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Abstract  

Five-axis ball-end milling is used extensively to machine parts with sculptured surfaces. This paper 

presents the general cutting dynamics model of ball-end milling process for machine tools with different 

five-axis configurations. The structural dynamics of both the tool and workpiece are considered for the 

prediction of chatter stability at each tool location along the tool path. The effects of tool-workpiece 

engagement (TWE) and tool axis orientation are included in the model. By sweeping the spindle speeds, 

the chatter-free spindle speeds are selected followed by the prediction of forced vibrations in five-axis 

milling of thin-walled, flexible parts. The proposed model has been experimentally illustrated to predict the 

chatter stability and forced vibrations on a table-tilting five-axis CNC machine tool.  

1) Introduction 

Five-axis ball-end milling processes are widely used in machining complex parts such as dies, molds 

and aerospace parts[1]. The flexibility of thin-walled parts such as gas turbine blades and slender end mills 

lead to both chatter and forced vibrations which hinder the machining productivity and dimensional quality 

of parts[2]. Chatter occurs due to the generation of chip thickness during machining operation[3]. The chip 

thickness oscillates at the chatter frequency and grows exponentially until a saturation limit (i.e. tool 

jumping out of cut). The resulting cutting forces and vibrations also grow proportional to the chip, hence 

may damage the tool, part and spindle bearings. The chatter is avoided by predicting stability lobes either 

in frequency  [4,5] or discrete-time domain [6,7]. The prediction of cutting stability in three-axis milling 

process primarily depends on the cutting force coefficients, structural dynamic parameters of the workpiece 

and machine tool itself at the cutting area, tool geometry and cutting conditions (i.e. spindle speed and  

cutting depth.). 

Altintas et al. [8] proposed an analytical model to predict the stability in the three-axis ball-end milling 

process which considers the structural dynamics of tool and workpiece in two mutually orthogonal 

directions (i.e., feed and normal directions). They did not consider the variation of dynamics along the tool 

path.  Zhang et al. [9] presented a method to predict the frequency response functions (FRFs) of tool center 

point at arbitrary spindle orientations by transforming the FRFs measured in three orthogonal postures of 

the spindle. They coupled the tool dynamics with the spindle using the receptance coupling substructure 

analysis (RCSA)[10], and observed large differences in the FRFs measured at different postures of the 

spindle which affect the machining stability. Furthermore, the varying orientation of tool axis in five-axis 

ball-end milling process increases the complexity of the TWE geometry along the tool path[11].  

*  Corresponding author. Tel.: +1 (604)822-5622; Fax: +1 (604)822-2403.  

E-mail addresses: altintas@mech.ubc.ca (Y. Altintas).  

1  The author is a PhD student of Xi'an Jiaotong University, and a visiting student at the University of British Columbia. 
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The distribution of the engagement on the ball-end part of the tool where cutting takes place is highly 

affected by the orientation of the tool axis. Consequently, the chip thickness, cutting forces and stability of 

the five-axis ball-end milling are affected by the engagement as well as the tool axis orientation. Ozturk 

and Budak[12], and recently Tuysuz and Altintas[13] studied the effect of tool orientation on the chatter 

stability of ball end milling operations. Sun and Altintas[14] presented a method to avoid chatter in five-axis 

ball-end milling by searching chatter-free tool axis orientations when material removal rate and the shape 

of TWE are kept the same.  However, the past studies did not consider the generalized kinematics that could 

cover any machine tool configuration. The prediction of forced vibrations in five axis ball end milling on 

any five-axis machine configuration has not been reported in the literature. The past research mainly 

Nomenclature

TWE  tool-workpiece engagement  kz         lag angle at axial height zk

FRFs  frequency response functions 0
R        nominal radial of the tool

TCP  tool center point  k
R z         local cutter radial at axial height zk

TCS  tool coordinate system 0
i        nominal helix angle of the tool

WCS   workpiece coordinate system  k
i z    local helix angle at axial height zk

ECS  engagement coordinate system dz        height of an axial disk elements of the tool

LCS  local radial, tangential, and axial coordinate system k
z        axial height of axial element k on the tool

TCP
P   position vector of TCP in WCS  kdb z         cutting width of axial element k

O   tool axis vector in WCS   k
dS z    curved cutting edge segment of axial element k

w

t
T  homogeneous transformation matrix from TCS to WCS  kz         axial immersion angle of axial element k

w

t
R  rotational transformation matrix from TCS to WCS  ,

j k
h z t  chip thickness of axial element k on flute j

e

w
R  rotational transformation matrix from WCS to ECS  ,

,
s j k

h z t      static component of chip thickness

e

t
R  rotational transformation matrix from TCS to ECS  , ,d j kh z t      dynamic component of chip thickness

e

l
R  rotational transformation matrix from LCS to ECS  LCS,

,k

j k
d z tF force vector of axial element k on flute j in LCS

,
1 2
ω ω   two rotary vectors of five-axis machine tools  ECS,

,k

j k
d z tF force vector of axial element k on flute j in ECS 

1 2,s s   two binary parameters before rotary vectors  ,
j k

z tn    normal vector at axial height  zk  on flute j in ECS 

1 2,    two rotation angles of five-axis machine tools  ,j kz tA    directional matrix of axial element k on flute j

 TCP
if  feed vector of TCP on TWE(i) in WCS  

, ,0j k
A        average item of periodic coefficient matrix

 ,f f i  nominal feed rate, nominal feed rate on TWE(i)          spindle speed

 ,T kz if  feed vector at axial height zk on TWE(i) in ECS 
T         tooth passing frequency

