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We present a new methodology for calculating the electromagnetic radiation from accelerated
charged particles. Our formulation — the ‘endpoint formulation’ — combines numerous results
developed in the literature in relation to radiation arising from particle acceleration using a com-
plete, and completely general, treatment. We do this by describing particle motion via a series of
discrete, instantaneous acceleration events, or ‘endpoints’, with each such event being treated as a
source of emission. This method implicitly allows for particle creation/destruction, and is suited
to direct numerical implementation in either the time- or frequency-domains. In this paper, we
demonstrate the complete generality of our method for calculating the radiated field from charged
particle acceleration, and show how it reduces to the classical named radiation processes such as
synchrotron, Tamm’s description of Vavilov-Cherenkov, and transition radiation under appropriate
limits. Using this formulation, we are immediately able to answer outstanding questions regard-
ing the phenomenology of radio emission from ultra-high-energy particle interactions in both the
Earth’s atmosphere and the Moon. In particular, our formulation makes it apparent that the dom-
inant emission component of the Askaryan Effect (coherent radio-wave radiation from high-energy
particle cascades in dense media) comes from coherent ‘bremsstrahlung’ from particle acceleration,
rather than coherent Vavilov-Cherenkov radiation.

PACS numbers: 41.20.-q, 41.60.-m, 41.60.Ap, 41.60.Bq, 41.60.Dk

I. INTRODUCTION

Electromagnetic radiation arising from charged particle
motion at scales outside the quantum-mechanical limit
can be described completely from Maxwell’s equations
and the distribution of charges and their accelerations
1. Most university courses begin with these fundamen-
tal relations, proceed to intermediate results such as the
Liénard-Wiechert potentials and/or the Larmor formula
for the power radiated from an accelerated charge, and
use these to derive the properties of classical named ra-
diation processes such as synchrotron, transition, and
Vavilov-Cherenkov radiation where an (at least semi-)
analytic solution can be found. This approach leads to a
greater understanding of both radiation phenomenology,
such as relativistic beaming, and of those physical situa-
tions where the rather special assumptions on the particle
motion required to find an analytic solution apply.

The focus on classical named radiation processes how-
ever can leave the impression that these are the fun-

∗corresponding author: clancy.james@physik.uni-erlangen.de
†corresponding author: tim.huege@kit.edu
1 For a review of radiating, non-accelerated systems, see Ginzburg
[1]. Our treatment will also allow for ‘apparent acceleration’, e.g.
in the case of transition radiation, and that from time-varying
currents, which can be described in terms of charge acceleration.

damental mechanisms of electromagnetically radiating
systems, whereas they are really short-hand for a type
of charged particle acceleration which results in a par-
ticular radiation field. Because of this focus, there is
a tendency among physicists to ascribe the radiation
from complex systems to a combination of these classi-
cal processes. This tendency can lead to confusion how-
ever even when a physical situation deviates only slightly
from the classical idealised cases. For instance, consider
the titles of the following papers: “Synchrotron radi-
ation of charged particles passing through the bound-
ary between two media” [2], “On the Čerenkov thresh-
old associated with synchrotron radiation in a dielectric
medium” [3], and “Čerenkov radiation from an Electron
Traveling in a Circle through a Dielectric Medium” [4].
The titles could equally have referred to ‘transition radi-
ation’, ‘Vavilov-Cherenkov radiation’, and ‘synchrotron
radiation’ respectively. Indeed, numerous papers exist
which note that the same fundamental physics can ex-
plain multiple mechanisms, for instance Schwinger, Tsai
and Erber’s “Classical and Quantum Theory of Syner-
gic Synchrotron-Čerenkov Radiation” [5]. However, the
problem of which mechanism to attribute to what pro-
cess can be avoided entirely by going ‘back to basics’ and
formulating a general description of radiation processes
according to the well-known mantra “electromagnetic ra-
diation comes from accelerated charges”.

The goal of this paper is therefore to develop a new
methodology — the ‘endpoint formulation’ — by which
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the calculation of the radiated fields from accelerated
particles can be performed completely generally via a
method which is intuitively understandable at an under-
graduate level. For generality, our formulation must be
equally suited to that of a simple system allowing an
analytic solution as to a complex one requiring a numer-
ical solution, and allow not just the calculation of the
total radiated power, but also the time- and frequency-
dependent electric field strengths.
We thus proceed as follows. In Section II, we begin
with expressions for the electric field from the well-known
Liénard-Wiechert potentials, and use these to develop
our formulation, which is based on the radiation from
the instantaneous acceleration of a particle from/to rest
(an ‘endpoint’). Given the radiation from a single end-
point, we describe how to use this to calculate the radi-
ation from an arbitrary complex physical situation. In
Section III, we use the endpoint formulation in specific
applications to numerically reproduce the well-known re-
sults from idealised classical phenomena such as syn-
chrotron and transition radiation, and Tamm’s descrip-
tion of Vavilov-Cherenkov radiation from finite particle
tracks2. Section IV discusses the use and range of ap-
plicability of our endpoint formulation. In Section V,
we return to the original motivation for this work from
the point of view of the authors, and demonstrate how
this formulation resolves outstanding questions relating
to the calculation of radiation from high-energy particles
cascades in the Moon and the Earth’s atmosphere. The
explanations also serve to illustrate how the application
of classical radiation emission mechanisms to complex
physical situations has led to incorrect and misunder-
stood conclusions.

II. AN ENDPOINT FORMULATION

We wish to describe electromagnetic radiation in terms of
particle acceleration. Rather than writing down a general
function for the charged particle distribution and its time
derivatives, and then deriving results for specific cases of
that charge distribution, here we adopt a ‘bottom-up’ ap-
proach. Thus we begin by describing the radiation from
a simple single radiating unit, that being the instanta-
neous acceleration of a charged particle either to or from
rest, and later we will show how to combine such basic
units into more complex physical situations.
Radiation from an instantaneous particle acceleration is
known best through Larmor’s formula and its relativistic
generalisation, which gives the total power radiated per
unit frequency and solid angle. In the interest of clarity,

2 As will be discussed later, this radiation is of a different nature to
that produced by the Frank-Tamm description of ‘true’ Vavilov-
Cherenkov radiation arising from the particle motion, and comes
from the ‘bremsstrahlung’ from the implied acceleration events
— or endpoints — at the ends of each track.

and because we wish to preserve phase information, we
proceed below to re-derive the emitted radiation in terms
of the electric-field in the time- and frequency-domains.
By beginning with the Liénard-Wiechert potentials only,
we hope to emphasise the generality of our result.

A. The Liénard-Wiechert approach

Electric field components due to particle motion and ac-
celeration can be readily separated using the Liénard-
Wiechert potentials, which are derived directly from
Maxwell’s equations in the relativistic case3, and repro-
duced below:

Φ(~x, t) =

[

e

(1− n~β · r̂)R

]

ret

~A(~x, t) =

[

e~β

(1− n~β · r̂)

]

ret

(1)

where R is the distance from the point of emission to an
observer, r̂ a unit vector in the direction of the observer,
~β = ~v/c (~v is the velocity vector of the particle), and n
is the medium refractive index. The subscript ‘ret’ de-
notes evaluation at the retarded time t′ = t− nR/c. Us-
ing Eq. 1, it is possible to calculate the total static and
vector potentials from a distribution of source charges,
by summing the contributions from individual charges in
the distribution. These can then be used to calculate the
corresponding electric and magnetic fields. This alterna-
tive approach is used for instance by Alvarez-Muñiz et al.
in the ‘ZHAireS’ code [6]. In our methodology however,
we calculate the electric fields directly, since from the
Liénard-Wiechert potentials, the electric field in a dielec-
tric, non-magnetic medium due to a particle of charge q
(in c.g.s. units) can be expressed (see e.g. Jackson [7]) as
follows:

~E(~x, t) = q

[

r̂ − n~β

γ2(1− n~β · r̂)3R2

]

ret

+
q

c

[

r̂ × [(r̂ − n~β)× ~̇β]

(1− n~β · r̂)3R

]

ret

(2)

with ~̇β the time-derivative of ~β, and γ the usual relativis-
tic factor of (1− β2)−0.5. The first term is the near-field
term, since the strength of the resulting fields falls as
R−2 — in the case of β = 0, it reduces to Coulomb’s
Law. The second term is the radiation term, with the
familiar 1/R dependence. The well-known maxim ‘radi-
ation comes from accelerated charges’ is seen easily by

the dependence of this term on ~̇β.

