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The appearance of so-called exceptional points in the complex spectra of non-Hermitian systems is often

associated with phenomena that contradict our physical intuition. One example of particular interest is the

state-exchange process predicted for an adiabatic encircling of an exceptional point. In this work we analyze

this and related processes for the generic system of two coupled oscillator modes with loss or gain. We identify

a characteristic system evolution consisting of periods of quasistationarity interrupted by abrupt nonadiabatic

transitions and we present a qualitative and quantitative description of this switching behavior by connecting the

problem to the phenomenon of stability loss delay. This approach makes accurate predictions for the breakdown of

the adiabatic theorem as well as the occurrence of chiral behavior observed previously in this context and provides

a general framework to model and understand quasiadiabatic dynamical effects in non-Hermitian systems.

DOI: 10.1103/PhysRevA.92.052124 PACS number(s): 03.65.Ca, 42.25.−p, 42.55.−f

I. INTRODUCTION

The quantum adiabatic theorem is a seminal result in the

history of quantum mechanics. Paraphrasing Born, the theorem

states that for an infinitely slow parametric perturbation there

is no possibility of a quantum jump [1]. Many physical

phenomena observed in both quantum and classical systems

can be explained by this theorem, ranging from optical tapers

[2] to robust quantum gates [3]. Recently, the applicability of

adiabatic principles to non-Hermitian systems, e.g., coupled

harmonic modes with gain or loss, has attracted considerable

attention. Here the complex eigenvalue structure and the

existence of so-called exceptional points (EPs) leads to new

counterintuitive phenomena [4–18]. Perhaps most strikingly,

adiabatically encircling an EP was predicted to effect a

state exchange, with applications for switching and cooling

[19–21]. However, it is now known that the very presence

of non-Hermiticity prevents a general application of the

adiabatic theorem [22–24] and the inevitability of nonadiabatic

transitions leads to new effects, e.g., to chiral behavior [25–30].

Whereas the above results point to fascinating new physical

phenomena, the complexity of the problem mostly requires

one to resort to numerical studies (as cited above) or to focus

on limiting cases where the system evolution is eventually

dominated by a single mode with maximum gain or minimum

loss. An important step beyond this limitation has been

presented in Refs. [26,31], in which an exactly solvable

model is considered and a connection between the appearance

of nonadiabatic transitions and the Stokes phenomenon of

asymptotics [32] is thereby found. However, even for very

simple scenarios, these exact case studies are mathematically

already quite involved and the translation of the observed

dynamics to other systems, in particular to realistic systems

with imperfections and noise, is not immediately obvious.

In this work we analyze quasiadiabatic dynamics in non-

Hermitian systems near EPs with the aim to provide a

*thomas.milburn@ati.ac.at

generalized framework for both modeling and understanding

the associated dynamical phenomena. Our approach reveals

that the solutions are in general composed of periods of

quasistationary evolution during which the solution follows

fixed points, interrupted by abrupt nonadiabatic transitions

due to the exchange of stability. However, the time of these

transitions cannot be predicted by a standard stability analysis

and, intriguingly, we find that piecewise adiabaticity is still a

key ingredient for understanding the evolution of the system

in spite of an overall breakdown of adiabatic principles.

On a more fundamental level, our analysis shows that the

quasiadiabatic dynamics near an EP is a singularly perturbed

problem [33], meaning that, in contrast to Hermitian systems,

the dynamics cannot be obtained by perturbative corrections to

the adiabatic prediction. This fact makes adiabatic principles

in non-Hermitian systems particularly interesting as well as

challenging to understand, both from a physical and from

a mathematical point of view. Specifically, here we connect

the problem of nonadiabatic transitions to the more general

phenomenon of stability loss delay [34,35] in dynamical

bifurcations. This concept more easily affords intuition in

complicated examples where exact solutions cannot be found

and in realistic systems where noise cannot be ignored. Our

results are therefore important for a variety of modern-day

experiments with, e.g., waveguides [15,16], coupled resonators

[17,18], semiconductor microcavities [36], or electromechan-

ical [37,38] and optomechanical systems [39–41], which offer

sufficiently high control for the observation of the predicted

dynamical phenomena.