 ,L kz if  linear feed vector at axial height zk on TWE(i) in ECS 
t

T        tooth passing period

 ,A kz if  angular feed vector at axial height zk TWE(i) in ECS 
z

N        number of axial disk element along the tool axis

tΔ   vibration vector of the tool  
tN        number of flute of the tool

wΔ  vibration vector of the workpiece   f
i       tool axis rotation angle between two adjacent TWEs

twΔ  relative vibration vector between the tool and workpiece  ft i         elapsed time between two adjacent TWEs

,t wF F   force vector on the tool, force vector on the workpiece  f i         average angular speed between two adjacent TWEs

tΦ  FRFs matrix of the tool in TCS  f iq         rotary axis between two adjacent TWEs around TCP

w
Φ   FRFs matrix of the workpiece in WCS  , ,rc tc acK K K   radial, tangential, axial shearing force coefficients 

tw
Φ            relative FRFs matrix between tool and workpiece in ECS , ,

re te ae
K K K   radial, tangential, axial edge force coefficients 

,st ex

k k   start, exit immersion angle of axial element k on the TWE 
nf        nature frequency 

 ,j kz t  radial immersion angle at axial height zk on flute j
m modal damping ratio 

 ,j kg z t  
 angle-dependent binary parameter

m
k    modal stiffness 
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focused on the chatter stability of ball-end milling operations. While the process must be chatter-free, the 

relative forced vibrations between the tool and workpiece must be as small as possible to obtain a smooth 

surface finish as demonstrated in a three axis milling of thin-walled structures by Ringgaard et al.[15].  

This paper presents a general cutting dynamics model for five-axis ball-end milling. The kinematics 

between tool and workpiece is modeled using screw theory which can handle the five-axis machine tools 

with different configurations as presented in Section 2). The dynamic cutting force model and the chatter 

stability criterion at each tool location along the tool path are presented in Section 3). The prediction of 

forced vibrations in time and frequency domains for stable five-axis ball-end milling process is presented 

in Section 4). The simulation results and experimental validation of the proposed model are analyzed in 

Section 5). The paper is concluded in Section 6).  

2)  Coordinate transformations in five-axis machining  

The dynamics of machine tools and workpiece, the cutting force, and the relative vibration between the 

tool and workpiece need to be modeled in the same coordinate system. The FRFs of the tool and the 

workpiece are measured in the tool coordinate system (TCS) ˆ ˆ ˆ
t t t tO x y z  and the workpiece coordinate system 

(WCS) ˆ ˆ ˆ
w w w wO x y z  respectively, while the NC program is generated in the WCS by the CAM systems. The 

WCS is fixed to the workpiece in machining, and the TCS is fixed to the spindle. These coordinate systems 

are demonstrated on our experimental QUASER UX600 A-C type table-tilting five-axis machine tool[16]

(Figure 1).  
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Figure 1  A-C type table-tilting five-axis machine tool. (a) Global view of the machine tool. (b) Partial enlarged view of the 

tool. 

2.1) Transformation from TCS to WCS 

The posture, the position and orientation of the tool relative to the workpiece mounted on machine tool, 

varies along the tool path in five-axis machining operations.  

Five-axis NC programs contain the position  
TCP

, ,x y z  of tool center point in WCS and the tool axis 

vector  , ,x y zo o o , which can be expressed as:  

      TCP WCS TCP WCS
, , , , , ,x y zx y z o o oP O    (1) 

However, Eq. (1) only describes the position of Ot and the orientation of t̂z  in WCS, which is not 

sufficient to define the transformation matrix between TCS and WCS. To solve this problem, the kinematic 

model of five-axis machine tool with specific configuration and the initial posture at the home position are 

required.  

Most conventional five-axis kinematic models are based on Denavit-Hartenberg[17] representation, 

which uses fewer parameters but reference frames attached to each link following special rules of 

assignment[18]. As a results, Denavit-Hartenberg representation is difficult to be generalized for various 

five-axis machine tool configurations.  
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Yang and Altintas[19] developed a generalized kinematic model of five-axis machine tools using screw 

theory, no link reference frames but the initial posture is necessary, which is suitable for describing the 

general kinematics of five-axis machine tools.  

The initial offset vector from WCS to TCS at the machine tool’s home position are defined as 

   0 0 00
Tw

t x y zp , while the initial orientation of TCS in WCS is defined by a 3 by 3 rotational 

matrix:  0w

tR . The homogeneous transformation matrix of TCS relative to WCS at machine tool’s home 

position can be expressed as:  

     0 0
0

0 1

w w

w t t

t

 
  
 

R p
T   (2) 

According to the generalized kinematic model established in [19], for the A-C type table-tilting five-axis 

machine tool shown in Figure 1, the homogeneous transformation matrix of TCS relative to WCS can be 

expressed as:  

             , , , , 0C C A A X X Y Z ZYw w

t X A C Y Z te e e e e
               T T

ξ ξ ξ ξ ξ
  (3) 

where  , , , ,i i C A X Y Zξ  and  , , , ,i i C A X Y Z  are screw axes and motion commands, 

respectively. The definition of the screw axis iξ is provided in Appendix A.  

The motion of translational axes has no effect on the orientation of tool axis relative to WCS, hence the 

homogeneous transformation matrix in Eq. (3) can be substituted by the rotational transformation matrix of 

TCS relative to WCS as:  

       , 0C C A Aw w

t A C t
e e

      R R
ω ω

  (4) 

where ωC = [0, 0, -1]T ; ωA = [-1, 0, 0] T, because these two rotary axes are mounted on the table side of the 

machine tool.  

