
General description of polarization in lidar using

Stokes vectors and polar decomposition of Mueller

matrices

Matthew Hayman,1,∗ Jeffrey P. Thayer,2

1National Center for Atmospheric Research, Advanced Study Program, Boulder, CO,

80307, USA

2University of Colorado, Department of Aerospace Engineering Sciences, Boulder,

Colorado, 80309, USA

∗Corresponding author: mhayman@ucar.edu

Polarization measurements have become nearly indispensible in lidar

cloud and aerosol studies. Despite polarization’s widespread use in lidar,

its theoretical description has been widely varying in accuracy and com-

pleteness. Incomplete polarization lidar descriptions invariably result in

poor accountability for scatterer properties and instrument effects, reducing

data accuracy and disallowing the intercomparision of polarization lidar

data between different systems. We introduce here the Stokes Vector Lidar

Equation (SVLE) which is a full description of polarization in lidar from

laser output to detector. We then interpret this theoretical description in the

context of forward polar decomposition of Mueller matrices where distinct

polarization attributes of diattenuation, retardance and depolarization are

elucidated. This decomposition can be applied to scattering matrices, where

volumes consisting of randomly oriented particles are strictly depolarizing,

while oriented ice crystals can be diattenuating, retarding and depolarizing.

For instrument effects we provide a description of how different polarization

attributes will impact lidar measurements. This includes coupling effects

due to retarding and depolarization attributes of the receiver which have

no description in scalar descriptions of polarization lidar. We also describe

how the effects of polarizance in the receiver can result in non-orthogonal

polarization detection channels. This violates one of the most common as-

sumptions in polarization lidar operation. c© 2011 Optical Society of America

OCIS codes: 010.3640, 260.5430.
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1. Introduction

Polarization lidar has long been used to characterize and study the thermodynamic phase,

shape and composition of atmospheric aerosols and clouds [1–4]. It has been of common

practice for systems to transmit a linearly polarized laser pulse into the atmosphere and

segment the parallel and perpendicular planes of the backscattered light into two receiving

channels via an analyzer. This lidar configuration has led to the widely used depolarization

ratio, identified typically by the symbol δ, which is physically related to a particle’s shape

or thermodynamic phase under specific assumptions of the scattering matrix and system

properties.

Although of significant value, the rather simplified approach of using the depolarization

ratio to describe physical properties of the scatterer has often neglected the vector nature of

light by replacing it with its approximate scalar counterpart with no physical construct [5].

Consequently complexities arise in the interpretation of measurements that cannot be ade-

quately resolved by the imposed simplification. Without full specification of the lidar opera-

tion characteristics (transmit polarization, full description of measurement channels, specific

polarization effects in the instrument, etc) and the scattering matrix under interrogation, the

depolarization ratio data only indicates a change in polarization state. This leads to depolar-

ization ratio estimates that are potentially contaminated or at least specific to the system,

and limits the ability to examine the link between polarization and geographic location or

meteorological season recorded by another polarization lidar [6].

Some work has addressed these issues by measuring full backscattered Stokes vectors

[7, 8] while others have fully adopted a Mueller matrix description of scattering [5, 9–14].

To our knowledge, no end-to-end polarization theory has been presented as a baseline for

polarization lidar design and analysis that provides a framework for more accurate and

absolute estimates of scattering properties through polarization. Thus we introduce here the

Stokes Vector Lidar Equation (SVLE), a fully general polarization description of lidar using

Stokes vectors to represent the polarization state of light and Mueller matrices to describe

the scatterer, instrument and transmission path.

Polar decomposition (PD) of Mueller matrices has successfully been used to help elucidate

physical meaning from polarization measurements in characterization of silicon structures

[16], monitoring changes in tissues [17], and detecting cancerous oral lesions [18]. Included

in this work is a discussion on polarization effects described using forward-PD [15], their

impacts, and how they are exhibited by atmospheric scatterers and the optical system. Two

different scattering scenarios of randomly oriented and oriented atmospheric scatterers are

investigated in this context to demonstrate the utility of the Stokes Vector Lidar Equation

in interpreting the polarization measurements.
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2. The Stokes Vector Lidar Equation

A complete description of polarization in lidar requires the use of conventional polarization

theory as described in optics texts [19]. The light under consideration may be partially

polarized and optical systems have the capability to change both the polarization state and

degree-of-polarization (DOP) of the incident light. Thus, we use Stokes vectors to describe

the polarization state of light. The general form for a Stokes vector is given by

~S =


S0

S1

S2

S3

 , (1)

where S0 is the total intensity of the light, S1 is the difference in optical power between

the horizontal and vertical modes, S2 is the difference in optical power between the ±45◦

modes and S3 is the is the difference in optical power between right and left hand circular

polarizations modes. Alternatively, the same Stokes vector may also be written

~S = S0


1

p cos 2ψ cos 2χ

p sin 2ψ cos 2χ

p sin 2χ

 , (2)

where ψ is the linear rotation angle of the polarization state, χ is the ellipticity angle of the

polarization state, and p is the degree-of-polarization (DOP) which is the fraction of light

that is polarized and often calculated

p =

√
S2

1 + S2
2 + S2

3

S0

. (3)

The generalization in Eq. (2) proves to be particularly useful for optimizing the transmitted

polarization for specific optical systems or scattering problems. The projection of a nor-

malized Stokes vector onto the Poincaré Sphere is shown as a function of the parameter

definitions in Eq. (2) in Figure 1. The orientation of the Stokes vector in Poincaré space is

given by the angle arguments 2ψ and 2χ, the sphere radius is 1 and the Stokes vector length

is p.

