from zero). This, the most stable situation, results in a corresponding Wulff shape

without corners. In this case, for each u, there are exactly two tangents to that pass

through N(u>)/g(u>), and we have exactly two roots

9 = e±(u>) (6.9)
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Locus of j

Fig. 3. Graphical solution of the equilibrium condition (6.1) for the

case g > 0

of (6.1). Further, the line through N(u})/g(u>) and the origin is never tangent to and

always splits into two parts, with each part containing exactly one root. We may

therefore order the roots such that

U! — 7T < Q~(u>) < CO < 0+(o>) < U) + 71". (6.10)

If / and g are smooth, then the implicit function theorem may be used to show that

the roots ©±(w) of (6.7) are smooth functions of co. Indeed, it suffices to show that

(d/d0)$(6,u>) never vanishes. By (4.4), C'(0) = [f(0) + /"(0)]N(0); hence (6.7) yields

(d/d$)*(6,w) = ~{[f(0) + f"(0)]/g(«>)}T(0) ■ N(w). (6.11)

But T(0) • N(w) 7^ 0 for 0 — 0±(o'), and f{0) + f"(0) i^ 0, since the curvature of

never vanishes (cf. [AG], Eq. (A5)).

Next,

(d/du)$(0,u) = QC(0) ■ (d/duj){N(co)/g(u;)}, (6.12)

and since QC(0) is normal to at 0, while (d/duj){'N(uj)/g(uj)} is tangent to the locus of

N(u))/g(u), it follows from the strict convexity of & that the roots @±(w) will be strictly

monotone functions of u provided the locus of N(u>)/g(u) is also strictly convex. Figure

4 on p. 566 gives examples in which nonconvexity of this locus yields nonmonotonicity;

but there are examples in which it does not.

We now drop the assumptions that & be convex and smooth. We assume that f'(0) is

piecewise continuous, with jump discontinuities referred to as sharp spots. We let
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Locus of ^

Fig. 4. An example with 9 = ©"'"(u;) not monotone. It is assumed

that g > 0.

denote the convexification of SF (the boundary of the convex hull of F~)\ we refer to

angles 9 at which and S?(,!?") coincide as globally stable; and we refer to a tangent /

to <S'(3r) as critical if / C\<S'(Sr) is a nontrivial line segment or if / is a sharp

spot y with / tangent to one of the two smooth curves of §? (F) that meet at y. Finally,

we refer to F as regular if [AG, p. 359]:

(i) F is strictly convex at globally stable angles;

(ii) the set of globally stable angles contains no isolated angles;

(iii) the critical tangents are finite in number, and each such tangent intersects F at

most at two points.

We now look for solutions (6.9) of (6.1) with 0 globally stable. (Such angles represent

normal angles at which the interface is, in some sense, stable (cf. [AG, §4.3, §8.1]; [G2,

§7])-)
Case 2. The Frank diagram F is regular, but not convex and possibly not smooth. As

before, for any angle cuq there are exactly two lines /= (cjq) that are tangent to 'S'(F)

and pass through N(wo)/</(u>o)- Further, the intersections

Z±(w 0) = /±(cj0)n3r (6.13)

(with 9~) lie on opposite sides of- -and are disjoint from—the line through N(u;o)/<7(u>o)

and the origin; in fact, we may order these sets such that

L~(u>0) C (td0 - 7r,w0), L+(ujq) C (wo,wo + tt). (6-14)

Further, by (iii) in the definition of regularity, each of the sets L±(wo) is either a single

point or a pair of points.

We will consider only L~(u>o); the discussion for L+(loq) is no different.
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Let L~(loo) be a single point and not a sharp spot. Then, for ui close to ujq, f~(u>)

will also meet & at a globally stable angle 9 that depends smoothly on ui. Thus, near

uio we have a smooth functional relation 9 = 0~(tv).

Let L~{loo) be a sharp spot y. If f~(u>o) is not a critical tangent, then for all ui near

u>o, /~(w) will also pass through y, so that we have a functional relation 9 = 0~(u>) near

luo with 0~(u;) constant. If /~(w0) is a critical tangent, then w0 is the boundary of an

interval on which 0~(ui) is constant.