The kinematics model in Eq. (4) can be generalized to five-axis machine tools with different 

configurations. Let ω1 and ω2 are defined as the unit rotary vector of the first rotary axis close to the 

workpiece, and the second rotary axis close to the tool. θ1 and θ2 are the rotation angles of first and second 

rotatory axes, respectively. s1 and s2 are binary parameters which depend on whether the rotatory axis is 

mounted on the table side (si = -1, i =1, 2) or on the spindle side (si = +1, i =1, 2). As the general form of 

Eq.(4), the rotational transformation matrix of TCS relative to WCS for general five-axis machine tools is 

expressed as:  

       1 1 1 2 2 2

1 2, 0
s sw w

t te e
     R R

ω ω
  (5) 

The rotation angles (θ1, θ2) in Eq. (5) need to be calculated by the inverse kinematics of the specific 

five-axis configuration, the initial tool orientation, and the present tool orientation which read from the NC 

program. This inverse kinematics problem has a closed-form solution developed by Paden and Kahan by 

using screw theory[20].  

2.2) Transformation between WCS and Engagement Coordinate System (ECS)  

The chatter stability and forced vibration analysis are modeled in the engagement coordinate system 

(ECS) along the tool path[14]. As shown in Figure 1, the Z direction of TCS and ECS are always fixed to the 

tool axis. But for ECS, its X direction is aligned with the projection of feed direction onto the normal plane 

of tool axis and Y direction is perpendicular to the tool axis and the feed in ECS where the machining 

process is modeled. As TWE varies and feed direction changes along the tool path, TWE on the tool is 

projected to ECS, and process is simulated at discrete locations along the tool path[21].  

For each TWE, the tool is divided into discrete axial elements along the tool axis. TWE information is 

described in ECS with the start immersion angle 
st

k  and exit immersion angle 
ex

k  of the cutting flutes at 
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axial height zk along the tool axis for the discrete axial element k, as shown in Figure 2 [22]. The TWE 

information throughout the five-axis tool path is obtained from the virtual machining software MACHproTM 

[23].  

Figure 2  Tool-workpiece engagement on Work (WCS) and Engagement (ECS) coordinate systems.   

The origin of ECS is fixed at the tool center point Oe as shown in Figure 2. The position of Oe in WCS 

is described in NC program, which can be denoted as {P}WCS directly. 

The Z direction of ECS is aligned with the tool axis and its unit vector can be expressed in WCS as: 

 
WCS

ˆ ˆ ˆ ˆˆ ˆ ˆ

x

e w w w y x w y w z w

z

o

z x y z o o x o y o z

o

 
     
 
 

  (6) 

where ˆ
wx , ˆ

wy  and ˆ
wz  are the unit direction vectors of WCS, respectively (Figure 2). 

xo  , 
yo and 

zo  are 

the elements of tool axis vector  
WCS

O  obtained from the NC program.  

The feed direction of tool center point in WCS can be evaluated from the positions of two adjacent tool 

locations as: 

        
     

WCS WCS
TCP WCS

WCS WCS

1

1

i i
i

i i

P P

P P

 


 
f   (7) 

where i =1,2,3… are the indexes of tool locations along the tool path. 

The unit vector of Y direction perpendicular to directions Z in ECS and feed motion in WCS is:  

  
  

 TCP WCS

TCP WCS
WCS

ˆ
ˆ ˆ ˆ ˆ ˆˆ ˆ

ˆ

x
e

e w w w y x w y w z w

e
z

v
z i

y x y z v v x v y v z
z i

v

        
  

 

f

f
  (8) 
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Similarly, the unit vector of X direction in ECS can be expressed in WCS as:  

 
WCS

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

x

e e e w w w y x w y w z w

z

u

x y z x y z u u x u y u z

u

 
       
 
 

  (9) 

The rotational transformation matrix (wRe) of ECS relative to WCS is defined as: 

x x x

w

e y y y

z z z

u v o

u v o

u v o

 
   
  

R   (10) 

In summary, the orientation of three unit direction vectors ˆ
ex , ˆ

ey  and ˆ
ez  of ECS are expressed in WCS 

as:  

   ˆ ˆ ˆ ˆˆ ˆ w

e e e w w w ex y z x y z R   (11) 

The rotational transformation matrix of TCS relative to ECS is: 
e e w w T w

t w t e tR R R R R      (12) 

2.3) Transformation of tool and workpiece dynamics to ECS 

The regenerative tool   TCSt
Δ  and workpiece   WCSw

Δ  vibrations are defined in their coordinate 

systems in frequency domain as: 

               
TCS TCS WCS WCS

;t t t w w wi i i i i iΔ Φ F Δ Φ F           (13) 

where     ,
t w

i iΦ Φ  are the FRF matrices of tool and workpiece structures, and 

      
TCS WCS

,t wi iF F  are the cutting force vectors acting on them, respectively.  

First, the vibrations and cutting forces are transformed to WCS from their individual coordinate systems 

as follows:  

   
WCS TCS

w

t t tΔ R Δ    (14) 

where the complex frequency variable (iω) is omitted to simplify the expressions. 

The force on the tool in TCS is expressed as: 

           
TCS WCS WCS ECS TCS ECS

;t w t w

t w t t e t t w e tF R F F R F F R R F          (15) 

The force on the workpiece in WCS is expressed as: 

   
WCS ECS

w

w e wF R F    (16) 

The forces on the workpiece and tool are the same but in the opposing directions: 

   
WCS WCSw tF F   (17) 

The relative vibration between the tool and workpiece can be evaluated in WCS as:  

             
WCS WCS WCS TCS WCS TCS WCS

w w

tw t w t t w t t t w wΔ Δ Δ R Δ Δ R Φ F Φ F            (18) 

By substituting Eq.(15), (16) and (17) into Eq.(18), the relative vibration between tool and workpiece 

are transformed into ECS: 

       
ECS WCS ECS

e e w t w

tw w tw w t t w w e tΔ R Δ R R Φ R Φ R F          (19) 

The relative FRF between the tool and workpiece structures can be expressed in ECS as: 

 e w t w e t e w

tw w t t w w e t t e w w eΦ R R Φ R Φ R R Φ R R Φ R              (20) 
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The relative vibrations between the tool and workpiece can be expressed as: 

   
ECS ECStw tw tΔ Φ F   (21) 

3) Chatter stability in five-axis ball-end milling process 

3.1) Cutting force model of ball-end mill 

The ball-end mill is composed of a spherical bottom and a cylindrical shank as shown in Figure 3.  