Interactions along the optical path are described by Mueller matrices which may modify

the light’s polarization state and DOP. Thus, a complete description of polarization through

a lidar system must be expressed in terms of Stokes vectors and Mueller matrices along the

optical path. This description, which we call the Stokes Vector Lidar Equation (SVLE), can
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Fig. 1. Poincaré Sphere representation of a normalized Stokes vector. The

sphere’s radius is 1 and the Stokes vector length is the DOP p. The orientation

of the Stokes vector is given by the rotation and ellipticity angles ψ and χ

respectively. Linear polarizations are on the equator of the sphere and circular

at the poles. Each meridian corresponds to a specific linear orientation. A

Stokes vector of zero length (on the origin) is completely unpolarized.
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be written as

~SRX(R) = MRX

[(
G(R)

A

R2
∆R

)
Tatm(~ks, R)

×F(~ki, ~ks, R)Tatm(~ki, R)MTX
~STX + ~SB

]
.

(4)

In Eq (4), ~SRX is the received Stokes vector, ~STX is the Stokes vector describing the laser

polarization state, MTX is the Mueller matrix description of the transmitter and includes the

polarization state generator, Tatm(~ki, R) is the Mueller matrix description of the atmospheric

transmission to the scatterer along incident wave vector ~ki over the range R, F(~ki, ~ks, R) is

the scattering phase matrix (or Mueller matrix) of the scattering medium at range R for

incident and scattered wave vectors ~ki and ~ks respectively, ∆R is the integration range bin,

A is the collection aperture, G(R) is the geometrical overlap function, MRX is the Mueller

matrix description of the receiver, and ~SB is the Stokes vector of the background at the input

of the receiver. In all cases the average scattering and system efficiencies may be found in

the (1,1) element of the respective Mueller matrix and intensity or photon counts is carried

in the first element of the Stokes vector.

For simplicity, we assume in this work that Tatm may be represented by a scaled identity so

that it has no impact on the transmitted polarization state. This is generally the case when

interrogating single scattering [20] which is assumed throughout this work. This includes

instances where single scattering observations are made through an optically dense layer [14].

It is important to note that for most polarization lidar, the scattering matrix is the term

under investigation. The received Stokes vector is only an intermediary for analyzing the

scattering medium. It is clear from Eq. (4) that we should select ~STX and measure ~SRX in

such a way to provide useful information about F(~ki, ~ks, R). As such, any data products given

through this analysis would be elements of the scattering phase matrix which is independent

of instrument operation.

Even though F(~ki, ~ks, R) is the target of characterization by the lidar system, it should be

clear from Eq. (4) that the matrix probed by the transmit polarization is not strictly that

of the scatterer. This configuration of polarization lidar can only probe the total product of

all the Mueller matrices along the optical path. For this generalized description, one matrix

cannot be isolated from the others, and the path must be evaluated as a whole.

The description provided in Eq. (4) relates the transmitted to received polarization through

the lidar path. However, polarization cannot be directly measured and its characterization

must consist of a series of inherently scalar measurements. Thus, the description of measure-

ments performed by the lidar requires an additional operation. Generally this involves using

an analyzer to project the received polarization onto an axis of the Poincaré Sphere and

measure the resultant intensity. This process is described by an output matrix which relates

the measured intensity or photon counts on the receiver channels to the received polarization.
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~N = O~SRX , (5)

where

~N =

 N1

N2

...

 , (6)

and Nn is the photon counts on the nth channel and O is the output matrix corresponding

to those measurements (generally analyzer/polarizer matrices) and written

O = o

 P1

P2

...

 , (7)

where Pn is the nth projection matrix corresponding to the nth channel and

o =

 η1 0 0 0 0 0 0 0

0 0 0 0 η2 0 0 0 · · ·
...

 , (8)

where ηn is the nth channel detector efficiency. This matrix o denotes that after projection,

only the first element of the Stokes vector is measured. For N measurements, o is Nx4N. In

the case of non-polarization backscatter lidar, O simplifies to
[
η 0 0 0

]
.

For instances where the polarization lidar measures the parallel and perpendicular com-

ponents of the backscattered light, ~N becomes

~N =

[
N||

N⊥

]
, (9)

and the output matrix is

O = o

[
P||

P⊥

]
(10)

where P|| and P⊥ are 4x4 Mueller matrix descriptions of parallel and perpendicular polarizers

in the receiver respectively and o transforms the resulting eight element Stokes vector into

the two measured photon counts,

o =

[
ηD|| 0 0 0 0 0 0 0

0 0 0 0 ηD⊥ 0 0 0

]
, (11)

where ηD|| and ηD⊥ are the detector efficiencies of the parallel and perpendicular channels.

Thus the Stokes Vector Lidar Equation provides an end-to-end theoretically complete po-

larization description, giving full consideration to polarization effects in all components of the
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optical path and how they impact the measurements of the lidar system. This analysis tool

is critical for understanding the systematic error and measurement attributes of polarization

lidar systems. Additionally, some non-polarization backscatter lidar systems may also need

to perform this analysis if their measurements demonstrate polarization dependence [21].