II. NON-HERMITIAN DYNAMICS

AND EXCEPTIONAL POINTS

A. Model

For the following discussion we consider the generic model

of two coupled harmonic oscillators with frequencies ω1 and

ω2, decay rates γ1 and γ2, and coupling strength g [see

Fig. 1(a)]. The equations of motion for the amplitudes α1 and
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FIG. 1. (Color online) (a) Cartoon of two coupled harmonic

modes with gain or loss. (b) Example of a parametric path where γ

is fixed, ω = r sin φ(t), and g = γ /2 + r cos φ(t). (c) Real (Re) and

imaginary (Im) parts of the spectrum λ∓ = ∓
√

(ω + iγ /2)2 + g2.

The curve is the trajectory of λ− for the path defined in (b) and

depicts the fully adiabatic evolution.

α2 are

d

dt

(

α1

α2

)

= −i

(

ω1 − iγ1/2 g

g ω2 − iγ2/2

)(

α1

α2

)

, (1)

where in general ωi = ωi(t), γi = γi(t), and g = g(t) are

functions of time. For the following analysis it is convenient

to eliminate the common evolution with average frequency

� := (ω2 + ω1)/2 and average decay rate Ŵ := (γ2 + γ1)/2

by introducing a new set of amplitudes β1 and β2 via
(

α1(t)

α2(t)

)

= exp

(

−i

∫ t

[�(t ′) − iŴ(t ′)/2]dt ′
)(

β1(t)

β2(t)

)

. (2)

The remaining nontrivial dynamics in this frame is

d

dt

(

β1

β2

)

= −i

(

−ω − iγ /2 g

g ω + iγ /2

)(

β1

β2

)

, (3)

where ω := (ω2 − ω1)/2 and γ := (γ1 − γ2)/2. Note that

while the global transformation (2) does not affect any of the

following results, if Ŵ �= 0 then the experimentally observable

amplitudes α1,2 are related to β1,2 by an exponentially large or

small prefactor.

Below we suppose that at least ω and g, or ω and γ , can

be controlled as a function of time. This can be achieved,

e.g., with optical modes propagating through waveguides with

spatially varying losses [42,43], by applying chirped laser

pulses to molecular systems [27], or by using two mechan-

ical resonators with electrically [37,38] or optomechanically

[39–41] controlled parameters.

B. Exceptional points

Let us write Eq. (3) more compactly as �̇x = −iM�x, where �x
is the state vector and M is the dynamical matrix, or sometimes

called in this context a non-Hermitian Hamiltonian [9], i.e.,

�x :=
(

α1

α2

)

, M :=
(

−ω − iγ /2 g

g ω + iγ /2

)

. (4)

Here M has eigenvalues λ∓ = ∓λ = ∓
√

(ω + iγ /2)2 + g2.

Since M is non-Hermitian, it does not have an orthonormal

eigenbasis in the sense of Dirac, but rather a biorthogonal

eigenbasis with right eigenvectors �r∓ defined via M�r∓ = λ∓�r∓
and left eigenvectors �l∓ defined via �l T

∓ M = �l T
∓ λ∓ such that

�l T
i �rj = δi,j . One has some freedom in choosing the eigenbasis,

but a pertinent choice is the parallel transported eigenbasis

�r− = �l− =
(

cos ϑ/2

sin ϑ/2

)

, �r+ = �l+ =
(

− sin ϑ/2

cos ϑ/2

)

, (5)

with ϑ such that tan ϑ = −g/(ω + iγ /2) (see Appendix A

1 for more details). Figure 1(c) shows the real (Re) and

imaginary (Im) parts of λ± as a function of g and ω with

γ fixed. The pinch points ω + iγ /2 ∓ ig = 0 are EPs [4–10].

At these points the eigenvalues and the eigenvectors coalesce

and M becomes nondiagonalizable. Encircling an EP with a

closed path in parameter space causes the two eigenvalues, and

hence also the two eigenvectors, to swap [see Figs. 1(b) and

1(c)]. Based on intuition from the quantum adiabatic theorem,

it was suggested that this unique feature could be observed in

physical systems by encircling an EP over a time T such that

T |λ− − λ+| is large [19–21]. However, other studies contradict

this result and show that due to non-Hermiticity this picture

cannot hold in general [22–30].