ϕex

ϕst

ECS
Oe

+

R0

ω 

ˆ
ez

ˆ
ex

ˆ
ey

Oe

LCS

db

Chip

Element

h

dz

R(zk)

(a) (b)

dS

j=1
j=2

ϕp,j

P' 

P 

·

·

ψ(zk)

ϕ

ϕj=2(zk, t)

ϕj=1(zk, t)

ψ(zk)

ω 

O

r̂

t̂
â

ˆ
ex ˆ

ey

+

Figure 3  Envelope of ball-end mill. (a) Isometric view. (b) Top view. 

The expression of the spherical ball-end mill with a nominal radius R0 is
[24]: 

 22 2 2

0 0x y R z R      (22) 

where  , ,x y z  are the coordinates of a point on the ball-end surface. 

The elemental tangential, radial, and axial cutting forces dF r,
k
j, dFt,

k
j, dFa,

k
j contributed by the axial 

element k on flute j at time t are expressed in local radial, tangential, and axial coordinate system (LCS) as: 

  
 
 
 

       
,

LCS, ,

,

,

, , , ,

,

k

r j k rc re

k k

j k t j k tc j k k te k j k

k

a j k ac ae

dF z t K K

d z t dF z t K h z t db z K dS z g z t

dF z t K K

F 
      
                  
      

     

  (23) 

where  Krc, Ktc, Kac are cutting force coefficients contributed by the shearing in radial, tangential and 

axial directions, respectively; Kre, Kte, Kae are the edge force coefficients;  kdb z  is the width of the chip 

element;  kdS z is the length of an infinitesimal curved cutting edge segment;  ,
j k

g z t    is an angle-

dependent binary parameter to consider if the edge is in or out of cut[25];  ,j kz t  is the radial immersion 

angle of axial element k on flute j at time t; and  ,j kh z t  is the uncut chip thickness normal to the cutting 

edge of axial element k on flute j at time t defined in the radial direction.  

As shown in Figure 3(b), the bottom of first flute ( j = 1) is regarded as the reference, and its rotation 

angle at time t is ϕ(t) evaluated from the spindle speed  (rev/min):  

  2

60
t t

 
   (24) 

The immersion angle of flute j at axial elevation 
kz  is expressed as:  
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       , 1j k k pz t t z j         (25) 

where 2 /p tN   is the pitch angle of tool with tN  flutes; ψ(zk) is the lag angle which is defined for 

tools with constant lead and nominal helix angle 0i  as: 

  0

0

tank
k

z i
z

R
    (26) 

The local cutter radius  kR z  and the local helix angle  ki z  are expressed as[26]: 

   2

0 0 0

0 0

,

,

k k

k

k

R R z z R
R z

R z R

    


  (27) 

 
 

0 0

0

0 0

arctan tan ,

,

k

k

k

k

R z
i z R

i z R

i z R

  
     

 

  (28) 

For any point on a helical flute at elevation zk, the local cutter radius  kR z  can be expressed as a 

function of the immersion angle as[24]: 

   2

0 01 1 cotR R i      (29) 

The infinitesimal curved cutting edge segment dS can be expressed as: 

       2 2 2

0 cotdS R R R i d              (30) 

where the derivative of  R   is:  

   
 

0 0 0

2

0

cot 1 cot

1 cot 1

R i i
R

i






 
 

 
  (31) 

The width of the chip element  kdb z  depends on the axial immersion angle of element k on flute j, 

i.e.  kz :  

   sin
k

k

dz
db z

z
   (32) 

where  kz  is evaluated by:  

   
0

arcsin k

k

R z
z

R


 
  

 
  (33) 

The binary parameter  ,
j k

g z t    is used to determine whether the axial element k on flute j is in cut 

or not as:  

   , ,1 , ,
,

0 ,

st j j k ex j

j k

z t
g z t

otherwise

  


  
    


  (34) 



MANU-20-1154                        10 

The chip thickness  ,j kh z t  consists of the static component caused by the rigid body motions 

between tool and workpiece, and the dynamic component  , ,d j kh z t  which is contributed by the relative 

vibrations between the tool and workpiece:   

     , ,, , ,j k s j k d j kh z t h z t h z t    (35) 

where the dynamic chip thickness component  , ,d j kh z t  is derived from two successive surfaces left 

by flutes j-1 and j: 

       , ,, 1
, , ,d j k k t e j ke j

h z t r z t T r z t     (36) 

where    , 1
,k te j

r z t T   and  , ,e j kr z t  are the dynamic displacements of the flute at the previous ( j-

1) and present ( j) tooth periods, respectively. The tooth passing period for a uniform pitch cutter is 

 2t tT N  , but it can be replaced by 
jT  for variable pitch tools. 