3. Forward Polar Decomposition

Polar decomposition (PD) allows a Mueller matrix to be separated and represented as a

product or sum of its fundamental physical polarization properties. Though there are many

ways to perform and represent PD [22–25], we provide here an analysis of Mueller matrices in

the context of forward-PD [15]. Through this analysis, a Mueller matrix can be decomposed

into the product of three fundamental polarization effects: diattenuation, retardance and

depolarization. The total Mueller matrix is the product of the matrices describing those

effects.

M = M∆MRMD, (12)

where M is an arbitrary true Mueller matrix, M∆ is the depolarizing component of the

Mueller matrix, MR is the retarding component and MD is the diattenuating component.

These three polarization effects are fundamentally unique in relation to each other. Thus

approaches necessary to measure and account for them can also be quite different. We will

provide a brief description of each effect here as it is important to understand the differ-

ence between some of these effects and their potential consequences in atmospheric lidar

applications.

3.A. Diattenuator

A diattenuator is an optical element with polarization dependent efficiency and a corre-

sponding preferential output polarization. In the context of polarization lidar, its presence

in the scattering phase matrix means the volume scatters one polarization more strongly

than another. In an optical system, its presence means the system has better transmission

efficiency for one polarization than another.

A Diattenuator is fully described by transmission of unpolarized light Tu and its diatten-

uation vector ~D, taking the form [15],

MD = Tu

[
1 ~DT

~P mD

]
, (13)

where ~D is the 3 element diattenuation vector, and ~P is the polarizance which for a ho-

mogenous diattenuator ~P = ~D. The matrix mD is a 3x3 submatrix fully described by the

diattenuation vector through [15]

mD =
√

1−D2I +
(
1−

√
1−D2

)
D̂D̂T , (14)
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where D is the magnitude of the diattenuation vector, D̂ is the normalized diattenuation

vector and I is a 3x3 identity matrix.

Due to their polarizance, diattenuators generally modify the polarization state of incident

radiation, resulting in deformation of the Poincaré Sphere [26]. Outgoing polarizations will

bend toward the polarizance vector in Poincaré space. This polarizance can also change the

DOP of the incident radiation [27,28].

Diattenuators are manifested in filters with non-normal incidence angles, folding mirrors,

beam samplers and splitters, and polarizers. Though the diattenuation vectors of most in-

dividual optics in a lidar system are linear, the total system diattenuation vector may not

correspond to linear polarizations.

3.B. Retarder

A retarder is a wave plate with an arbitrary fast axis that imposes a phase shift Γ between

orthogonal polarization modes. This causes a rotation of the Stokes vector on the Poincaré

sphere about the normalized retardance vector R̂ [26]. For individual wave plates, R̂ corre-

sponds to linear polarizations, but in general this is not the case. The combination of two or

more linear retarders generally result in a total R̂ that corresponds to elliptical polarizations.

The retarder Mueller matrix takes the form [15]

MR =

[
1 ~0T

~0 mR

]
, (15)

where ~0 is a three element zero vector and mR is a 3x3 submatrix of MR acting as a rotation

matrix of angle Γ about the axis of its eigenvector R̂.

In polarization lidar systems, retardance will modify the polarized state of incident light,

but unlike the diattenuator, it will preserve the degree-of-polarization and orthogonality

of polarizations states. Generally a retarder will convert linear polarizations into elliptical,

making complete acceptance or rejection of polarization modes impossible with a linear

polarizer.

Retardance commonly appears when lidar systems use folding mirrors. Newtonian tele-

scopes are notorious for demonstrating this behavior due to the folding secondary mirror.

Beam steering mirrors can also introduce retardance on the transmit side, resulting in ellip-

tical transmit polarizations.

3.C. Depolarizer

Depolarizers are Mueller matrices describing nondeterministic polarization systems [29]. In-

cluded in the general set of these matrices are what we would more commonly think of as the

depolarizers that decrease the degree-of-polarization of incident light. The most general form
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of a depolarization matrix may exhibit polarizance. The most general form for a depolarizer

is written [15]

M∆ =

[
1 ~0T

~P m∆

]
, (16)

where ~P is the polarizance vector describing the exit polarization state of unpolarized in-

cident light and m∆ is a 3x3 submatrix of the matrix M∆. In the most general case, a

depolarizer has nine independent terms. Three terms define the polarizance vector. Three

define the depolarization or eigen values of the submatrix m∆. Finally three terms define

the 3-dimensional orthonormal basis set of the depolarization terms or eigen vectors of m∆.

Because the basis vectors of Poincaré space and m∆ are, by definition, linearly independent,

there always exists some vector basis where m∆ may be diagonalized so that [30]

m∆ = T−1

 1− d1 0 0

0 1− d2 0

0 0 1− d3

T (17)

where dn is the depolarization corresponding to the nth eigen vector of m∆ with 1 − dn

as the corresponding eigen value of m∆ and T is the transformation matrix between the

conventional S1, S2, S3 coordinate system to the frame defined by the eigen vectors of m∆.

In Poincaré space the eigen values of m∆ shorten the incident Stokes vector while main-

taining a constant radius on the sphere [28]. When all nonzero elements of m∆ on the

diagonal are equal, the depolarizer is isotropic and the remaining outgoing polarized light

maintains the same state as the input. However, more general anisotropic depolarization and

the presence of polarizance ~P can cause the outgoing polarization state to change.