C. Numerical examples

Before presenting a further analytic treatment of Eq. (3),

we consider in Fig. 2 some typical solutions for encircling an

EP with T |λ− − λ+| ≫ 1. For these examples we choose a

path in parameter space as defined in Fig. 1(b). We expand the

solution as

�x(t) = c−(t)�r−(t) + c+(t)�r+(t), (6)

where �r−(t) and �r+(t) are the instantaneous eigenvectors of

M(t), and we choose the initial condition c−(0) = 1 and

c+(0) = 0. One may reconstruct the amplitudes c∓(t) from

a solution �x(t) via c∓(t) = �l T
∓ (t)x(t). The adiabatic prediction

is cad
− (t) ≃ exp[−i

∫ t

0
λ−(t ′)dt ′] and cad

+ (t) ≪ cad
− (t). Since we

have chosen a parallel transported eigenbasis, no geometric

phase appears in the evolution of the amplitudes c∓. This

makes evaluating adiabaticity much simpler [44]. Further-

more, as discussed in Ref. [45], the populations |c∓(t)|2 more

closely match physical populations than other conventions

because their evolution includes the dynamical phase, which

for a non-Hermitian system contains gain or loss effects.

In examples (i) and (ii) in Fig. 2 we have chosen a

counterclockwise and a clockwise encircling, respectively,

φ(t) = ±2πt/T . In the counterclockwise example the solu-

tion matches the adiabatic prediction and the corresponding

state flips, but in the clockwise example we observe a

nonadiabatic transition, for which, apart from an overall

amplification, the system returns to the original state. This

chiral behavior, first presented in Ref. [25], illustrates one of

the key differences between the dynamics in Hermitian and

non-Hermitian systems. In the latter, the eigenvalues are com-

plex, which causes gain or loss in c− and c+. An infinitesimally

small nonadiabatic coupling can therefore be exponentially

amplified, causing the gain eigenvector to dominate. This

mechanism intuitively explains why the adiabatic theorem

does not in general hold for non-Hermitian systems.
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FIG. 2. (Color online) Plots of typical numerical solutions of Eq. (3) for the path defined in Fig. 1(b) with initial eigenvector populations

c−(0) = 1 and c+(0) = 0. For the function φ we choose φ(t) = ±2πt/T in examples (i) and (ii) and we choose φ(t) = −2πt/T + π in

example (iii). In all cases we set r = 0.1, γ = 1, and T = 45, for which T |λ− − λ+| ≫ 1. The top row shows the dynamical gain parameter

T Imλ−(t) and the total integrated gain
∫ t

0
Imλ−(t ′)dt ′. Note that the dynamical gain is the gain of the adiabatic prediction but not necessarily the

actual gain of the numerical solution. The middle row shows the eigenvector populations |c∓(t)|2 along with the adiabatic prediction |cad
− (t)|2.

We do not plot |cad
+ (t)|2 because adiabatic principles imply |cad

+ (t)|2 ≪ |cad
− (t)|2. The bottom row shows a projection of the numerical solution

onto the real and imaginary parts of the eigenspectrum, specifically [|c−(t)|2λ−(t) − |c+(t)|2λ+(t)]/[|c−(t)|2 + |c+(t)|2]. The use of red and

blue is to provide an indication of which population, or surface, corresponds to a gain and loss eigenvector, respectively.

Example (iii) shows the result for a more interesting path

φ(t) = −2πt/T + π where gain-loss behavior swaps halfway

through and the total integrated dynamical gain vanishes
∫ T

0
Imλ(t)dt = 0. Surprisingly, the final state matches the

adiabatic prediction |c−(T )|2 ≃ |c−(0)|2 even though during

the interim the solution is highly nonadiabatic. This obser-

vation cannot be explained by the intuitive argument above

because c− is nontrivially slaved to c+ past the time t = T/2

when we would expect c− to increase exponentially. Thus,

considering dynamical gain alone is insufficient to accurately

predict behavior for quasiadiabatic dynamics near EPs.