Assuming that the structure can vibrate in three directions, the dynamic chip thickness component can 

be expressed in ECS as: 

       
     
   

, , [ , sin sin ,

, sin cos ,

, cos ]

d j k k k j k

k k j k

k k

h z t x z t z z t

y z t z z t

z z t z

 

 



 





  (37) 

where the relative displacement in X direction can be derived by: 

             , , 1 , 1 ,
, , , , ,k j T k j W k k t k tj T j W

x z t x z t x z t x z t T x z t T 
              (38) 

Here,  , ,j T kx z t  and    1 ,
,k tj T

x z t T   represent the dynamic displacements of tool in X direction of 

ECS at the present and previous tooth periods, respectively. Similarly,  , ,j W kx z t  and    1 ,
,k tj W

x z t T 

represent the dynamic displacements of workpiece in X direction. The definition of  ,ky z t  and 

 ,kz z t  are analogous to  ,kx z t .  

The elemental cutting force defined in cutting edge local coordinate system (LCS) is transformed to 

ECS by introducing the rotational matrix eRl.  

   
         
         

   
ECS LCS

sin sin , cos , cos sin ,

sin cos , sin , cos cos ,

cos 0 sin

k j k j k k j k

e e

l l k j k j k k j k

k k

z z t z t z z t

z z t z t z z t

z z

F R F R

    
    

 

   
      
  

  (39) 

3.2) Chatter stability analysis 

Since the static chip thickness does not contribute to the dynamic chip load regeneration mechanism[3], 

it is dropped from the Eq. (23) as: 

  
 
 
 

     
, ,

LCS, , , , ,

, ,

,

, , , ,

,

k

r d j k rc

k k

d j k t d j k tc d j k k j k

k

a d j k ac

dF z t K

d z t dF z t K h z t db z g z t

dF z t K

F 
   
           
   

  

  (40) 

Substituting Eq.(32) and Eq. (37) into (40) yields: 

              LCS, , , , , ,
sin

T
k c

d j k rta j k j k j k

k

dz
d z t z t z t g z t

z
F K n Δ 


       (41) 
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The cutting forces are transformed from LCS to ECS by the rotational matrix defined in Eq. (39) : 

          
          

ECS, , LCS, ,, , , ,

, , ,
sin

k e k

d j k l d j k j k j k

T
e c

j k l rta j k j k

k

d z t d z t z t z t

dz
z t z t g z t

z

F R F A Δ

A R K n 


  

    
  (42) 

where  ,j kz tA  are directional coefficient matrices for a single tool-workpiece engagement which 

are periodic at the tooth passing frequency ωT = 2π/Tt. The Fourier expansion of periodic coefficient 

matrices is: 

   , , , ,
0

1
, ,

t
T T

T
ir t ir t

j k j k r j k r j k

r t

z t e z t e dt
T

A A A A
 






      (43) 

As shown in [8,12,13], for chatter stability analysis, the zero-order form  (i.e. r = 0) is feasible by 

considering only the average of the periodic coefficients as:  

     , ,0
0 0

1 1
, , ,

t pT

j k j k j k j k j

t p

z t z t dt z t d
T





   A A A A   (44) 

The relative vibrations in Eq. (42) are evaluated by the present vibration and the vibration of previous 

tooth passing period between the tool and workpiece: 

  
 
 
 

     
     
     

     
     
     

, ,1 , 1 ,

, ,1 , 1 ,

, ,1 , 1 ,

, , , ,,

, , , , , ,

, , , , ,

j T k k j W k kj T j Wj k

j k j k j T k k j W k kj T j W

j k j T k k j W k kj T j W

x z t x z t x z t x z tx z t

z t y z t y z t y z t y z t y z t

z z t z z t z z t z z t z z t

 

 

 

 

 

 

                            
                 

Δ   (45) 

Eq. (45) can be transformed into Laplace domain as: 

   
 
 
 

 
 
 

, ,

, ,

, ,

, ,

, 1 , ,

, ,

t

j T k j W k

sT

j k j T k j W k

j T k j W k

x z s x z s

z s e y z s y z s

z z s z z s



    
          
    
    

Δ   (46) 

which can be expressed as a function of structural FRFs (Eq. (20)) and dynamic cutting forces as:   

       ECS,
, 1 ,tsT k

j k tw j k
z s e d z sΔ Φ F

    (47) 

By substituting Eq. (47) into Eq. (42) and rearranging it gives:  

       , ,0 ECS,1 ,tsT k

j k tw j ke d z sI A Φ F 0
     (48) 

where I is a 3×3 identity matrix.  

The total cutting dynamics of the ball-end milling system can be obtained by summing the contributions 

of all axial elements of the flutes that are within the TWE as: 

      , ,0 ECS

1 1

1
tz

t

NN
sT

j k tw

k j

e sI A Φ F 0


 

 
   

 
   (49) 

By setting s = jωc for the critical stability condition, the characteristic equation of the dynamic cutting 

system in frequency domain becomes: 

 , ,0

1 1

det 1 0
tz

c t

NN
j T

j k tw

k j

e


 

  I A Φ   (50) 

By varying the frequency ωc at the measured ranges of FRF, the stability of the cutting process can be 

evaluated at each tool location along the tool path using Nyquist criterion[27].   
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4) Forced vibration in five-axis milling process 

Once the process is stabilized by selecting speeds and engagement conditions, the regenerative dynamic 

chip thickness component can be dropped   ,
, 0

d j k
h z t   while keeping its static component  ,

,
s j k

h z t

in Eq.(35) to predict the forced vibrations. 

In five-axis machining, the feed speed varies along the tool axis caused by the tilting of tool. The total 

feed speed at a given axial height zk on the tool can be decomposed into a linear feed component   L
if

at the tool center point as described by Eq. (7), and an angular feed component   ,
A k

z if  at the height 

zk
[28].  