When diattenuation and retarding effects add incoherently, depolarization occurs. Thus,

depolarizers exist as a result of averaging over randomness. These averages can include optical

paths, particle orientation, size and shape and temporal variability of the optical path. While

depolarizers are difficult to generalize, their presence often act as indicators about statistical

variation in a sample volume.

Depolarization can exist in optical systems such as a receiver where mirrors reflect a range

of incident angles. This range of angles results in variation of phase shift upon reflection,

and the detected light will have a distribution of polarization states. In these cases, the total

received Stokes vector is the sum of all individual Stokes vectors and the DOP will likely be

reduced [31].

4. The Scattering Matrix

The types of polarization effects exhibited by a scattering volume are dictated by the dis-

tributions of size, shape, composition, orientation and symmetry of the particle species as
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well as the lidar’s polarization operation state. For purposes of this work, we generally as-

sume particle symmetry and focus on orientation preference. We also only consider single

scattering and assume the lidar is collecting backscattered radiation from a volume of such

scatterers. While the SVLE does not require these assumptions, they greatly simplify the

nature of scattering matrices which apply to most lidar applications.

4.A. Randomly Oriented Particles

The scattering phase matrix of randomly oriented, axially symmetric scatterers, have been

reported in great detail [3,5,9,32]. Their backscatter phase matrix may be generally written

F(π) = β


1 0 0 0

0 1− d 0 0

0 0 d− 1 0

0 0 0 2d− 1

 , (18)

where β is the volume backscatter coefficient and d is referred to here as the depolarization of

the scattering medium with allowable values between 0 and 1. If the incident polarization is

linear, d is the fraction of polarized light that is depolarized by the scattering process. Note

that the incident and scattered wave vectors have been replaced with the backscatter angle

π. This is because the medium is macroscopically isotropic and its scattering properties are

not a function of the specific direction of incidence.

The scattering matrix for randomly oriented axially symmetric particles shown in Eq.

(18) is a pure depolarizer with no polarizance. The eigen vectors of m∆ align to S1, S2,

and S3. This matrix represents most common scattering cases in the atmosphere. The nor-

malized matrix can be fully measured using conventional perpendicular/parallel polarization

measurements that depend on the selected polarization of operation. For an arbitrary polar-

ization, d may be calculated

d =
4N⊥(

N⊥ +N||
)
(3− cos 4χL)

, (19)

where N⊥ is the signal measured on the polarization channel perpendicular to the transmit

polarization, N‖ is the signal measured on the channel parallel to the transmit polariza-

tion and χL is the ellipticity angle of the transmitted and received polarizations (for linear

polarizations χL = 0 and circular polarizations χL = π/4).

Note that the scattering matrix depolarizes circular polarizations more than linear. As a

result, an arbitrary incident polarization will undergo a larger decrease in degree of circu-

lar polarization (DOCP) than degree of linear polarization (DOLP). For elliptical incident

polarizations, the scattered polarized component will not be the same state as the incident

polarized component. However for linear polarizations, (ignoring the π phase shift due to
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Fig. 2. (Color online) Poincaré Sphere representation of backscattered polariza-

tion states from random oriented scatterers with d = 0.3. The incident circular,

linear and elliptical Stokes vectors (hollow blue, red and green respectively) are

shortened after passing through the depolarizer (solid arrows of corresponding

colors) while the sphere surface maintains constant radius. Totally linear or cir-

cular polarized input states have the same output polarized state, but circular

components depolarize more than linear, so the elliptical polarization changes

state. The π phase shifts usually associated with backscattering have been

omitted for easier comparison of the incident and scattered Stokes vectors.

reversal of the wave vector) the polarized state will be preserved. Figure 2 shows how the

scattered polarization states change for an incident elliptical, linear and circular polarization.

4.B. Oriented Particles

Unlike their randomly oriented counterparts, oriented scatterers may exhibit a variety of

polarization effects under backscattering conditions. The backscatter matrix of horizontally

oriented scatterers, such as those sometimes observed in cirrus clouds has the form [10,32]

F(~ki,−~ki) =


f11 f12 0 0

f12 f22 0 0

0 0 f33 f34

0 0 −f34 f44

 , (20)

where the scattering medium is not macroscopically isotropic so the backscattering matrix

is a function of the incident wave vector.

If we assume particles will orient within the horizontal plane and the lidar is pointing
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Fig. 3. Graphical depiction of angular terms for scatterers oriented in the

horizontal plane. The lidar tilt angle α is measured relative to zenith (z axis)

and the polarization angle ψL is measured relative to the linear polarization

that lies in the horizontal plane (s axis).

along zenith/nadir (~ki is parallel to the vertical z-axis), scattering symmetry between all

polarization planes gives a scattering matrix that simplifies to the depolarizing form in

Eq. (18). In this case there is no distinction between the phase matrix form representing

horizontally oriented and randomly oriented scatterers.

If the lidar does not point along zenith, diattenuating and retarding polarization effects

will be exhibited based on the lidar/scatterer geometry. For a geometric representation of a

tilted lidar with horizontally oriented scatterers, see Figure 3. The scatterers are aligned in

the horizontal plane depicted. In this work, all linear polarization angles, ψL, are measured

with reference to the s-polarization (the linear polarization that is in the horizontal plane).