These basic examples illustrate that the dynamics of non-

Hermitian systems involves three characteristic effects: (i) the

swapping of eigenvectors due to a 4π periodicity about an EP,

which follows from the topology of the complex eigenvalue

spectrum, (ii) the appearance of enhanced nonadiabatic tran-

sitions due to the presence of gain or loss, and (iii) periods

of adiabatic evolution that persist significantly beyond the

time of stability loss. While (i) is readily incorporated by

the eigenvector decomposition (6), we will now develop a

general approach to describe the nontrivial interplay between

(ii) and (iii).

III. DYNAMICAL ANALYSIS

A. Relative nonadiabatic transition amplitudes

In order to develop a general dynamical description we con-

sider the evolution operator U(t) defined by �x(t) = U(t)�x(0),

which contains the full dynamics independent of the initial

condition. In the eigenbasis Eq. (5), U(t) is the solution of

U̇ = −i

(

−λ(t) −f (t)

f (t) λ(t)

)

U , U =
(

U−,− U−,+
U+,− U+,+

)

, (7)

with initial condition U(0) = 1, where

f (t) = g(t)[ω̇(t) + iγ̇ (t)/2] − [ω(t) + iγ (t)/2]ġ(t)

2iλ2(t)
(8)

is the nonadiabatic coupling. Adiabaticity usually requires that

the nonadiabatic coupling be much smaller than the distance

between eigenvectors ε(t) := |f (t)/2λ(t)| ≪ 1. Since ε(t) ∝
T −1 this condition is always satisfied for an appropriate T .

Setting f (t) = 0 in Eq. (7), which would imply ε(t) = 0,

would yield the diagonal adiabatic prediction

U
ad(t) =

(

exp
(

i
∫ t

0
λ(t ′)dt ′

)

0

0 exp
(

−i
∫ t

0
λ(t ′)dt ′

)

)

. (9)

However, as is evident in Fig. 2, even for arbitrarily small

yet nonvanishing ε(t) the actual solution is significantly

nondiagonal. This indicates that the system is singularly

perturbed by the nonadiabatic coupling and U(t) cannot be

obtained as a perturbative correction to U ad(t). We shall

henceforth call ε(t) ≪ 1 the quasiadiabatic condition (see

Appendix A for more details).

In order to describe the nonadiabatic character of U(t) for

quasiadiabatic dynamics we focus on the relative nonadiabatic

transition amplitudes [25]

R−(t) := U+,−(t)

U−,−(t)
, R+(t) := U−,+(t)

U+,+(t)
. (10)
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FIG. 3. (Color online) Plot of Imλ(t) (top panel), |c∓|2 (middle

panel), and a typical solution for R ≡ R− (bottom panel) for the path

defined in Fig. 1(b) with φ(t) = −2πt/T + π . Note that Imλ(t) =
−Imλ−(t), which is plotted in Fig. 2. We have chosen r = 0.1, γ = 1,

and T = 120, for which ε(t) ≃ 2.5%. The solid curve is the numerical

solution. The arrows denote delay times. The lower and upper dashed

grid lines denote |Rad(t)| and |Rnad(t)|, respectively.

These describe the amount of nonadiabaticity in the solution.

For example, R−(t) is a measure of the magnitude of the

net nonadiabatic transition from �r−(t) to �r+(t), i.e., R−(t) =
c+(t)/c−(t) given c−(0) = 1 and c+(0) = 0. If R∓(t) ≪ 1 then

we may say that c∓ is behaving adiabatically, while R∓(t) ≫ 1

indicates that a nonadiabatic transition has occurred. From

Eqs. (7) and (10) it follows that R∓(t) considered as a

dynamical variable is the solution to the Riccati equation

[31,46]

Ṙ∓ = ∓2iλ(t)R∓ ∓ if (t)(1 + R2
∓), (11)

with initial condition R∓(0) = 0. Dynamical phenomena

associated with quasiadiabatically encircling EPs can thus be

understood from the solutions of this equation in the limit

ε(t) ≪ 1. Note that the equations of motion for R− and R+
are related via R− ↔ 1/R+. In the following, we therefore

consider only R := R− without loss of generality. We remark

that, assuming transients are damped, the relation R− ↔ R+
has the immediate consequence that limt→∞ R−(t)R+(t) = 1,

which agrees with Ref. [25] and prohibits simultaneous

adiabatic behavior in both c− and c+ over long times.