3 For a derivation for n = 1, see e.g. Jackson [7]. Using an arbitrary
n produces the result for Eq. 2 from Zas, Halzen, and Stanev [14]
in the case where the relative permeability, µr , is unity.
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In most practical applications, the near-field term
presents only a minor correction to the observed fields.
From here on we formulate our methodology purely from
the radiated field term only. Thus the following expres-
sions for the electric fields will be those arising solely
from the particle acceleration. The applicability of this
approximation is discussed in Sec. IV.

B. Radiation from an endpoint

The most simple acceleration event is the instantaneous
acceleration of a particle at rest at time t′ = t′0 to a ve-

locity ~β = ~β∗, i.e. ~̇β = ~β∗δ(t′ − t′0), or equivalently the

deceleration of such a particle from velocity ~β = ~β∗ to

rest, i.e. ~̇β = −~β∗δ(t′ − t′0). Such events can be termed,
respectively, ‘starting points’ and ‘stopping points’, ‘ac-
celeration’ and ‘deceleration’, or ‘creation’ and ‘destruc-
tion’ events. We define the electric field resulting from

these events as ~E±, where the acceleration vector ~̇β can
be either parallel (+) or anti-parallel (−) to the velocity

vector ~β, corresponding respectively to acceleration (at
a starting point) or deceleration (at a stopping point).

Since ~β changes only in magnitude, we write ~β = ββ̂ (β̂

a unit vector), and use similar notation for ~β∗ = β∗β̂ and

the time-derivatives: ~̇β = β̇β̂. Thus only the scalar com-
ponents will need to be expressed as functions of time.

We proceed to derive ~E± from the RHS of Eq. 3 in terms
of the ‘lab-time’ (observer time) t in both the time- and
frequency-domains. Similar derivations in both domains
in the case of linear particle tracks (effectively two end-
points — see Sec. III B) appear also in Alvarez-Muñiz,
Romero-Wolf, and Zas [8], for the case of “Čerenkov ra-
diation”: note that in the following no assumption on the
nature of the radiation need to be made.

1. Frequency-domain derivation

The expression for the radiated component of the electric
field (from Eq. 2) for the instantaneous particle acceler-
ation described above is:

~E±(~x, t) = ±q

c

[

r̂ × [r̂ × ~β∗δ(t′ − t′0)]

(1− n~β · r̂)3R

]

ret

(3)

where we have removed the ~β × ~̇β term from Eq. 2 since
~β ‖ ~̇β. We begin the frequency-domain derivation by
taking the Fourier-transform of Eq. 3 converted to the

retarded time t′ using t = t′+Rn/c and dt = dt′(1−n~β ·
r̂):

~E±(~x, ν) ≡
∫

dt ~E±(~x, t) e
2πiνt

=

∫

dt′ ~E±(~x, t(t
′))(1− n~β · r̂) e2πiν(t′+Rn/c). (4)

A conceptual and mathematical difficulty to overcome is

that at the time of acceleration, β, and hence ~E±(~x, ν),
is undefined. This can be dealt with by letting the ac-
celeration last a finite (but small) time interval ∆t′, then
taking the limit as ∆t′ → 0. Writing t′′ = t′ − t′0, the
acceleration takes place over the interval 0 < t′′ < ∆t′,
during which we have β(t′′) = β∗t′′/∆t′, β̇ = β∗/∆t′, and

R(t′′) = R(t′0)−0.5c(β∗/∆t′)t′′2β̂ ·r̂. Thus the frequency-
domain integral becomes:

~E±(~x, ν) = ± lim
∆t′→0

q

c
e2πiνt

′
0 ·

∫ ∆t′

0

1
∆t′ e

2πiν(t′′+nR(t′′)/c)

(1 − nt′′

∆t′
~β∗ · r̂)2R(t′′)

(

r̂ × [r̂ × ~β∗]
)

dt′′ (5)

This somewhat difficult integral can be greatly simplified
by applying the limit ∆t′ → 0, in which case the integral
and limit eventually evaluate to the rather simple form:

~E±(~x, ν) = ±q

c

eikR(t′
0
)

R(t′0)

e2πiνt
′
0

1− n~β∗ · r̂
r̂ × [r̂ × ~β∗] (6)

where we have written k = 2π/λ = 2πνn/c. Recall that
the ‘±’ is positive when the acceleration is parallel to the
motion (acceleration from rest), and negative when the
acceleration is anti-parallel to the motion (acceleration
to rest).

2. Time-domain derivation

For the time-domain derivation, we again consider the
radiated component of Eq. 2. We can calculate the time-
integral of the electric field for one starting point or stop-
ping point, taking into account the conversion from re-
tarded emission time t′ to observer-time t as t = t′+nR/c

and dt = dt′(1 − n~β · r̂), via:
∫

~E(~x, t) dt =
q

c

∫

∆t

[

r̂ × [(r̂ − n~β)× ~̇β]

(1− n~β · r̂)3R

]

ret

dt

=
q

c

∫

∆t′

r̂ × [(r̂ − n~β)× ~̇β]

(1− n~β · r̂)2R
dt′

=
q

c

∫ t′
1

t′
0

d

dt′

(

r̂ × [r̂ × ~β]

(1 − n~β · r̂)R

)

dt′

= ±q

c

(

r̂ × [r̂ × ~β∗]

(1 − n~β∗ · r̂)R

)

(7)

Here, ∆t = t1 − t0 denotes the observer-time window
corresponding to the retarded-time window ∆t′ = t′1 −
t′0, which encompasses the acceleration process. For a
starting point (+ sign), the particle is at rest at the time

t′0 and has velocity ~β∗ at t′1. The opposite is the case for
a stopping point (− sign).
Since the acceleration is instantaneous, the distance Racc

from the particle to the observer at the acceleration time
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is constant, and the time tacc at which an observer would
view the radiation emitted at time t′acc is given by tacc =
t′acc + nRacc/c. The time window ∆t = t1 − t0 in Eq. 7
is therefore chosen to satisfy t0 < tacc < t1.

While the electric field as a function of time ~E(~x, t) be-
comes infinite in the case of instantaneous acceleration,
the time-integrated electric field is finite and independent
of the specific choice of ∆t. Consequently, one can cal-
culate the time-averaged electric field over the time-scale
∆t as

~E±(~x, t) = ± 1

∆t

q

c

(

r̂ × [r̂ × ~β∗]

(1− n~β∗ · r̂)R

)

. (8)

An adequate choice of ∆t is dictated by the time res-
olution of interest. If ∆t is chosen significantly longer
than the time-scale over which the acceleration process
occurs — which is in particular the case for the instanta-
neous acceleration considered here — the details of the
acceleration process are of no importance.
At first glance, the results given in Eqs. 6 and 8 for a ra-
diating endpoint may appear as yet another special case
of particle motion with very limited application. How-
ever, observe that in arriving at Eqs. 6 and 8, we have
made no assumptions about the macroscopic motion of
the particle — only that at a given instant, the parti-
cle becomes accelerated. As we will see, validating this
assumption is really a question of describing the parti-
cle motion with sufficient accuracy for the frequency-
range/time-resolution of interest, rather than being a
limitation of the endpoint approach. In following sec-
tions, we will show how arbitrary particle motion can be
described in terms of such endpoints. However, before
proceeding to more complex situations, it is worthwhile
examining the radiation from the most simple accelera-
tion event, a single endpoint.