The directional cosine between the vertical z-axis and the incident wave vector ~ki is the lidar

tilt angle α.

With the scattering matrix expressed in Eq. (20), we assume that Tatm, MTX and MRX

are scaled identities and define ~STX using Eq. (2) with χL = π
4

and p = 1. The detection

polarization channels are described by perfect circular analyzers so the resulting measured

circular depolarization ratio takes the form

δc =
f11 − f44

f11 + f44

. (21)

Applying the same assumptions as above, but now setting χL = 0 and using linear ana-
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lyzers in the receiver aligned to and orthogoanl to the transmitted polarization, we also find

the linear depolarization ratio is given by

δl =
f11 − f22 cos2 2ψL − f33 sin2 2ψL

f11 + 2f12 cos 2ψL + f22 cos2 2ψL + f33 sin2 2ψL

, (22)

where the quantity is a function of several elements in the phase matrix, and the transmitted

polarization angle ψL.

Note that the linear depolarization ratio is a function of linear diattenuation (f12) and

possible retarding and depolarizing terms (f33 and f22) [15]. Also, the circular polarization

ratio may contain depolarizing and retarding terms (f44). Thus, although δ contains the word

“depolarization”, in the case of oriented scatterers, it is not only related to the scatterer’s

effect on the DOP and may be a measure of a combination of diattenuation, retardance and

depolarization.

A notable conclusion from Eq. (21) and (22) is that the depolarization ratio does not

make any distinction between scattering matrix types. Nor can it distinguish polarization

effects exhibited by the matrix. It only allows us to determine if the polarization changed.

Where with randomly oriented scatterers, the depolarization ratio is only dependent on the

ellipticity of the incident and detected polarizations, oriented scatterers also have dependence

on the particular linear polarization plane, ψL. Though still useful, the depolarization ratio

is an ambiguous (non-unique) term when the transmitted polarizations and form of the

scattering phase matrix are not specified.

Oriented scatterers can also present an issue for non-polarization backscatter lidar. The

meaning of backscatter measurements is not entirely clear when we consider diattenuating

scatterers (f12 6= 0), because the amount of light backscattered is a function of the trans-

mitted polarization. The volume backscatter coefficient should be an intrinsic property of

the medium and not a function of the instrument used to interrogate it. We use a conven-

tion where the volume backscatter coefficient is equal to the (1,1) element of the volume

scattering phase matrix (β = f11). However, if the lidar transmits linear polarization, the

backscattered intensity or photon counts from a population of oriented ice crystals is not

proportional to the volume backscatter coefficient

NRX ∝ f11 + f12 cos 2ψL, (23)

where NRX is the received photon counts on the non-polarization backscatter lidar. Only if

the transmit polarization is selected to be ±45◦ is the received photon count proportional

to the volume backscatter coefficient.

Because of the different polarization effects exhibited by oriented scatterers, backscattered

polarized components are generally not the same as the incident state. In Figure 4, we have

plotted the same input polarizations used in Figure 2 with the resulting scattered Stokes
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Fig. 4. (Color online) Poincaré Sphere representation of oriented scatterers

with matrix given in [10]. The incident circular, arbitrary linear and arbitrary

elliptical Stokes vectors (hollow blue, red and green respectively) are signifi-

cantly changed after scattering (solid arrows of corresponding colors). Due to

a combination of polarization effects, none of the scattered polarized states

resemble the incident polarizations. The π phase shifts usually associated with

backscattering have been omitted from this analysis.

vectors from an oriented scattering matrix. The matrix used in this example is reported

in [10] as part of an “atypical but interesting case” and given as

F(~ki,−~ki) =


1 −0.51 0 0

−0.51 0.89 0 0

0 0 0.513 −0.08

0 0 0.08 0.40

 (24)

The π phase shift resulting from the change in propagation direction has been removed for

easier interpretation of the plot. Note that in this case, none of the input polarizations have

the same polarized output. In all three input cases, polarizing, retarding and depolarizing

effects in the scattering matrix result in elliptical, partially polarized output.

Unlike randomly oriented particles, the oriented backscatter matrix cannot be attributed

to any single polarization effect. However, we can apply forward-PD to the matrix in Eq. (20)

to determine how different polarization effects contribute to the scattering matrix terms [15].

The scattering phase matrix is composed of a combination of diattenuating, retarding and

depolarizing terms

F(~ki,−~ki) = f11M
F
∆MF

RMF
D, (25)
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where f11 denotes that all decomposed matrices are normalized and MF
∆, MF

R, and MF
D

are the depolarizing, retarding and diattenuating matrices of the backscatter phase matrix

respectively. Comparing the form of the scattering matrix in Eq. (20) to that of a linear

diattenuator and retarder, we see that the retarding and diattenuating axes are aligned (f12

corresponds to diattenuation between s- and p-polarizations, f34 corresponds to retardance

between s- and p-polarization axes). Thus, by applying the matrix forms in Eq. (13) and

(14), the scatterer diattenuation matrix is given by

MF
D =


1 f ′12 0 0

f ′12 1 0 0

0 0
√

1− f ′12
2 0

0 0 0
√

1− f ′12
2

 , (26)

where f ′12 is the normalized (1,2) element of the scattering matrix and also its diattenuation.