B. Fixed points and stability loss delay

The lower panel of Fig. 3 shows a generic solution for R

during multiple quasiadiabatic encirclements of an EP (see the

caption for details). It resembles a square wave, i.e., we see fast

switching between two quasistationary values. This behavior

can be understood from a separation of time scales in Eq. (11).

For short times the slowly varying parameters λ(t) ≃ λ and

f (t) ≃ f can be considered constant and

Ṙ ≃ −2iλR − if (1 + R2). (12)

FIG. 4. (Color online) Cartoons of the global phase portraits of

the equation of motion for R near t∗. Arrows denote the direction

of time evolution along an integral curve. The fixed point near the

origin corresponds to Rad(t) and the fixed point far from the origin

corresponds to Rnad(t).

On a fast time scale set by |Imλ|−1 the solution therefore

approaches one of two fixed points

Rad = − λ

f

(

1 −
√

λ2 − f 2

λ

)

≃ − f

2λ
,

Rnad = − λ

f

(

1 +
√

λ2 − f 2

λ

)

≃ −2λ

f
.

(13)

The first fixed point Rad(t) ∝ ε(t) ≪ 1 indicates adiabatic

behavior (c− dominates) and, by inspecting Eq. (11), is stable

for Imλ(t) < 0. The second fixed point Rnad(t) ∝ ε−1(t) ≫ 1

indicates a nonadiabatic transition has occurred (c+ dominates)

and is stable for Imλ(t) > 0. These two fixed points are plotted

in Fig. 3. Evidently, the periods of quasistationarity there ex-

hibited correspond to following one of these two fixed points.

On a slow time scale set by T the parameters λ(t) and

f (t) may change considerably and at certain critical times

the stability of the two fixed points swaps. For example,

Rad(t) becomes unstable and Rnad(t) stable when the sign of

Imλ(t) becomes positive. Let us denote the critical times by

t∗, which are marked in Fig. 3. Naively, one might expect

an immediate rapid transition between the neighborhoods of

Rad(t) and Rnad(t) upon passing a critical time t∗, but, as is

evident in Fig. 3, this is not the case. Instead, we see that

the solution follows, e.g., Rad(t), while it is unstable for a

significant amount of time; the loss in stability is delayed.

Intuition for this behavior is obtained from the phase portraits

of Eq. (11), shown in Fig. 4. The local phase portrait about

Rad(t) goes from a spiral towards Rad(t) for t < t∗ to a spiral

away from Rad(t) for t > t∗, passing through a degenerate

bifurcation at t = t∗ when Rad(t) is a center and is neither

stable nor unstable. We therefore expect some persistence in

the following of Rad(t) because near t∗ it is only weakly stable

or unstable.

To illustrate the existence of a significant delay between the

critical time t∗ and the actual time of a nonadiabatic transition

t+ we consider the specific path defined in Fig. 1(b) with

φ(t) = −2πt/T + π and r ≪ γ . This is a good model for the

numerical solution shown in Fig. 3. Then λ(t) ≃ i
√

rγ e−iπt/T ,

f (t) ≃ iπ/2 T , and ε(t) ≃ ε = π/4
√

rγ T . Let us focus on

the loss of stability of Rad(t) at t∗ = 3T/2. Assuming that the

system is near Rad(t), we can neglect the nonlinear term in
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Eq. (11):

Ṙ

2
√

rγ
≃ e−iπt/T R + ε. (14)

The particular integral of this equation is found to be

R(t) = − i

2
E1

(

i

2ε
e−iπt/T

)

ei exp(−iπt/T )/2ε, (15)

where E1 is the exponential integral. Since ε ≪ 1 we may use

the asymptotic expansion for E1 (see, e.g., 5.1.7 and 5.1.51 in

Ref. [47]) to obtain

R(t) ≃ −εeiπt/T − 2iε2e2iπt/T + · · ·

− π

2
sgn

[

cos

(

πt

T

)]

ei cos(πt/T )/2εesin(πt/T )/2ε. (16)

The first two terms (first line on the right-hand side)

correspond to following Rad(t) with higher-order corrections.

The third term (second line) is negligible for t − t∗ < T/2

(recall t∗ = 3T/2 here), but it diverges exponentially for

t − t∗ > T/2, thereby indicating a nonadiabatic transition.