3. Radiation pattern of a single endpoint

The radiation pattern from a single endpoint is exactly
that corresponding to a once-off acceleration event. A rel-
evant physical situation would be the β-decay of a heavy
element in vacuum, where the motion of the heavy nu-
cleus can be neglected, and the emitted e± travels with
constant velocity to infinity. There are quite a few in-
teresting features of even this simple situation which are
worthwhile to explore in greater depth.
For most applications, it is preferable to use the vecto-
rial notation given in Eqs. 6 and 8 to describe the ra-
diation from a single endpoint. However, for a single
event, the radiation is cylindrically symmetric about the
acceleration/velocity axis, so it is common to express
these equations using an observer’s position described
by a distance R and angle to the acceleration vector θ

(θ = 0 ⇒ r̂ ‖ ~β∗). This angular dependence is seen easily
from the LHS of Fig. 3. For this case, the magnitude
of the electric field vector in Eqs. 6 and 8 respectively

becomes:

~E±(~x, ν) = ±q

c

eikR

R

β∗ sin θ e2πiνt
′
0

1− nβ∗ cos θ
Ê± (9)

~E±(~x, t) = ± 1

∆t

q

c

β∗ sin θ

(1− nβ∗ cos θ)R
Ê± (10)

and it is taken as given that the unit electric field vector
Ê± points away from the acceleration axis for θ < π/2
and towards it for θ > π/2. At all times the angle θ is
defined to be positive in the direction of positive velocity,
irrespective of the acceleration. Thus under the transfor-
mation θ → π − θ, β → −β, Eqs. 6 and 8 are invariant,
since Ê± → −Ê±.
To illustrate, Eqs. 9/10 have been plotted in a vacuum
and dielectric for varying β in Fig. 1.
Firstly, note that for a single endpoint, the magnitude of
the radiation in Eqs. 9, 10 has no frequency-dependence.
This may seem counter-intuitive, since almost all radia-
tion processes become characterised by their particular
frequency-dependence. Such frequency-dependence can
only be produced however by the particle acceleration ap-
pearing differently on different wave-length scales, while
a point-like acceleration looks identical on all scales, so
that the resulting radiation could not possibly have any
dependence on the wavelength/frequency. Only in the
quantum-mechanical (extremely-high-frequency regime
— see Sec. IV) will there be a frequency-dependence in
the radiation from a single endpoint, since the particle
will no longer appear point-like.
Secondly, observe that there is a singularity in the emit-
ted electric field about nβ∗ cos θ = 1 — this is the
‘Cherenkov’ singularity, which occurs at the Cherenkov
angle θC = cos−1(1/nβ∗). Here, the electric field
strength becomes undefined. This is, of course, unphysi-
cal, since we do not observe infinite electric fields in na-
ture. Nonetheless, both Eqs. 9, 10 and reality can happily
coexist since an observer will always observe the parti-
cle traversing some finite observation angle δθ. Writing
θ = θC + δθ, the divergent term in Eqs. 9 and 10 can be
expanded in the vicinity of θC as follows:

β∗ sin θ

R(1− nβ∗ cos θ)
≈ 1

R(θC)nδθ
+

1.5

R(θC)n2β∗ sin θC
(11)

The first term on the RHS, which diverges as δθ → 0, is
odd about δθ = 0, while the second (even) term is finite.
Therefore, for any real measurement, an integral of the
field about θC will have the divergent component cancel,
leaving a finite result. In addition, any real medium will
have a frequency-dependent refractive index, so that infi-
nite field strengths will only be observed over an infinitely
small bandwidth.
Finally, note that away from the singularity, there is a
broad angular dependence which depends primarily on
sin θ and β∗. There is no emission in the exact for-
ward direction for any values of β∗ and n, though for
highly-relativistic particles in vacuum, the radiation pat-
tern rises extremely rapidly away from θ = 0, produc-
ing the characteristic forward ‘beaming’ expected. Also
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FIG. 1: Radiation from a single endpoint in vacuum as given by Eqs. 9, and 10 multiplied by the time-interval ∆t, as a function
of the angle θ from the shower axis, for a range of γ-factors (and hence β∗s), left: in vacuum, and right: in an n = 2 medium.
In both figures, the highly relativistic cases produce near-identical radiation patterns.

note that for mildly- and sub-relativistic particles, the
emitted radiation at all angles changes with the parti-
cle energy, whilst in the ultra-relativistic regime, only
extremely near to θC does the radiation pattern change
with energy.

C. Building physical situations

We have derived both vectorial (Eq. 6 and Eq. 8, in terms

of ~β∗, r̂, n, t′0, and R) and scalar (Eq. 9 and Eq. 10, in
terms of β∗ θ, n, t′0, and R) equations for the radiation
from an endpoint. For the sake of brevity, in this section
we use only the scalar notation of Eq. 9 and Eq. 10 to
describe the situation.

Despite Eq. 9 and Eq. 10 describing the radiation result-
ing from a particle accelerating from/to rest, they are,
in fact, more general than this. This is because an arbi-
trary acceleration of a particle can be viewed as a super-
position of deceleration and acceleration events, which
will not cancel if either θ, β∗, or n differ between the
two endpoints4. For curved particle motion at constant
speed, the angle θ from the acceleration vector to the
observer will be different for coincident endpoints, while
for gradually accelerating/decelerating particles, the val-
ues of β∗ will be different for simultaneous endpoints.
In either case, contributions from starting and stopping
points will not cancel, and radiation will occur. Con-
versely, if a simple linear motion with constant velocity

4 The superposition of two endpoints in this manner produces the
“well-known formula for radiation of charges which change their
velocity sharply” as discussed by Ginzburg (1982) [1] and Bolo-
tovskii, Davydov, and Rok (1982) [9].

is described piece-wise as a series of starting and stop-
ping endpoints, the terms will cancel completely — the
particle will not radiate. Superposition of endpoints in
this way is sometimes viewed as destroying the ‘old’ par-
ticle and creating a ‘new’ one — since this formulation is
applicable only to the radiated component, static fields
(which fall as 1/R2) can be ignored, so that bringing a
particle to rest (‘stopping’ it) is equivalent to destroying
it, and accelerating a particle from rest (‘starting’ it) is
equivalent to creating it, and vice versa. An arbitrary
change in particle velocity can be dealt with by com-
bining two simultaneous, coincident endpoints, the first
to ‘stop’ the particle by bringing it from its old velocity
to rest, the second to ‘start’ the particle by accelerating
it to its new velocity. Multiple particles/events can be
treated by adding the contributions with appropriate θ,
β∗, n, R, and t′0. In the case of a smoothly-varying ve-

locity ~β, the values ~β∗ used at the endpoints should be
representative of the average velocity between endpoints,

which will tend towards the true value of ~β as the num-
ber of endpoints used becomes large. Any propagation
effects between the source and the observer — e.g. ab-
sorption in a medium, or transmission through an inter-
face — should be applied to the (spherically-diverging)
radiation from each endpoint. This can be simply done,
since the relevant parameters (e.g. angle of incidence for
transmission) will be uniquely defined for each such end-
point. Note that for ray-tracing methods, the rays will be
diverging, and transmission problems should be handled
accordingly.