     , ,T k L A kz i i z i f f f   (51) 

By assuming that the TWE remains unchanged within two consecutive locations ((i) and (i+1)) along 

a short tool path interval, the linear feed component can be expressed in ECS as: 

      TCP WCS

e

L wi f i iR  f f   (52) 

where f (i) is the nominal feed rate at tool location point (i) read from NC program.  

In the short tool path interval, assume that the tool axis rotate an angle  f i  at a constant angular 

speed  f i  around the tool center point in the elapsed time interval  ft i : 

     
         

     
 

1 1
arctan ; ;

1

f

f f f

f

i i i i i
i t i i

i i f i t i


 

    
    

  

O O P P

O O
  (53) 

The unit vector of the rotational axis passing through the tool center point can be defined by the tool 

axis vectors of these two consecutive locations: 

     
   

1

1
f

i i
i

i i

O O
q

O O

 


 
  (54) 

The angular feed along the tool axis is expressed as: 

           
0

, 0

1

e e e

A k f w f k w f w f kz i i i z i i i zR q R O R q 
 
             
  

f   (55) 

The static component of chip thickness  , ,s j kh z t  in Eq. (35) can be evaluated by projecting the total 

feed speed onto the normal direction of ball-end mill at height zk: 

      ,

60
, , ,

T

s j k j k T k

t

h z t z t z i
N

 


n f   (56) 

Then, the chatter-free cutting forces can be evaluated by Eq.(23) where the dynamic component of chip 

thickness  , ,d j kh z t  is dropped.  

The forced vibrations in ECS can be derived by taking the inverse Fourier transformation of the 

vibrations computed in the frequency domain as: 

          1 1t j j j     X Φ Fx     (57) 

where   
3 1

t


x  is a time dependent displacement in three directions.  

The vibrations on the workpiece (WCS) and tool (TCS) can be obtained by transforming Eq. (57) using 

corresponding rotational transformations.  
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Alternatively, the cutting forces can be computed more efficiently in the frequency domain using the 

products of harmonics of the forces with the FRFs as proposed by Yang et al.[29].  

The overall calculation scheme for the chatter stability and forced vibration estimations of five-axis 

ball-end milling process is summarized in Figure 4. 

Calculate TWE in WCS 

using MACHpro
NC Program

Calculate Feed Direction 

and Construct ECS

FRFs of Tool 

Measured in TCS

FRFs of Workpiece 

Measured in WCS

Transform the FRFs of the 

Tool from TCS to ECS

Transform the FRFs of the 

Workpiece from WCS to ECS

Chatter Stability 

Analysis in ECS

Force and Vibration 

Calculation in ECS

Transform the Vibration 

from ECS to WCS for 

Experimental Validation

Tool Geometry 

Materials Properties 

Cutting Conditions

Stable Cutting Conditions

Input

InputInput

Φt Φw

e
Rt

e
Rw

w
Re

Input Φtw

Tool Geometry 

Workpiece Blank Geometry 

Input

TWE

TWE

{PTCP,O}WCS

{x}ECS

Figure 4  Flow chart for the chatter stability and forced vibration estimations of five-axis ball-end milling process. 

5) Simulation and experimental results 

The proposed model has been experimentally validated along six straight tool paths with various tool 

axis orientations listed in Table 1. The workpiece is very flexible, thin-walled plate as shown in Figure 5.  

Table 1  Angles of two rotary axes and tool axis vectors for different tool orientations.  

Tool path Rotational angle Tool Axis in WCS

A C
xo yo zo

1 -30° 30° -0.250, 0.433, 0.866

2 -30° 60° -0.433, 0.250, 0.866

3 -30° 90° -0.500, 0.000, 0.866

4 -60° 30° -0.433, 0.750, 0.500

5 -60° 60° -0.750, 0.433, 0.500

6 -60° 90° -0.866, 0.000, 0.500
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(a) (b) (c)

(d) (e) (f)

Figure 5  The orientation of the tool related to the workpiece with different A/C angles. (a) A=-30°, C=30°. (b) A=-30°, C=60°. 

(c) A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 

The ball-end mill is flexible in X and Y directions, its measured FRFs in TCS are given in Figure 6, 

and modal parameters are summarized in Table 2. 

Figure 6 FRFs of the tool measured in TCS. 

Table 2 Modal parameters of tool in TCS. 

Direction Mode fn [Hz] ζm [%] km [N/m]

X 1 754 9.93 1.3959×107

2 1773 3.03 6.2761×107

3 2506 2.62 1.1490×108

Y 1 736 5.08 2.0670×107

2 1775 5.33 4.8542×107

3 2539 4.03 9.3387×107

Eight cantilevered thin-walled plates (Figure 7) machined from Aluminum 7050-T7451 with the same 

dimensions (135 mm × 54 mm × 5 mm) were used for the chatter stability verification.  
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Figure 7  Workpiece for experiment. 

The measured FRFs of each thin-walled plate at the origin of the WCS are almost the same, and their 

modal parameters are given in Table 3. The workpiece is much more flexible than the tool.   

Table 3 Modal parameters of cantilevered plates in ˆ
wy  direction at the origin of WCS shown in Figure 7.  

Mode fn [Hz] ζm [%] km [N/m]

1 1336 0.17 1.5×106

2 1798 0.60 1.2×106

3 3141 1.68 3.0×106

A 2 flutes ball-end mill with 12mm diameter and 30° helix angle was used in the tests. The feed rate 

was kept constant at 0.1 mm/tooth/rev and the distance from the center of the tool’s ball part to the uncut 

surface of the workpiece was 5.5 mm in all cutting paths. The cutting force coefficients are extracted for 

Al 7050-T7451 from CutProTM database[30] as: Krc=178 N/mm2 ; Ktc=752 N/mm2 ; Kac=100 N/mm2 ; Kre=30 

N/mm ; Kte=20 N/mm ; Kae=0.1 N/mm.  