Thus, under the ideal conditions assumed here and given that

the solution has approached Rad(t) by t = t∗, the delay in the

loss of stability is t+ − t∗ = T/2.

With this analysis we are already in a position to understand

better the three examples studied in Fig. 2. In example (i)

Rad(t) is stable for the entire loop around the EP and therefore

the solution follows the adiabatic prediction |c+(t)/c−(t)| ≃
|Rad(t)|. In contrast, in (ii) Rad(t) is always unstable and

a nonadiabatic transition occurs. In (iii) the solution first

switches from Rad(t) to Rnad(t), but then back again with a

delay t+ � T/2 after Rad(t) becomes stable at t = T/2. Note

that the delay times exhibited in the first encircling period

as shown in Figs. 2 and 3 differ from the value t+ = T/2

estimated above. This is due to a high sensitivity to the

initial condition R(0) = 0, which is not exponentially close

to Rad(0), and therefore effects a transient term of the form

Aei exp(−iπt/T )/2ε. After about one encircling period the system

approaches the unique long-time relaxation oscillation, which

is a universal signature of quasiadiabatically encircling EPs.

We finish this section with a remark on the relation between

the above results and the Stokes phenomenon of asymptotics,

i.e., the switching on of exponentially suppressed terms in

asymptotic expansions [32]. In Refs. [26,31] an exact solution

for the example considered in this section is presented (using

r ≪ γ but not neglecting the nonlinearity), which we review

in Appendix B. In this exact solution one sees that the sharp

(but continuous) transition, which in Eq. (16) is represented

by the signum function, is precisely the Stokes phenomenon

of asymptotics, leading here to a breakdown of the adiabatic

theorem. In our current approach, which we elaborate further

in the next section, this discontinuity is connected to the

problem of stability loss delay. The connection between the

Stokes phenomenon of asymptotics and stability loss delay

might be worth exploring further. However, here we will

leave such considerations aside and proceed with a pragmatic

generalization of these initial results to arbitrary paths in

parameter space.

C. Generalized quasiadiabatic solution

In Sec. III B we were able to understand the generic solution

exhibited in Fig. 3 from a separation of time scales, which

resulted in a delay in the loss of stability of the instantaneous

fixed points. In fact, slow-fast systems with dynamical bifur-

cations are a subject of current mathematical interest. The

reader is referred to Ref. [33] for a concise description. The

reason that the critical times do not coincide with the observed

times when an instantaneous fixed point loses stability is

because our slow-fast system is singularly perturbed; the slow

system is described by an algebraic equation and the fast

system by a differential equation. One must therefore resort

to nonstandard analysis. A principal result of the nonstandard

analysis of slow-fast systems is the existence of stability loss

delay about certain dynamical bifurcations [34,35,48], which

we observed explicitly in Sec. III B. In the following we build

upon this to construct a generalized quasiadiabatic solution,

which, additionally, affords an estimation of delay times.

We are interested in solutions that for times near critical

times t∗ are in the vicinity of a fixed point. We therefore begin

by looking at the zero crossings of Imλ(t), which determine

t∗. For some window [t−,t+] about each t∗, i.e., t− < t∗ < t+,

we seek a solution Rt∗ (t) that follows Rad(t) or Rnad(t). Since

transitions between Rad(t) and Rnad(t) are very quick, by

making a piecewise addition of segments that follow one or

the other fixed point we arrive at the approximation for the

complete solution thus

R(t) ≃
∑

t∗

[�(t − t−) − �(t − t+)]Rt∗ (t), (17)

where � is the Heaviside step function.

Let us now consider a single segment and omit the subscript

t∗ for brevity. We may focus on the case that R(t) follows

Rad(t) without loss of generality because Rnad(t) = 1/Rad(t)

and Eq. (11) is antisymmetric under the transformation

R �→ 1/R. Since we assume R(t) to be in the vicinity of

Rad(t) for t ∈ [t−,t+] we study the linearized equation of

motion about Rad(t):

Ṙ = −2iλ(t)R − if (t). (18)

The general solution from time t = t0 of this equation is

R(t) = R(t0)e�(t)−�(t0) − i

∫ t

t0

dt ′f (t ′)e�(t)−�(t ′), (19)

where R(t0) is the initial condition and

�(t) = −2i

∫ t

t∗

λ(t ′)dt ′. (20)