To illustrate, we have plotted the emitted radiation in
four elementary situations in a vacuum and dielectric in
Fig. 2: a single endpoint representing an electron ac-
celerating from rest (‘acceleration’); the deflection of an
energetic electron through 20◦ (‘deflection’); the deceler-
ation of a fast electron (‘slow-down’); and a reversal of
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FIG. 2: Electric field magnitude resulting from the acceleration of a relativistic electron in four simple cases (see text) in (left)
a vacuum and (right) a dielectric with refractive index n = 2, as given by Eq. 6.

direction in a mildly relativistic electron with no change
in speed (‘reversal’). Note in the three highly relativistic
cases the characteristic beaming — in the forward direc-
tion for the vacuum case, and about the Cherenkov angle
θC = cos−1(1/(β∗n)) in the n = 2 dielectric. For velocity
reversal, significant peaks are observed at the Cherenkov
angle since β∗n > 1, while in the vacuum case, no ap-
preciable beaming is evident and the emission is broad,
which is characteristic of (non-relativistic) dipole radia-
tion.
The simple examples presented in Fig. 2 — and Eqs.
9, 10 themselves — deal only with point-like accelera-
tion events, while in most situations particle motion will
be smooth; however, this is not a limitation in practice.
Every numerical simulation necessarily describes particle
motion as a series of uniform motions joined by instan-
taneous acceleration events, for which either of Eqs. 6 or
8 will calculate the emitted radiation exactly. The key
point is that the degree to which the radiation calculated
from the addition of endpoint contributions resembles the
true radiation is limited only by the degree to which the
simulated motion resembles the true motion. Usually
this means that a particle simulator must be accurate to
within a small fraction of the wavelengths of interest —
for a discussion of this effect in practice, see for example
the discussion in Fig. 3 and Appendix A of Ref. [10] or
section 3 of Ref. [11]. It is not a concern of this paper.

1. Further notes on application

In our experience of applying the endpoint formalism to
complex physical situations, two important cases where
the formalism can be mis-applied have come to our at-
tention. We discuss each below.
The first case concerns the interpretation of the initial
and final endpoints used to describe particle motion. If
the initial endpoint is a starting/acceleration endpoint,

this models the situation of a particle sitting at rest until
suddenly accelerated, in which case the calculated radi-
ation pattern will include a large contribution from this
sudden acceleration. Therefore, this will be the correct
choice if, in the physical situation being modelled, the
particle genuinely does begin from rest. If it does not,
the large initial contribution will be artificial and incor-
rect. If, on the other hand, the initial point is a stop-
ping/deceleration endpoint, the implied motion is that
of a particle moving with uniform velocity for an infinite
time until the time of the initial endpoint. Given that
such infinite uniform motion does not generally occur in
nature, the usual interpretation for this choice is that of a
particle beginning the calculation with a non-zero veloc-
ity, and that whatever motion it undertook before that
point is not of interest to the calculation. The choice of
final endpoint, obviously, has similar implications. For
instance, in the case of synchrotron (curvature) radia-
tion in Sec. III A, the initial point must be a stopping
endpoint, and the final point a starting endpoint, since
the radiation of interest is only that from the curved mo-
tion of the particle. However, for the radiation from a
finite particle track in Sec. III B, the situation of interest
really is that of a particle which accelerates from and de-
celerates to rest, and hence the initial and final endpoints
are starting and stopping endpoints respectively.

The second case involves ensuring that the velocity ~β∗

used at a starting endpoint and a subsequent stopping
endpoint is consistent with the implied motion of the par-
ticle: if the particle is accelerated at a starting endpoint
at ~x1, t1 and arrives at a stopping endpoint at ~x2, t2, then

the condition ~x2 − ~x1 = c~β∗(t2 − t1) must be satisfied.

Furthermore, note that ~β∗ must be identical at both the

starting and stopping endpoints. If ~β∗ changed between
the starting and subsequent stopping point, this would
imply an additional acceleration, and the radiation asso-
ciated with this acceleration would not be accounted for,
leading to incorrect results. This problem arises for an
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FIG. 3: (a) Sketch of θ, the angle from the velocity vector;
(b) Schematic diagram of the contributions from two terms
in the sum of Eq. 12.

accelerating particle when the instantaneous particle po-

sitions and ‘true’ velocities ~β are known (or simulated) at

discrete times, so that in general the velocities ~β will not
point towards the next known position. In such a case,

one must realise that the velocities ~β∗ used in the end-
point treatment are representative of the time-averaged

true velocity ~β between endpoints. Therefore, the cor-

rect treatment is to re-normalise each instantaneous ~β

(in both direction and magnitude) to the appropriate ~β∗

to fulfill the above-mentioned condition. This will be-
come important in the following section (Sec. III A) in
the case of synchrotron radiation.

III. COMPARISON TO ESTABLISHED

THEORY

It is instructive to recreate classical radiating systems
and reproduce the classical results using our endpoint for-
mulation. We do this below for the cases of synchrotron,
Vavilov-Cherenkov, and transition radiation.

A. Synchrotron radiation

Synchrotron radiation arises from a relativistic particle
undergoing infinite helical motion (a superposition of cir-
cular motion in a 2D plane and linear motion perpendic-
ular to the plane) in a vacuum (n = 1), as is typically in-
duced by the presence of a uniform magnetic field. Here,
we treat the case of a particle of velocity β executing a
single circular loop of radius L in the x−y plane only in a
vacuum. This motion is viewed by an observer at a very
large distance ∼ R so that the unit-vector in the observer
diretion r̂ can be assumed to remain constant throughout
the motion. Such motion can be represented by a series
of N starting and stopping points, schematically in Fig.

3, and mathematically as follows:

N−1
∑

m=0

~E+(tm, Rm, r̂, ~β∗
m+1) +

~E−(tm, Rm, r̂, ~β∗
m), (12)

where the calculation of each velocity vector ~β∗
m, time

tm, and distance Rm to the observer is a matter of sim-
ple geometry. While the 1/Rm term can be assumed
constant, Rm also changes the relative phase-factors be-
tween emission at different endpoints. Note that every
starting term is balanced at any time tm by a simulta-
neous stopping term at the same position. The reason
the terms do not cancel is due to the direction of the
velocity vectors ~β∗

m = β∗v̂m differing between simultane-
ous starting and stopping terms. Note also that there

is only one term with ~β∗
0 (a stopping event) and one

with ~β∗
N (a starting event). This represents the physi-

cal situation of a particle moving in some direction from
− inf, executing the loop described, then continuing on
to + inf in the original direction, as described in more
detail in Sec. II C 1. This is necessary so that the radia-
tion modelled is due to the curvature of the particle (that
is, synchrotron radiation), rather than any sudden and
large initial and final accelerations to bring the particle
from/to rest, which would tend to dominate. Finally,

also note that the magnitude β∗ of the vectors ~β∗ used
in the calculation must be slightly decreased from the
‘true’ value β, since the (straight line) distance between
endpoints is slightly shorter than the distance along a

circular arc; similarly, the vectors ~β∗ will not be quite
tangential. The necessity of this is also discussed in Sec.
II C 1.
We present numerical evaluations of Eq. 12 in Fig. 4 for
a loop of radius L = 100 m and true velocity β = 0.999
(γ ≈ 22.4), equivalent to an 11.4 MeV electron moving
perpendicular to a 3.809 Gauss field. The observer is
assumed to lie in the very-far-field in the plane of the
loop. For the plot in the time (frequency) domain, we
present both a direct calculation, and the results from
taking a Fourier transform from the calculation in the
frequency (time) domain. All the characteristic features
are reproduced perfectly: a steep spectral fall below the
cyclotron frequency (ν = 2πL(βc)−1), and a slow rise
in power until an exponential cut-off above the critical
frequency νcrit = 1.5γ3βc/L ≈ 50 GHz. In the time-
domain, a sharp pulse of characteristic width 1/νcrit is
seen. That the results calculated by Fourier transform
do not exactly match the direct calculations is due to the
difficulty in generating sufficient data to make an accu-
rate transform. However, the correspondence is obvious.
From here on therefore, we deal only with calculations in
the frequency-domain, and take it for granted that one
can transmute time-trace data to spectral data and vice

versa accurately and as needed.
Perhaps the most familiar analytic result on synchrotron
radiation is the normalised, angular-integrated power
spectrum for ultra-relativistic particles. This makes a
useful comparison with our code and, by extension, the
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FIG. 4: (Color online) Time-trace of a synchrotron pulse produced by a single gyration of an electron with β = 0.999 and
gyration radius r = 100 m (left), and power spectrum of the same pulse (right). In each case, the direct calculations (time-
and frequency-domain respectively) are shown in comparison with the results generated by fast-Fourier-transforming data from
the other domain (frequency- and time-domain respectively). The direct calculation produces the higher-quality result and is
much less computing-intensive. (For such practical reasons, the indirect, frequency-domain calculation of the time-trace was
performed by modelling only the relevant part of the gyration cycle indicated by the plotted time range.)