The cutting stability of each tool location along the tool path is checked from Eq. (50) using the Nyquist 

Criterion. Although the radial and axial depths of cut remain the same, the distribution of the engagements 

varies as a function of tool orientation as shown in Figure 8. Since the distribution of engagements is 

different, the directional factors hence the stability in ECS will also be different for different tool 

orientations as the predicted results indicate in Figure 9. 
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(a) (b)

(c) (d)

(e) (f)

Figure 8  Tool-workpiece engagements for the tool paths with different A/C angles. (a) A=-30°, C=30°. (b) A=-30°, C=60°. (c) 

A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 
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# 2; 7800 rpm

Stable

# 4; 9500 rpm 

Stable

# 7; 8300 rpm 

Chatter; 1344 Hz

# 8; 8300 rpm 

Chatter; 1339 Hz

# 6; 8300 rpm 

Stable

# 1; 7800 rpm

Stable

# 3; 9500 rpm

Chatter; 1819 Hz
# 5; 8300 rpm 

Chatter; 1347 Hz

(a) (b)

(c) (d)

(e) (f)

Figure 9  Sweeping the spindle speed for chatter stability prediction with different A/C angles.  (a) A=-30°, C=30°. (b) A=-30°, 

C=60°. (c) A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 

The cutting parameters for each thin-walled plate machining test are listed in Table 4 with the 

corresponding machined surface photographs given in Figure 10. 

Table 4 Cutting parameters for 8 thin-walled Al6061 plates. Tool: A 2 fluted ball-end mill with 12mm diameter and 30° helix 

angle.  Workpiece: Al 7050-T7451.  

Plate No. A [°] C [°] Ω [rpm] f [mm/min]

# 1 -60 90 7800 1560

# 2 -30 30 7800 1560

# 3 -60 90 9500 1900

# 4 -30 30 9500 1900

# 5 -60 60 8300 1660

# 6 -60 30 8300 1660

# 7 -30 60 8300 1660

# 8 -30 90 8300 1660



MANU-20-1154                        18 

Figure 10  The machined surfaces of the 8 thin-walled plates.   

(a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6. (g) #7. (h) #8. 

The power spectrum of measured cutting forces in the Y direction of WCS are shown in Figure 11, 

there the gray dashed lines in each diagram indicate the spindle rotation frequency and its harmonics. 

Tooth Passing 

frequency: 260 Hz
Tooth Passing 

frequency: 260 Hz

Tooth Passing 

frequency: 276.6 Hz

Tooth Passing 

frequency: 276.6 Hz

1663.3 Hz

1346.6 Hz Tooth Passing 

frequency: 316.6 Hz
Tooth Passing 

frequency: 316.6 Hz

1980 Hz

1503.3 Hz

1030 Hz

713.3 Hz

Tooth Passing 

frequency: 276.6 Hz

Tooth Passing 

frequency: 276.6 Hz

1353.3 Hz

1346.6 Hz

1623.3 Hz

976.6 Hz

800 Hz

1630 Hz
1076.6 Hz

1906.6 Hz

800 Hz
1350 Hz

1626.6 Hz

1903.3 Hz

1070 Hz

(a) (b)

(c) (d)

(e) (f)

(g) (h)

1536.6 Hz

1813.3 Hz

2366.6 Hz

# 1 # 2

# 3 # 4

# 5 # 6

# 7 # 8

2090 Hz

793.3 Hz

Figure 11  Frequency domain cutting force of the cutting tests on 8 thin-walled plates.  

 (a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6. (g) #7. (h) #8.  
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According to the machining surfaces shown in Figure 10 and the measured cutting forces in frequency 

domain shown in Figure 11, the cutting tests on thin-walled plates #1, #2, #4 and #6 are stable, while #3, 

#5, #7 and #8 have chatter, which is in agreement with the simulation results. By comparing the frequency 

components of cutting force, the chatter frequency of cutting test on #5 and #7 are 1353.3 Hz and 1350 Hz, 

respectively, which is close to the predictions (1347 Hz and 1344 Hz, respectively) shown in Figure 9. 

However, the measured chatter frequency in the cutting test on #3 is about 1346.6 Hz which is dominated 

by the first bending mode of the workpiece (1336 Hz), while the predicted chatter frequency is 1819 Hz 

caused by the second mode (1798 Hz). In the cutting test on #8, there are two chatter frequencies (1346.6 

Hz and 1813.3 Hz) which are dominated by the first (1336 Hz) and the second (1798 Hz) mode of the 

workpiece, while the predicted chatter frequency is at 1339 Hz which is dominated by the first bending 

mode of the workpiece (1336 Hz). These differences may be caused by some nonlinear factors under 

unstable cutting conditions and process damping effect.  

The vibrations at the cutting points are difficult to measure directly during machining tests, but an 

accelerometer is mounted at point 1 on the workpiece as shown in Figure 12. 

20 mm

20 mm

Accelerometer

1

2

Cutting area Workpiece

54 mm

ˆ
wx

ˆ
wy

ˆ
w

z

OwWCS

Figure 12 Experiment setup for vibration measurement for each thin-walled plate. 

In order to calculate the vibrations at point 1 when the tool cuts at the point 2, their cross FRFs are 

measured and curve fitted with mass normalized mode shapes as listed in Table 5.  

Table 5  Identified modal parameters between point 1 and 2. 