Note that, to first order about t∗ we have λ(t) =
λ(t∗) + λ̇(t∗)(t − t∗) + O((t − t∗)2). Since Imλ(t∗) = 0 and

Imλ̇(t∗) > 0 then Re�(t) = Imλ̇(t∗)(t − t∗)2 + O((t − t∗)3)

is convex. We refer to this property of � below. Integrating

the integral in Eq. (19) by parts N times yields

R(t) = [R(t0) − R
ad(t0)]e�(t)−�(t0)

+R
ad(t) + �(t)e�(t). (21)
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Here we have introduced

R
ad(t) =

N−1
∑

n=0

( −1

2iλ(t)

d

dt

)n

Rad(t), (22)

which encapsulates the following of Rad(t): The n = 0 term

in Rad(t) is simply Rad(t) and the higher-order terms are

corrections due to finite variations in λ(t) and f (t). However,

since each term in the sum contains a derivative and therefore

scales with n!, there is an optimal truncation N = Nop beyond

which the sum diverges. The precise value of Nop is problem

specific, but for most purposes including only the first few

terms in the sum (22) is sufficient.

The final term in Eq. (21), �(t)e�(t), is the remaining

part of the solution that is not included in the sum (22). It

therefore describes the nontrivial part of the dynamics that

inevitably causes a departure from Rad(t). Since �(t)e�(t) is

the remainder of an optimally truncated sum it is negligible

whenever the solution follows Rad(t). On the other hand,

for times t ≈ t+ when �(t)e�(t) starts to dominate, Rad(t)

is negligible and we may approximate

�(t)e�(t) ≃ −ie�(t)

∫ t

t0

dt ′f (t ′)e−�(t ′). (23)

Since Re� is convex and since �(t) ∝ ε−1(t), the integrand

in Eq. (23) is non-negligible only for times t ′ ≈ t∗ and the

value of � becomes quite independent of t > t∗ and t0 < t∗.

Therefore, under quite general conditions, we can approximate

�(t)e�(t) ≃ �(t − t∗)�e�(t), where � is the Heaviside step

function and

� = −i

∫ t+

t−

dtf (t)e−�(t). (24)

The precise values of t− and t+ are of little importance in the

evaluation of this integral, only that they are far enough from

t∗ that the integrand is negligible at them. We thus arrive at

R(t) ≃ R
ad(t) + [A + �(t − t∗)�]e�(t), (25)

where A = [R(t0) − Rad(t0)]e−�(t0) depends on the initial

condition.

From Eq. (25) and the analogous expression for a segment

that follows Rnad(t), we construct our piecewise addition of

segments by determining the exit time t+ of a segment from

the condition |R(t+)| = 1, i.e., when the solution is halfway

between Rad(t) and Rnad(t), and then using this as the entry

time t− for the next segment. Two effects may cause this

transition. First, if the solution does not have enough time to ap-

proach, e.g., Rad(t) sufficiently closely by the critical time, then

the finite difference |R(t∗) − Rad(t∗)| will be exponentially

amplified after t = t∗. This mechanism is responsible, e.g., for

the initial transitions one observes in a single encircling of

an EP, where the system is initialized to R(0) = 0 �≈ Rad(t).

Second, however, we see that even for A = 0 a destabilization

occurs due to a dynamical mechanism represented by � �= 0,

which yields the time of stability loss t+ via

|�e�(t+)| = 1. (26)

The time t+ determined in this way is independent of

transients and therefore characterizes the longest time the

solution can remain stable after t∗. In the quasiadiabatic limit

ε(t) → 0 this is independent not only of transients but also of

adiabaticity and is in fact the so-called maximal delay time t∗+
(see Appendix A 5 for more details).

D. Analytic examples

Here we consider three examples analytically in order to

illustrate our generalized quasiadiabatic solution: a circular

λ(t) as in Sec. III B, a linear λ(t) corresponding to the lowest-

order Taylor expansion, and an elliptical λ(t) corresponding to

the lowest-order Fourier expansion. The first example serves

to verify that our generalized quasiadiabatic solution recovers

the more specific analytic results in Sec. III B. The second

and third examples serve to illustrate the sensitivity of � and

therefore t+ in Eq. (26) to the global path—stability loss delay

is a global phenomenon. Note that a circular, elliptical, or linear

λ(t) does not precisely correspond to a circular, elliptical,

or linear path in parameter space unless we are in, say, the

limit r ≪ 1. We study particular paths in parameter space

numerically in Sec. III E.