Let L~(loq) consist of two points, with 6\ and 62 the corresponding angles. Then, near

wo, say for to € {ui0 — e,wo + e) there is a functional relation 9 — that is smooth

on (cuq — £, wo) and on (uo, wo + e) with a jumP discontinuity from 9\ to 62 (or vice versa)

at ljq. Arguing as above, if 6\ is a sharp spot, and if 9\ is the limiting value of Q"(w) at

u>o from uj < wq, then 0_(u;) is constant for u> < loq sufficiently close to ujq, and similarly

if it is the limiting value from u> > loq. An analogous assertion applies to 62-

These results and results analogous to those given in the paragraphs containing (6.11)

and (6.12) may be summarized as follows. For a regular Frank diagram the functions

0 = 0±(o;) giving the two roots of the equilibrium condition (6.1) are well defined and

smooth except at a finite number of jump discontinuities, and satisfy (6.10). The jump

discontinuities arise from tangents / to the convexified Frank diagram S? (^) for which

/ n®'(5r) is a nontrivial line segment. The functions 0±(o;) are constant on certain

intervals that come from sharp spots. If the locus of N(w)/g(u>) is convex, then the

functions 0±(w) are monotone in u>.

b. Solution with kinetics. Consider next the dynamical contact condition (5.1), but,

for convenience, with n independent of 9:

C(9) • T(w) = g(w) + v)v. (6.15)

This yields, in place of (6.7), the condition

H9,co,v) := QC(9) ■ {N(w)/g{cj)} = 1,
-/x /x , (6.16)
g(uj, v) = g(oj) + f*(u),v)v.

The argument of the previous section with g(io) replaced by g(u>, v) then establishes—

for |v| sufficiently small that g(w,v) is consistent with (6.8)—the existence of functions

9 = 0±(w, v) representing the roots of (6.15). These functions have properties completely

analogous to those established in the last section.

If /j, depends also on 9, then we can use the implicit function theorem to solve for

functions 9 = Q±(uj,v), but it seems necessary to assume that \(d/d9)n(6,u>,v)v\ is

sufficiently small.

c. Contact conditions in M3 and in the presence of bulk transport. The contact condi-

tions were derived in R2 within a purely mechanical framework, but they are valid almost

without change in R3 and in the presence of heat and mass transport in bulk.

When the underlying space is R3, we simply interpret all forces in terms of their

projections onto the plane spanned by the normals to the interface and the container

wall. In this case, if /■(£) represents the contact curve between the interface and the

container wall, then v represents the normal velocity of r{t) on dfl.
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We can easily extend the results to situations involving bulk transport; crucial are:

(i) for control volumes 3>(r), a force balance (2.3) and a dissipation inequality

< tP(r,t) + o( 1) (6-17)

as r —» 0, where and 2P have the forms (3.2) and (3.8), and where the o(l) contributions

account for bulk transport; (ii) constitutive equations of the form (4.3)-(4.5), but with

constitutive functions allowed to depend also on the limiting values of bulk fields at the

contact point. For example, the general two-phase Stefan system with heat transport

in bulk and with interfacial energy, entropy, and kinetics—as described in §§15-17 of

[G2]—is consistent with such assumptions. In particular, / and g are then free energies

and the constitutive equations (4.3)-(4.5) include dependences on the limiting value of

the temperature at the contact point.

7. Evolution problems. A general evolution equation—relating the normal velocity

V, the curvature K (with K negative when the center of curvature lies in phase a),

and the normal angle 0 at each point of an interface driven by a constant difference

U = Fa — F/3 in bulk energies—is

b(9)V — h(9)K - U (6.18)

[AG, G2], where

h(0) = m + f"(6), (6.19)

while b(0) > 0 is a kinetic modulus. When the interface evolves in a container, this

equation is supplemented by the contact condition

C(0)-T {w) = g{uj) +n{0,u,v)v (6.20)

at the intersections of the interface with dfl.

In the presence of isotropy with /i independent of v, and for U — 0, this system reduces

to the curve-shortening equation

V = K (6.21)

[Br, Mu] in conjunction with the contact condition

cos 7 = g + /xv (6.22)

(modulo a suitable scaling).
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