Mode fn [Hz] ζm [%] km [N/m] Mode Shape

1 1336 0.17 3.2315×107 Point 1: 1.4817

Point 2:  3.0358 

2 1798 0.60 2.2107×107 Point 1: 2.4031

Point 2: -5.3894 

3 3141 1.68 5.6308×107 Point 1: 2.6301

Point 2:  7.1926 

To verify the model of forced vibrations, four groups of stable cutting conditions shown in Figure 9 

have been tested (Ω =6300 rpm, f =1260 mm/min; Ω =7300 rpm, f =1460 mm/min; Ω =8000 rpm, f =1600 

mm/min; Ω =8200 rpm, f =1640 mm/min) with tool orientation angles A=-30° and C=30°. When the tool 

was at point 2, the accelerations at point 1 were measured and transformed to displacements by integrating 

the accelerations twice. The simulated and measured forced vibrations are in agreement as shown in Figure 

13.  
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(a) (b)

(c) (d)

Figure 13 Forced vibrations at point 1 when the tool cutting at point 2, where A=-30°, C=30°.  (a) Ω =6300 rpm, f =1260 

mm/min. (b) Ω =7300 rpm, f =1460 mm/min. (c) Ω =8000 rpm, f =1600 mm/min. (d) Ω =8200 rpm, f =1640 mm/min.  

The forced vibration algorithm requires feeedrate, spindle speed, tool geometry, the structural dynamics 

of tool and workpiece, cutting force coefficients, and the TWE. The forced vibration prediction model is 

verified at various feedrates and spindle speeds. The proposed algorithm is repeated at each tool position 

as TWE and structural dynamics of the flexible workpiece vary along the tool path within  the virtual 

machining system (such as MACHPRO®). 

6) Conclusion 

The paper presents the general cutting dynamics model of five-axis ball-end milling of flexible, thin-

walled workpiece.  The cutting forces at the tool-workpiece engagement area are predicted by considering 

the general five-axis kinematics of the machine, tool center point motion and tool orientation along the tool 

path, and feed velocity distribution along the tool axis. The possibility of chatter occurrence at each discrete 

tool path position is evaluated by considering the regenerative chip thickness. The amplitudes of forced 

vibrations under chatter-free cutting conditions are also predicted along the tool path. The model allows 

digital testing and planning of ball-end milling operations ahead of costly physical trials. The accuracy of 

chatter prediction can be improved by considering the process damping effect as demonstrated in [31]. The 

model can also be extended to predict the surface location error and can be used to simulate the ball-end 

milling of highly flexible turbine blades.  
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Appendix A. Screw axis 

6IR , 1,2,..., 1
i

i

i

i n
 

    
 p

ξ  is called the screw axis of joint i as expressed in fixed frame at zero 

position, which can also be denoted as  ,i i ipξ ω  , while the matrix representation  iξ  of  

 ,i i ipξ ω  is: 
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     3
0 0

i i

i se
p 

  
 

ω
ξ   (58) 

Here, for a given vector   3

1 2 3 IR
T     , the symbol [·] is an operation defined as:  

   
3 2

3 1

2 1

0

= 0 3

0

so

 
 
 

 
   
  

ω   (59) 

which is a 3×3 skew-symmetric matrix representation of ω: 

   T ω ω   (60) 

The set of all real 3×3 skew-symmetric matrices is called so(3) while the set of all real 4×4 matrices 

which have the form like Eq.(58) is called se(3)[32].  
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Table caption list 

Table 1. Angles of two rotary axes and tool axis vectors for different tool orientations. 

Table 2. Modal parameters of tool in TCS.  

Table 3. Modal parameters of cantilevered plates in ˆ
wy  direction at the origin of WCS shown in Figure 7.  

Table 4. Cutting parameters for 8 thin-walled Al6061 plates. Tool: A 2 fluted ball-end mill with 12mm 

diameter and 30° helix angle. Workpiece: Al 7050-T7451. 

Table 5. Identified modal parameters between point 1 and 2. 

Figure caption list 

Figure 1. A-C type table-tilting five-axis machine tool. (a) Global view of the machine tool. (b) Partial 

enlarged view of the tool. 

Figure 2. Tool-workpiece engagement on Work (WCS) and Engagement (ECS) coordinate systems.  

Figure 3. Envelope of ball-end mill. (a) Isometric view. (b) Top view. 

Figure 4. Flow chart for the chatter stability and forced vibration estimations of five-axis ball-end milling 

process.  

Figure 5. The orientation of the tool related to the workpiece with different A/C angles. (a) A=-30°, C=30°. 

(b) A=-30°, C=60°. (c) A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 

Figure 6. FRFs of the tool measured in TCS.  

Figure 7. Workpiece for experiment.  

Figure 8. Tool-workpiece engagements for the tool paths with different A/C angles. (a) A=-30°, C=30°. (b) 

A=-30°, C=60°. (c) A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 

Figure 9. Sweeping the spindle speed for chatter stability prediction with different A/C angles. (a) A=-30°, 

C=30°. (b) A=-30°, C=60°. (c) A=-30°, C=90°. (d) A=-60°, C=30°. (e) A=-60°, C=60°. (f) A=-60°, C=90°. 

Figure 10. The machined surfaces of the 8 thin-walled plates. (a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6. (g) 

#7. (h) #8. 

Figure 11. Frequency domain cutting force of the cutting tests on 8 thin-walled plates. (a) #1. (b) #2. (c) #3. 

(d) #4. (e) #5. (f) #6. (g) #7. (h) #8. 

Figure 12. Experiment setup for vibration measurement for each thin-walled plate.  

Figure 13. Forced vibrations at point 1 when the tool cutting at point 2, where A=-30°, C=30°.  (a) Ω =6300 

rpm, f =1260 mm/min. (b) Ω =7300 rpm, f =1460 mm/min. (c) Ω =8000 rpm, f =1600 mm/min. (d) Ω =8200 

rpm, f =1640 mm/min.  