endpoint formalism. The common analytic result writes
the power spectrum P (ν) as the product of a normal-
isation constant C and a dimensionless function F (x),
where x = ν/νc is the ratio of the frequency ν to the
critical synchrotron frequency νc = 3βcγ3/(2πr) [7]:

P (ν) =

√
3e3B

mec2
F (x), (13)

F (x) = x

∫ inf

x

K5/3(
3
√
2.25x2). (14)

Here, K is a modified Bessel function of the second kind.
The ’ultra-relativistic approximation’ of β = 1 in deriv-
ing this result means that it is only applicable in the
frequency regime far above the cyclotron frequency of
ν0 = βc/(2πr), i.e. x ≫ γ−3.
To compare this analytic result with the endpoint theory
calculation, we calculate the radiated far-fields as above,
but for all angles relative to the plane of gyration. These
fields are then converted to a radiated power and inte-
grated over a 4π solid angle, and plotted against F (x)
in Fig. 55. Estimates using both 60, 000 and 6, 000 end-
points were made, to illustrate when numerical effects
become important. The difference between the analytic
and endpoint method results is also shown, defined as
2|Ptheory − Pendpoint|/|Ptheory + Pendpoint|. The differ-
ence in estimates at high frequencies is due to numerical
inaccuracy: this clearly reduces as the number of end-
points increases and better describes the curved track.

5 It is common in textbooks to plot a normalised F (x) — here, we
do not include this normalisation factor, equal to 9

√
3/(8π).

At low frequencies, the increasing disagreement with the
analytic result is due to the ultra-relativistic approxi-
mation breaking down, and here measures the limita-
tions in the theory, which will break down completely as
x → γ−3 ≈ 8.9× 10−5.

B. Particle tracks and Vavilov-Cherenkov radiation

In this paper, we describe physical situations in terms
of endpoints, whereas in numerical codes, the physical
situation is usually described in terms of particle tracks.
Such a track-based description defines the total charge
distribution in position and time in terms of charges mov-
ing from position (~x1, t1) to position (~x2, t2). This implic-

itly defines a velocity ~β∗; given the type of particle, the
energy, momentum, and γ-factor are also defined. If the
code outputs the positions ‘sufficiently’ accurately, then

the implied velocity ~β∗ will also be ‘sufficiently’ close to

the true velocity ~β at each point.

It is obvious that the radiation from such a particle track
can be constructed from two endpoint contributions —
one accelerating/creating a particle at ~x1, t1 from rest to

velocity ~β = ~β∗, the other decelerating/destroying the
particle at ~x2, t2. In the very-far-field of both events, the
corresponding parameters R, θ can be written θ1 = θ,
R1 = R, θ2 = θ, R2 = R−cos θδl; we also write t2 = t1+
δt. The track-length δl is often expressed in terms of the
time interval δt via δl = cβ∗δt. The entire particle track
is considered as being sufficiently far from the observer
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so that the approximation 1/R1 ≈ 1/R2 = 1/R holds 6.
Again, it is more common to begin with the expression
in Eq. 9. Recalling k = 2πνn/c, we find the radiation
from a particle track to be:

~Etrack(~x, ν) =
q

c

β∗ sin θ

1− nβ∗ cos θ

·
(

ei(kR1+2πνt1)

R1
− ei(kR2+2πνt2)

R2

)

Ê

≈ qβ∗ sin θ

c

ei(kR+2πνt1)

R

·
(

1− e2πiν(1−nβ∗ cos θ)δt

1− nβ∗ cos θ

)

Ê (15)

Note that Eq. 15 is (to within a factor of 2, due to a dif-
ferent definition of the Fourier transform) the ‘Vavilov-
Cherenkov radiation formula’ of Eq. 12 in Zas, Halzen,
and Stanev [14], with µr = 1 and q = −e. That is, al-
though the ZHS code is commonly understood to calcu-
late ‘the Vavilov-Cherenkov radiation’ from a cascade in
a dense medium, what it actually calculates is simply ‘the
radiation’ due to particle acceleration. When the parti-
cles in the cascade are all travelling in the same direction

6 As discussed in detail by Afanasiev, Kartavenko, and
Stepanovsky (1999) [12], this approximation breaks down as
the Cherenkov angle θC = cos−1(1/β∗n) is approached, since
second-order terms in R and cos θ become important. It is ex-
actly this approximation that removed the Vavilov-Cherenkov
radiation component from Tamm’s formula [13] for the radiation
from a finite particle track viewed at large distances, leaving only
the ‘bremsstrahlung’ contributions from the endpoints. However,
this approximation — and hence equation 15 — is still valid for
angles θ satisfying |θ− θC | ≫ sin θCδℓR−1, where there is essen-
tially no Vavilov-Cherenkov component.

in a medium with refractive index significantly different
from 1, the radiation just so happens to very closely re-
semble the classical notion of Vavilov-Cherenkov radia-
tion. The Vavilov-Cherenkov condition is plainly evident
by letting the phase term (1 − nβ∗ cos θ) → 0 — that
is, the observation angle θ tends towards the Vavilov-
Cherenkov angle θC , where cos θC = (nβ∗)−1 — in which
case Eq. 15 reduces to:

~Etrack(~x, ν) = 2πiνδt cβ∗ sin θ
e

c2
ei(kR+2πνt)

R
Ê (16)

The product cβ∗δt = δl sin θ, so that the radiated inten-
sity is proportional to the apparent tracklength. Thus to
a far-field observer near the Cherenkov angle, the radia-
tion seen is consistent with emission per unit tracklength,
although our description makes it clear that this is not
the case7.
We conclude our discussion on Vavilov-Cherenkov radi-
ation by noting that ‘true’ Vavilov-Cherenkov radiation,
which is emitted in the absence of particle acceleration
in a dielectric medium, can not be dealt with by this
methodology. This comes by virtue of the fact we deal
only with the ‘radiation’ component of the Liénard-
Wiechert potentials, whereas contributions from unac-
celerated motion must come from the ‘nearfield’ term.
Thus in the classical treatment of Vavilov-Cherenkov ra-
diation by Frank and Tamm [27] in which an infinite par-
ticle track is assumed, the near-field must also be infinite.
Thus it should come as no surprise that a radiation-based
far-field treatment can not explain this phenomenon.

7 It was first noted by Zrelov and Ružička (1989) that Tamm’s
(1939) approximate formula for radiation from a finite particle
track results from contributions from acceleration at the end-
points.
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FIG. 6: Sketch of the endpoint formulation of transition ra-
diation. See Eq. 17 and the associated discussion.