The retarder component of the scattering matrix is then given by the form of a linear wave

plate aligned to s- and p-polarizations. The matrix evaluates to

MF
R =


1 0 0 0

0 1 0 0

0 0 cos ΓF − sin ΓF

0 0 sin ΓF cos ΓF

 , (27)

where ΓF is the phase shift imposed by the scatterer’s retarding matrix.

The diattenuation and retardance matrix combine to define a homogeneous scattering ma-

trix. In the presence of a single scatterer, there is no depolarizing effect. However, because

the time averaged volume matrix is the sum of many scattering matrices, depolarizing effects

must generally be included [33]. The depolarization matrix from Eq. (16) can be reduced

to contain five terms. In order to maintain symmetry between the (1,2) and (2,1) terms in

Eq. (20), polarizance must exist along s- or p-polarizations. This means the (2,1) element of

the depolarization matrix is not generally zero. In Eq. (26), (27) and the total volume phase

matrix in Eq. (20) there are no off diagonal terms coupling between the S1 element and the

other two Stokes vector elements. Thus, MF
∆ cannot contain any off diagonal terms coupling

the s- and p-polarizations and the other two Stokes elements. As a result, [ 1 0 0 ]T must

be an eigenvector of m∆. There is, however, cross coupling due to retardance between the

circular and ±45◦ Stokes vector terms. We must account for this to contribute to depolariz-

ation in the assumed form of the depolarization matrix. This results in symmetric, non-zero

(3,4) and (4,3) elements in the depolarization matrix. Thus the general assumed form of the
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depolarization matrix becomes

MF
∆ =


1 0 0 0

P1 1− d1 0 0

0 0 1− (d3 − dx cos2 θx)
dx

2
sin 2θx

0 0
dx

2
sin 2θx 1− (d2 + dx cos2 θx)

 , (28)

where P1 is the polarizance of the depolarization matrix along s- and p-polarizations, d1 is

the depolarization along s- and p-polarizations, d2 is the depolarization along the eigenvector

closest to ±45◦, d3 is the depolarization along the eigenvector closest to circular polarizations,

and 2θx is the angle in Poincaré space between the eigenvectors of m∆ and the S2 and S3

basis vectors. Thus when θx is not an integer multiple of π/2, there are off diagonal terms

in mF
∆. Finally dx is a depolarization cross talk term that is strictly a function of the other

depolarizations and is given by

dx = d3 − d2. (29)

By evaluating Eq. (25) and imposing the symmetry requirement between the (1,2) and (2,1)

elements exhibited by the total volume phase matrix in Eq. (20), we find the polarizance in

Eq. (28) is not independent and is given as

P1 = d1f
′
12. (30)

We then also apply the requirement for antisymmetry between the (3,4) and (4,3) elements

(f34 = −f43) shown in Eq. (20). This gives a simple relation between angle of the eigen axes

in the depolarizer θx and the retardance of the scattering matrix ΓF

θx =
ΓF

2
. (31)

The volume scattering phase matrix given in Eq. (20) for oriented scatterers has six inde-

pendent terms. Thus, forward-PD also gives six independent terms corresponding to physical

polarization effects: f11 (related only to backscatter intensity), f ′12 (diattenuation), ΓF (re-

tardance), d1, d2, and d3 (all three: depolarization).

Though both realizations of the scattering phase matrix have six independent terms, the

expression of these terms appear in different matrix elements, allowing us to isolate those

polarization attributes we are interested in and offering greater flexibility in lidar operation.

Also, PD terms are likely to be more physical in relation to relevant scatterer parameters

[16,34]. Thus, we may not have to measure the complete phase matrix to determine a specific

physical attribute of the volume.
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5. Instrument Effects

The polarization matrices described in Section 3 can also be exhibited in optical systems

where they generally corrupt and introduce error to the polarization lidar measurements.

Error dependencies and successful error correction and calibration techniques will often be

different with different polarization effects in both the scatterer and the instrument.

In the analysis introduced below, we will assume that all scattering volumes under interro-

gation are those of randomly oriented axially symmetric scatterers, so their scattering matrix

is given by Eq. (18) [5,9]. We will assume that the transmit polarization is well known, and

consider only polarization effects in the receiver.

5.A. Depolarization

Most depolarization effects in an optical system only decrease the DOP of received light. The

presence of polarizance in an optical system will be discussed in detail with diattenuation.

There are two potential cross talk effects from depolarizers. First, the depolarized component

of light from the instrument will split evenly between all possible orthogonal polarizers,

resulting in overestimates of depolarization. If there is no substantial diattenuation in the

receiver system, this effect can be corrected using post processing error calibration and

correction algorithms [35]. Also, when the depolarizer is anisotropic and its eigen vectors

do not align to the polarizations of operation, the polarized state will change (as previously

shown for randomly oriented scatterers in Figure 2).

As long as the transmitted and scattered polarization states do not change, depolarization

can be corrected by realigning the polarizer in the receiver to the polarized state after the

optical system. Presumably, this occurs in polarization optimization anyway, but it is impor-

tant to note that systems which change the transmit polarization state may be susceptible

to variable polarization coupling issues from anisotropic receiver depolarization. When alti-

tudes of known depolarization exist in the recorded profiles, this effect can still be removed

in data using post processing calibration and correction described in [35].