C. Transition radiation

Transition radiation arises from a relativistic particle
transitioning between two media with different refrac-
tive indices. The radiated energy was first calculated by
Ginzburg and Frank [15] in the case of a sharp boundary
and a particle moving for an infinite time with uniform
velocity parallel to the boundary surface normal.
J. Bray (private communication) has noted that transi-
tion radiation can be explained as a particle being de-
stroyed on the incoming side of the boundary, then being
created on the outgoing side; this picture is consistent
with Ginzburg’s ‘mirror-charge’ explanation of transition
radiation, where the radiation in vacuum from a particle
entering an n = inf medium is explained by the sum of
two charge contributions (real and mirror charges) which
appear to disappear (or mutually annihilate) upon reach-
ing the boundary [1]. In terms of endpoint-theory, there
exists a starting and a stopping event which are simul-
taneous and co-located (or rather, infinitesimally sepa-
rated). The contributions from these events do not cancel
because 1: the events occur in different media, and 2: an
observer must be on one or the other side of the bound-
ary, and thus the radiation from one of the two events
will have to be transmitted through the boundary layer.
The observed radiation will in fact be the sum of three
contributions: a ‘direct’ contribution from the event in
the observer’s medium, a ‘reflected’ contribution off the
boundary from the event in the observer’s medium, and
a ‘transmitted’ contribution from the event in the non-
observer medium. This situation is shown in Fig. 6 for
an observer in the ‘incoming’ medium (medium 1) with
refractive index n1 — since the separation of the two end-
points is infinitely small, any such observer will be in the
far field, and there will be no phase-offset between the
three contributions. Using the endpoint formulation, the

total field in medium 1 is then:

~E(~x, t) = ~E−(~β
∗, n1, r̂, t0, R) + r(r̂r) ~E

†
−(

~β∗, n1, r̂r , t0, R)

+ t(r̂t) ~E
†
+(

~β∗, n2, r̂t, t0, R). (17)

The first two terms arise from the particle in medium 1
‘stopping’ at the boundary; while r̂ is the usual direc-
tion towards the observer, r̂r is the apparent observer
direction seen in reflection from the boundary. The third
term originates from the ‘starting’ event in medium 2,
with r̂t the apparent direction of the observer from the
perspective of medium 2. r(r̂r) and t(r̂t) are reflection
and transmission coefficients, which vary according to the
geometry defined by r̂r and r̂t and the relative refractive

indices. In all terms, the velocity ~β∗ should be that of

the true velocity ~β, since there is no possibility of accel-
eration between the two endpoints. The ‘†’ in the latter
two terms is a reminder that field directions after reflec-
tion/transmission should be used. The field in medium

2 can be expressed by switching n1 ↔ n2 and ~E− ↔ ~E+

in Eq. 17, and recalculating the vectors r̂, r̂r, r̂t and the
transmission/reflection coefficients appropriately. This
‘three-contribution’ formulation is the same as that noted
by Ginzburg and Tsytovich [28] for the case of a particle
normally incident at the boundary between two infinite
uniform (but otherwise arbitrary) media.
In the case of normal incidence to a boundary, the ge-
ometry becomes substantially simpler. In this case, the
observer direction is definable by the angle ξ from the sur-
face normal in the observer’s medium (thus 0 ≤ ξ < π/2),
and all reflection/transmission will occur in the ‘parallel’
direction. Note that ξ is distinct from the angle θ. De-
noting the refractive index from the observer’s medium
as n, that from the other medium as n†, and using ± (∓)
to indicate a ‘+’ (‘−’) sign for observations in medium
1 (the incoming medium) and a ‘−’ (‘+’) sign for obser-
vations in medium 2 (the outgoing medium), the scalar
component of Eq. 17 can be written thus:

| ~E(ξ, n, n†, β∗)| = q

c

1

R(t′0)

(

∓ β∗ sin ξ

1± nβ∗ cos ξ
(18)

∓r‖(ξ, n, n
†)β∗ sin ξ

1∓ nβ∗ cos ξ
± t‖(ξ, n, n

†)β∗ n
n† sin ξ

1± n†β∗
√

1− ( n
n† sin ξ)2

)

where

r‖(ξ, n, n
†) =

cos ξ − n
n†

√

1− ( n
n† sin ξ)2

cos ξ + n
n†

√

1− ( n
n† sin ξ)2

t‖(ξ, n, n
†) =

2n cos ξ

n
√

1− ( n
n† sin ξ)2 + n† cos ξ

(19)

Observe that the reflection and transmission coefficients
are those appropriate for a point source — in the case
of r, this is the same as that for a plane wave, while for
transmission, the plane-wave result gets multiplied by
(n/n†) cos ξ(1− (n/n†) sin2 ξ)−0.5 (this can be thought of
as accounting for the change in divergence of rays upon
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transmission). Note that the distance R to the observer
is constant for all contributions, since the two endpoints
are infinitely close together, and that there is no explicit
relative phase since the event times are also simultaneous
(implicit phases can and do arise however, as we will see
below).
For this situation, the radiated spectral energy density
predicted by the endpoint formalism becomes:

W (ν, ξ) = 2n
c

4π

∣

∣RE(ξ, n, n†, β∗)
∣

∣

2
(20)

where the fore-factor of 2 accounts for the energy radiated
at negative frequencies. The frequency-dependence of the
RHS of Eq. 20 is contained in the implicit frequency-
dependence of n and n†.
For the same physical situation, Ginzburg and Tsytovich
define medium 1 by its relative permittivity and perme-
ability ǫ1, µ1, and medium 2 via ǫ2, µ2. Using the same
notation for ± and ∓ as for Eq. 18, and using for ǫ, µ the
values in the observer’s medium and for ǫ†, µ† the val-
ues for the other (non-observer) medium, these authors
derive the radiated spectral energy distribution W (ν, ξ)
(≡ 2πW (ω, ξ) for angular frequency ω) as:

W (ν, ξ) = (21)

2π
q2v2µ

√
ǫµ |ǫ − ǫ†|2 sin2 ξ cos2 ξ

π2c3
∣

∣

∣
ǫ† cos ξ +

√

ǫ/µ
√

ǫ†µ† − ǫµ sin2 ξ
∣

∣

∣

2

·

∣

∣

∣
1± v

c

√

ǫ†µ† − ǫµ sin2 ξ − v2

c2
ǫµ−ǫ†µ†

ǫ−ǫ† ǫ
∣

∣

∣

2

∣

∣

∣
[1− v2

c2 ǫµ cos2 ξ][1± v
c

√

ǫ†µ† − ǫµ sin2 ξ]
∣

∣

∣

2 .

An alternative expression — Eq. 2.45e of Ref. [28] — is
also given by Ginzburg and Tsytovich, which is sugges-
tively close in form to our Eq. 188.
To compare the result given by the endpoint formula-
tion (Eqs. 18-20) with that of Ginzburg and Tsytovich’s
Eq. 21, we plot both results in Fig. 7 for the case
{ǫ1, µ1, ǫ2, µ2} = {1, 1, 4, 1} (i.e. n1 = 1, n2 = 2).
Analysing Fig. 7, we observe that the loci overlap com-
pletely — the endpoint formulation produces exactly
the same result as Ginzburg and Tsytovich’s (nine-page)
derivation. The detailed angular-dependence of the spec-
trum arises from the angular-dependence of the three
individual endpoint contributions, the behaviour of the
reflection and transmission coefficients, and the interfer-
ence between terms, which can be constructive or de-
structive. To illustrate, we plot in Fig. 8 the spectral
energy density which would result from considering only

8 Ginzburg and Tsytovich go further and point out that their
expression can also be derived “using the expression for a
jump in the Lienard-Vichert [sic] potentials”, thanking V. V.
Kocharovskii and Vl. V. Kocharovskii for this point. Since one
or more endpoints imply a sudden jump in the potentials, it is
likely that the two derivations are very similar.

one of the three terms — direct, transmitted, or reflected
— in Eq. 17, as would be calculated by substituting the
field contribution from that term only directly into Eq.
20. Regions of both constructive and destructive inter-
ference appear, and there are regimes in which each term
dominates. In particular, note that it is the direct contri-
bution which causes the large peak about the Cherenkov
angle in medium 2 (the Cherenkov condition is not met
in medium 1). This is another example where a peak
at the Cherenkov angle does not imply the existence of
‘true’ Vavilov-Cherenkov radiation (see discussion in Sec.
III B). Interestingly, while the endpoint from which each
contribution is derived changes across the boundary (e.g.
the direct contribution comes from the stopping endpoint
in medium 1, and from the starting endpoint in medium
2), the magnitude of each component is in fact continuous
across the boundary.
A complication which bears discussing is that in the
regime 90◦ > ξ > 30◦ of medium 2, the ‘incident angle’
of the transmitted component cannot be defined, since
all incident angles from medium 1 map to the range
30◦ ≥ ξ ≥ 0◦ in medium 2. This is why, in Eqs. 18
and 19, we have not used Snell’s Law to define some
sin ξi = (n/n†) sin ξ nor cos ξi = (1 − ( n

n† sin ξ)
2)0.5: in

the regime 90◦ > ξ > 30◦ in medium 2, sin ξi would be
greater than one, and cos ξi purely imaginary, which does
not make intuitive sense. The resolution to this dilemma
is that the reflection and transmission coefficients result
from solving continuity equations for the fields across a
boundary. Solutions to these equations exist even when
the solution is not that for incoming and outgoing plane
waves in which Snell’s law is usually defined. It is impor-
tant in the endpoint formulation therefore to allow both
reflection and transmission coefficients, and the contribu-
tions from individual endpoints, to be complex numbers.
This is especially true when the refractive indices them-
selves can not be treated as purely real, as is the case for
many applications of transition radiation on metallic tar-
gets. Finally, note that any and all frequency-dependence
must come from the frequency-dependence of the refrac-
tive indices.

IV. DISCUSSION

The endpoint formalism described above provides a sim-
ple, accurate, and intuitive method for calculating the
radiation resulting from particle acceleration. Using it,
the radiated electromagnetic fields due to particle accel-
eration can be calculated in either the time- or frequency-
domain for arbitrary particle motion. The domain in
which to perform an endpoint-calculation should be the
same as that of the desired result. While the process of
fast-Fourier transforming between time- and frequency-
domains is usually relatively quick, such transforms re-
quire an adequate number of points in the first domain
to produce an accurate result in the second. This is espe-
cially true when a signal is localised in one domain (e.g. a
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tion of a single electron/positron at normal incidence to the
boundary between infinite dielectric media, calculated as per
our ‘Endpoint Formulation’ and using the result ‘GT90’ of
Ginzburg and Tsytovich for the spectral energy density. Only
one line is visible since the results are in complete agreement.
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FIG. 8: (Color online) The radiated energy which would result
from each of the three contributions — direct, reflected, and
transmitted — if considered in isolation, compared to the
total radiated energy, where the three field contributions are
coherently summed before squaring.

short time-domain pulse, or a narrow-bandwidth signal),
since then it will necessarily be spread over a great range
in the other. Usually, if both the time- and frequency-
domains are of interest, it will be computationally quicker
to perform two direct calculations than to generate ex-
cess data points in one domain and use a fast-Fourier
transform to convert to the other. Such was the case for
the example of synchrotron radiation presented in Sec.
III A. The only exception to this rule is when dispersive
effects (changing refractive index with frequency) become
important, in which case frequency-domain calculations
would be more practical.

Like any method using a distribution of sources, the accu-

racy of the endpoint method will reflect the accuracy with
which the distribution of endpoints reflects the true parti-
cle motion on scales of the smallest wavelength / highest
time resolution of interest. With reasonable awareness
of these issues however, our endpoint methodology can
be used to calculate the radiation in some very complex
physical situations, such as those described in Sec. V.
In emphasising the utility of the endpoint formulation,
we should also mention its limitations, the most obvious
of which is its classical foundation in Maxwell’s equa-
tions: it breaks down in any quantum-mechanical limit.
Specifically, it can not treat radiation processes involving
only a single photon, nor the radiation of extremely ener-
getic photons where the wavelength is of the order of the
de Broglie wavelength of the radiating particle(s). Such
limitations however are common to all classical methods
of treating radiation and are not increased by our ap-
proach. The second limitation is that we have ignored
the ‘nearfield’ term from Eq. 2. This does not mean
that our formulation cannot calculate radiation in the
near-field of a source distribution. Since each endpoint
is point-like, any observer is always in the far-field of
any particular endpoint. Thus a near-field calculation
requires only taking the trouble to re-calculate the di-
rection to the observer from each endpoint individually.
Only in certain special circumstances, such as the case
of Vavilov-Cherenkov radiation from non-accelerated sys-
tems as discussed in Sec. III B, will the near-field term
provide a significant contribution to the observed electric
fields. In general, this nearfield term will only become
important when a large part of the charge distribution
passes very close to the detectors, and for most experi-
ments it will represent at most a minor correction only.
Our last note is to emphasise that this paper is by
no means the first to use (explicitly or implicitly) an
endpoint-like treatment to solve for various radiation pro-
cesses. The best-known endpoint-based treatment is the
Larmor formula for the power radiated by an accelerated
charge, which is commonly used in derivations of other
radiation processes (again, see Jackson [7]). Also, as dis-
cussed in the introduction, there are numerous examples
in the literature where multiple classical radiation pro-
cesses have been described using the same fundamental
underlying physics. What we have done here is to explic-
itly state that all radiation from particle acceleration can
be described in terms of a superposition of instantaneous
accelerations (endpoints), and give a general methodol-
ogy for applying this method to an arbitrary problem.

V. PRACTICAL APPLICATIONS

A. Coherent radio emission from near-surface

cascades in the lunar regolith

Strong pulses of coherent radiation are expected from ex-
tremely high energy (shower energy Es & 1017 eV) par-
ticle cascades in dense media. The mechanism for pro-
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ducing the radiation is the Askaryan effect, whereby a
total negative charge excess arises from the entrainment
of medium electrons through e.g. Compton scattering,
and the loss of cascade positrons via annihilation in flight
[16]. The radiation from the excess electrons travelling
super-luminally through the medium will be coherent at
wavelengths larger than the physical size of the cascade.
The emission is the basis of the ‘Lunar technique’ [17],
a detection method by which the radiation is observed
from ground-based radio-telescopes. Several current ex-
periments utilise the technique [18–20], which has been
proposed to detect both cosmic-ray and neutrino inter-
actions.

The emission from the Askaryan effect is considered to
be coherent Vavilov-Cherenkov radiation, since this is the
mode of radiation upon which Askaryan placed greatest
emphasis in his papers [16], and the emission occurs in
the case of charged particles moving super-luminally in a
dielectric. If indeed this is the case, this would then lead
to a formation-zone suppression of the radiation from
near-surface cascades, such as those produced by cos-
mic rays, which interact immediately upon hitting the
Moon. The reasoning is as follows: consider such a near-
surface cascade, induced by a cosmic-ray interaction near
the regolith (dielectric)-vacuum boundary. It has been
both predicted [21, 22] and observed (qualitatively by
Danos et al. [23], and as a coherent pulse from single
electron bunches by Takahashi et al. [24]) that charged
particles moving in a vacuum near a dielectric boundary
generate Vavilov-Cherenkov radiation in the dielectric.
Analogously, as the distance between the cascade and
the surface tends to zero, the radiation emitted into the
vacuum will approach that from a cascade in the vacuum
itself (the ‘formation-zone’ effect, first considered in this
context by Gorham et al. [25]). If indeed the emission
from the Askaryan effect is Vavilov-Cherenkov radiation,
which is generated by the passage of a particle through a
dielectric, then since vacuum is not a dielectric, the emit-
ted power into the vacuum from cascades nearing the
boundary must tend towards zero. Thus the Askaryan
emission from cosmic rays will be highly suppressed if
the emission is from Vavilov-Cherenkov radiation.