5.B. Retardance

An arbitrary retarder may be decomposed into a combination of linear retarder (a linear wave

plate) and rotator [22, 36, 37]. The rotation effect of a system is rarely of concern, because

presumably, the receiver polarizer angles are already optimized to best accept and reject

the perpendicular and parallel polarizations based on atmospheric returns. The existence of

linear retardance however presents an issue because it generally makes linear and circular

polarizations elliptical. For linear polarizations, the resultant ellipticity angle is given [38]

sin 2χ = sin 2θ sin Γ, (32)
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where χ is the ellipticity angle of the exit polarization, θ is the rotational angle between the

incident polarization and retarder fast axis, and Γ is the retarder’s phase shift. With the

received polarization in an elliptical state, linear polarizers cannot be aligned to completely

accept or reject the received light. Retarders do not change DOP, but the ellipticity of the

received light will appear as such when observed in common two polarization measurement

schemes. This apparent depolarization results in overestimation of atmospheric depolariz-

ation.

It is important to be aware that the resultant polarized output state of a retarder is dictated

by the input supplied to it. Thus error from retarding effects measured at one polarization

state is not necessarily a baseline minimum error. Error contributions can be avoided in lidar

using linear polarizations by only operating in the polarization plane corresponding to the

axis of the linear wave plate. The lidar’s operation may either be rotated to this state using

half wave plates, or the system’s fast axis can be rotated to the lidar’s plane of operation using

a quarter wave plate. This fast axis is not necessarily an eigen polarization of the retarder. It

is a polarization where a linear input polarization results in a linear output polarization (but

not necessarily the same linear polarization). Hardware solutions also exist for lidars that

transmit and receive multiple polarization states. A compensator composed of two quarter

wave plates can be constructed as the inverse of the optical system’s retarding matrix [39].

This allows operation in all polarizations without error contributions from retarding effects.

Finally, if receiver diattenuation is not substantial, post processing error calibration and

correction algorithms can also be used to remove retarding effects [35].

Thus retardance, though a common and significant error contributor to polarization lidar

systems can be corrected and avoided using a variety of polarization correction schemes.

5.C. Diattenuation and Polarizance

In general we describe diattenuators as elements with polarization dependent efficiency. Thus,

when diattenuation is present in the receiver, one polarization channel has a different effi-

ciency than the other. This issue impacts backscatter lidar even if it does not analyze polar-

ization [21]. In such cases, the polarized light will see one optical efficiency, while depolarized

light will see another. Thus measured backscattered signal is dependent on the polarization

properties of the scatterer. In the case of backscatter lidar the easiest way to make receiver

throughput polarization independent is to transmit a linear polarization at 45◦ relative to

(orthogonal in Poincaré space) the system’s linear diattenuation vector. This removes any

dependency on scatterer depolarization properties in the backscatter measurements.

Unlike the non-polarization lidar case, operating at 45◦ to the system diattenuation vector

makes a poor solution in polarization lidar. Generally, aligning the polarization of opera-

tion to the diattenuation vector is the lesser of two evils where one channel’s output must
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be scaled by the difference in optical efficiencies. This is because a pure diattenuator also

exhibits polarizance at the same orientation and magnitude as its diattenuation vector (for

pure diattenuators ~D = ~P ). This effect draws polarizations onto the polarizance vector.

Because this operation is not a linear rotation, orthogonal polarizations will not remain so

after passing through a matrix containing polarizance. The only exception to this is when

the polarizations are aligned to, and directly orthogonal to (opposite in Poincaré space),

the polarizance vector. If this condition is not met, two polarization channels that are by

themselves orthogonal, may not appear orthogonal to backscattered light. That is, the po-

larization of maximum in transmission through one receiver polarization channel will not

necessarily correspond to a minimum in transmission through the other.

This effect can be seen by multiplying a diattenuator matrix by the polarizer matrices of

the two channels. If we assume the diattenuator is linear, its polarizance vector is

~PRX = |~PRX |

 cos 2θP

sin 2θP

0

 , (33)

where θP is the linear rotation angle of the polarizance vector relative to the parallel channel

and |~PRX | is the magnitude of the polarizance vector. The diattenuation matrix of the optical

system is then given by Eq. (13) when ~DRX = ~PRX . The total parallel analyzer, as it appears

to the backscattered light before entering the receiver, is

MD‖ = P‖MD(θP , |~PRX |), (34)

where P‖ is a linear analyzer parallel to the transmit polarization, and the total perpendicular

analyzer is

MD⊥ = P⊥MD(θP , |~PRX |), (35)

where P⊥ is a linear analyzer perpendicular to the transmit polarization. The angle between

the polarizers performing the measurement can be determined using the dot product of their

respective diattenuation vectors describing the two channels in Eq. (34) and (35)

∆θpol =
1

2
arccos

(
D̂RX⊥ · D̂RX‖

)
, (36)

where D̂RX⊥ is the normalized diattenuation vector of the perpendicular polarizer channel

from Eq. (35), D̂RX‖ is the normalized diattenuation vector of the parallel polarizer channel

from Eq. (34), and · is the vector dot product operation. Evaluating Eq. (36) using the results

of Eq. (34) and (35) gives

∆θpol =
1

2
arccos

(
|~PRX |2

(
1 + sin2 2θP

)
− 1

1− |~PRX |2 cos2 2θP

)
. (37)
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Fig. 5. (Color online) Poincaré Sphere representation of two orthogonal polar-

izations before (hollow red and blue) and after (solid red and blue) passing

through a diattenuator with |~P | = 0.3. The polarizance vector is depicted as

the solid green arrow. Though the two polarizations are orthogonal prior to

the diattenuator, polarizance corrupts this relationship so they can no longer

be perfectly separated using a polarizing beam splitter.