However, the emission from the Askaryan effect is not
in general Vavilov-Cherenkov radiation, because it arises
from finite particle tracks viewed at a large distance. The
emission is therefore of the same character as that pro-
duced in the ‘Tamm problem’ of calculating the ‘Vavilov-
Cherenkov radiation’ from a finite particle track in a di-
electric medium when viewed at a large distance [13].
However, it has been pointed out by Zrelov and Ružička
[26] that Tamm’s 1939 result for the radiation in such
a problem originates from the acceleration/deceleration
at the beginning and end of the track. Thus neither
Tamm’s approximate result, nor the majority of the ra-

diation emitted, is truly Vavilov-Cherenkov radiation9.
Given that the radiation from the Askaryan effect arises
from the coherent superposition of radiation from many
finite particle tracks, the majority of detectable radiation
produced by the Askaryan Effect (in a dense ρ ∼ 1 g/cm3

medium) itself is not coherent Vavilov-Cherenkov radia-
tion at all, but rather coherent radiation from particle ac-
celeration. Macroscopically, the coherent radiation from
microscopic accelerations and decelerations is correctly
viewed as coming from the time-variation of net charge.
Note that a shock wave at the Cherenkov angle will still
be observed (this is also seen in transition radiation, as
previously discussed in Sec. III C). While Askaryan also
mentioned the possibility of coherent transition radiation
and ‘bremsstrahlung’ (radiation from particle accelera-
tion) in his first (1961) paper, the majority of the paper
refers to Vavilov-Cherenkov radiation and coherent ra-
diation from a moving charge excess, rather than to an
accelerated charge excess.

Thus the primary reason why the zero-emission argument
is incorrect is that the radiation due to the Askaryan
Effect does not resemble what is commonly considered
to be ‘true’ Vavilov-Cherenkov radiation as described in
the Frank-Tamm picture [27], which presents a negligi-
ble contribution in the Askaryan effect and indeed will
tend towards zero as a particle cascade develops closer
to a vacuum-interface. Instead of the above arguments,
the use of our endpoint formulation much more easily
resolves the issue: charged particles are accelerated and
decelerated, ergo, the system radiates, and the effect of
the nearby surface from the point of view of a far-field
observer is no worse or more profound than for any trans-
mission problem.

B. Radiation from extensive air showers

A second example is the case of radio emission from ex-
tensive air showers. When an energetic primary particle
interacts in the upper atmosphere, it produces a cascade
of secondary particles which can reach ground level. Ra-
diation at frequencies of a few tens to a few hundreds of
MHz from the electron/positron component of these cas-
cades has been both predicted [16, 29–31] and observed
[32–35], with up until recently only fair agreement be-
tween predictions and measurements. The emitted radi-
ation is often understood in terms of one or more classical

9 While as early as 1939 Tamm’s calculations [13] indicated that
radiation from finite particle tracks would be different to that
from infinite tracks (the 1937 Frank and Tamm result [27]), it is
this latter result, which gives zero emission in a vacuum, which is
better known in the authors’ fields, and commonly accepted to be
‘the’ Vavilov-Cherenkov result. When Tamm’s 1939 calculations
are recalled, they are also treated as giving ‘Vavilov-Cherenkov’
radiation, even though it can be shown [12] that the final result
ignores the Vavilov-Cherenkov component.
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radiation mechanisms, and it can be unclear as to what
extent the mechanisms are different ways of explaining
the same phenomena, or are truly separate effects.
The transverse current model [29] describes the effect
of the magnetic field as causing a macroscopic flow of
charge (a transverse current) due to the different drift
directions of electrons and positrons. The time-variation
of this current in the course of the air shower evolu-
tion produces radiation polarized in the direction denoted
by the Lorentz force. A modern implementation of the
transverse current model, the MGMR model [36], com-
plements the transverse current emission with additional
radiation components, in particular the emission from
a relativistically moving dipole and from a time-varying
charge excess, the latter of which essentially corresponds
to the Askaryan effect. Difficulties can, however, arise in
the separation of these phenomenological “mechanisms”.
For example, a component similar to Vavilov-Cherenkov
radiation would appear even in case of charge-neutral
particle showers in the presence of a magnetic field, be-
cause the magnetic field would induce a sufficient spatial
separation of the positive and negative charges for the
electron and positron contributions not to cancel at the
frequencies of interest [37].
In contrast to such macroscopic descriptions, microscopic
Monte Carlo models calculate the radio emission as a su-
perposition of radiation from individual charges being de-
flected in the geomagnetic field. This approach, although
originally inspired by the notion of ‘geosynchrotron’ ra-
diation [38, 39], does in fact not need the assumption
of any specific emission mechanism. Monte Carlo codes
for the calculation of radio emission from extensive air
showers have been realized by different authors in var-
ious time-domain implementations [40–43]. It recently
turned out, however, that all of these implementations
(and others) in fact treated the emission physics incon-
sistently, thereby neglecting radio emission produced by
the variation of the number of charged particles during
the course of the air shower evolution. With the endpoint
formalism described here, a new and fully consistent im-
plementation of a microscopic modelling approach has
been realized in the REAS3 code [11]. The universality
of the endpoint formalism ensures that the radio emission
from the motion of the charged particles is predicted in
all of its complexity. In case of the REAS3 code, this
becomes evident since both the “transverse current” ra-
diation polarized in the direction of the Lorentz force
and the radially polarized “charge excess” emission is
reproduced automatically and in good agreement with
macroscopic calculations [44]. The importance of a con-
sistent treatment taking into account also the radiation
due to the variation of the number of charged particles

within an air shower is obvious when comparing results
obtained with REAS3 and results obtained by the for-
mer implementation in REAS2.59. This is illustrated
for a specific example in Fig. 9 for the radio emission
received by an observer 200m south of the core of a ver-
tical extensive air shower with a primary particle energy
of 1017 eV. The pulse shapes, the pulse amplitudes and
the frequency spectra differ significantly. For a detailed
comparison of REAS3 and REAS2 we kindly refer the
reader to [11]. The next step in improving the simula-
tions will be the inclusion of the refractive index of the
atmosphere, which is slightly different from unity and
varies with atmospheric density.

VI. CONCLUSION

We have presented an ‘endpoint’ methodology for mod-
elling the electromagnetic radiation produced by the ac-
celeration of charged particles. The approach is uni-
versally applicable and is especially well-suited for nu-
merical implementation. Its universality has been illus-
trated by reproducing prototypical radiation processes
such as synchrotron radiation, Tamm’s description of
Vavilov-Cherenkov radiation, and transition radiation in
the frequency- and time-domains. The method’s true
strength, however, lies in modelling more complex (in
other words “realistic”) situations in which such indi-
vidual prototypical radiation mechanisms can no longer
be easily disentangled. As demonstrated in Sec. V, the
‘endpoint’ methodology can for example be used to solve
outstanding problems in the field of high-energy particle
astrophysics. In conclusion, we would like to point out
that we believe the ‘endpoint’ approach to be an impor-
tant way of viewing radiation processes which is useful at
both an undergraduate student level, and also for career
researchers. Except perhaps for those researchers work-
ing constantly with fundamental electromagnetic theory,
we hope this methodology will increase the reader’s un-
derstanding of radiative processes by providing a simple
and unified approach.
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