For truly orthogonal polarization channels, ∆θpol is 90◦, so the argument of the arccos should

be −1. At a fixed polarizance magnitude ∆θpol deviates the most from 90◦ when the polar-

izance vector is 45◦ (orthogonal in Poincaré space) to the polarization of operation. Note

that in a pure diattenuator, this is also the polarization angle where backscatter intensity

is no longer polarization dependent. In the case of polarization lidar, however, it is proba-

bly preferable to calibrate and correct polarization dependence in backscatter rather than

attempt to correct for non-orthogonal polarization channels.

The effect of polarizance on orthogonal polarizations can be seen in Figure 5 where two or-

thogonal polarizations are passed through a diattenuator with polarizance |~P | = 0.3 oriented

45◦ relative to the input polarizations. After passing through the diattenuator, the polariza-

tions are no longer orthogonal. Orthogonal backscattered polarizations are not orthogonal

in the instrument, so a perfect polarizing beam splitter cannot isolate these modes.

We simulate a pure diattenuator in the receiver with fixed orientation angle of 45◦ to the

lidar’s parallel channel while allowing the magnitude of polarizance to vary. The polarization

channels are set to be orthogonal by themselves (perfect polarizers set to 0◦ and 90◦). The

resulting apparent angle between the two polarization channels as seen by light before it

enters the receiver is then plotted in Figure 6 as a function of polarizance magnitude.

Since nearly all polarization lidars assume that the parallel and perpendicular channels are
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Fig. 6. Angle between orthogonal polarization channels as a function of po-

larizance magnitude when polarization analyzers are preceded by a pure di-

attenuator at 45◦ to the polarization of operation. The difference in analyzer

angles is reported in degrees. Even small amounts of polarizance cause the

optical system to violate the assumption that the two polarization channels

are orthogonal.

orthogonal to each other, this polarization effect presents a significant concern. Clearly the

greater the polarizance of the optical system, the less orthogonal the polarization channels

become.

6. Conclusion

In todays modern lidar systems, a full polarization description of the instrument and its

operation is needed for design, analysis and better understanding of the quantities under

measurement. The introduction of additional channels, wavelengths and measurement tech-

niques mean that nothing less than a fully general approach to polarization can provide

the necessary analysis to understand the instruments capabilities and weaknesses. We have

introduced here the Stokes Vector Lidar Equation (SVLE) to act as a theoretical basis for

describing polarization in lidar. The polarized state of light is described using Stokes vectors

and the polarization effects along the entire optical path are described using Mueller matri-

ces. We have provided an introduction to interpretation of these Mueller matrices through

forward polar decomposition, where any polarization effect may be exhibited in the atmo-

sphere, scattering phase matrices, and optical system. This decomposition approach allows

us to redefine matrices in terms of their fundamental polarization effects of retardance, de-

polarization and diattenuation. Each polarization effect has a unique impact on both data
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products and error in lidar measurements. While some effects like retardance are generally

quite easy to account for, diattenuation presents a significant issue, where minimization of

differential efficiency in polarization channels results in maximizing the effects of polarizance.

While we briefly discussed some solutions to these issues, each lidar design requires its own

SVLE analysis to determine the optimal system configuration and baseline errors.

The forward-PD analysis was also applied to the scattering phase matrix for randomly

oriented axially symmetric scatterers, which exhibit only depolarizing attributes, and hor-

izontally oriented ice crystals, which exhibit all three polarization effects. We have shown

that the general form of the scattering matrix for horizontally oriented ice crystals can be

decomposed, allowing us to analyze each matrix element and determine what polarization

effects it contains. Further study in these polarization attributes may allow us to better

link particular polarization effects to physical properties of oriented scatterers. Through the

SVLE we have related received lidar photon counts to vector relationships that account for

polarization transformations throughout the atmospheric path and lidar optical system. This

approach helps to clarify the physics behind polarization in lidar systems and can provide

a framework to standardize polarization analysis and lead to further advancements in its

application to atmospheric scatterers.
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16. J. Sanz, J. Saiz, F. González, and F. Moreno, “Polar decomposition of the mueller matrix:

a polarimetric rule of thumb for square-profile surface structure recognition,” Appl. Opt.

50, 3781–3788 (2011).

17. N. Ghosh, M. Wood, S. Li, R. Weisel, B. Wilson, R. Li, and I. Vitkin, “Mueller matrix

decomposition for polarized light assessment of biological tissues,” J. Biophoton. 2, 145–

156 (2009).

18. J. Chung, W. Jung, M. Hammer-Wilson, P.Wilder-Smith, and Z. Chen, “Use of polar

decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007).

19. M. Borne and E. Wolf, Principles of Optics (University, 1999), 6th ed.

20. B. V. Kaul, “Lidar equation for the case of sensing optically anisotropic media,” in Proc.

SPIE 3495, 332–339 (1998).

21. I. Mattis, M. Tesche, M. Grein, V. Freudenthaler, and D. Müller, “Systematic error of

lidar profiles caused by a polarization-dependent receiver transmission: quantification

and error correction scheme,” Appl. Opt. 48, 2742–2751 (2009).
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