(i) Circular λ(t). From Sec. III B,

λ(t) = i
√

rγ e−iπt/T , (27)

f (t) = iπ

2T
. (28)

The adiabatic fixed point with corrections is

R
ad(t) = −εeiπt/T

N−1
∑

n=0

n!(2iεeiπt/T )n, (29)

where ε = π/4
√

rγ T and the optimal truncation is Nop ∼
(2ε)−1. Furthermore, about t∗ = 3T/2,

�(t) = 1

2ε
(ie−iπt/T + 1), (30)

� = −πe−1/2ε. (31)

Putting these expressions together in Eq. (25) recovers Eq. (16)

and solving for t+ in Eq. (26) yields the delay time

t+ − t∗ = T

π
arccos(2ε log π ), (32)

which in the limit ε → 0 becomes t+ − t∗ = T/2, in agree-

ment with Sec. III B.

(ii) Linear λ(t). Let us now consider another important

scenario, where the line of instability is crossed in a linear

sweep,

λ(t) = λRe + iλ̇Imt, (33)

f (t) ≃ f (t∗) = const, (34)

where λ̇Im > 0. In this case we have �(t) = −2iλRet + λ̇Imt2

about t∗ = 0 and the discontinuity is

� = −if (t∗)

√

π

λ̇Im

e−λ2
Re/λ̇Im . (35)
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From these expressions we deduce the delay time

t+ − t∗ = λRe

˙λIm

√

√

√

√

√1 + λ̇Im

λ2
Re

log

⎛

⎝

√

λ̇Im

π

1

|f (t∗)|

⎞

⎠, (36)

which in the quasiadiabatic limit becomes t+ − t∗ = λRe/λ̇Im.

One might naively hypothesize that Eq. (35) describes more

general paths by using λRe = Reλ(t∗) and λIm = Imλ̇(t∗).

However, a comparison with the circular path above already

shows that this would only give rather poor quantitative results.

Equation (36) may still serve as a first estimate of the expected

delay times in general scenarios.

(iii) Elliptical λ(t). As an interpolation between the two

cases above we consider the lowest-order Fourier expansion

of λ(t) about t = t∗:

λ(t) = λRe cos(πt/T ) + i
T λ̇Im

π
sin(πt/T ), (37)

f (t) ≃ f (t∗) = const. (38)

With λRe = T λ̇Im/π = √
rγ one recovers the circular λ(t)

and for T → ∞ but keeping λ̇Im fixed one recovers the linear

sweep of λ(t). For this example the discontinuity is

� = −2iTf (t∗)e−2T 2λ̇Im/π2

I0

⎛

⎝

2T

π

√

T 2λ̇2
Im

π2
− λ2

Re

⎞

⎠, (39)

where I0 is the first-order modified Bessel function of the first

kind. By taking the appropriate limits—I0(x) ∼ 1 for x ≪ 1

and x ∈ R
+ (see, e.g., 9.6.7 in Ref. [47]) for the circular λ(t)

and I0(x) ∼ ex/
√

2πx for x ≫ 1 and x ∈ R
+ (see, e.g., 9.6.30

and 9.7.1 in Ref. [47]) for the linear λ(t)—one recovers either

Eq. (31) or (35). Therefore, Eq. (39) interpolates between

the two limiting cases above and can be used to accurately

calculate delay times for situations where the encircling path

lies somewhere in between.

E. Numerical examples

Let us now demonstrate the validity of our approach

numerically for more general examples depicted in Fig. 5:

(a) a displaced circular path ω(t) = r sin φ(t) and g(t) =
γ /2 + r cos φ(t) + gos, where φ(t) = 2πt/T and gos is a

variable offset in the coupling; (b) a tilted elliptical path ω(t) =
r(t) sin φ(t) and g(t) = γ /2 + r(t) cos φ(t), where φ(t) =
2πt/T , r(t) = r0(1 − e2)/{1 + e cos[φ(t) + θaa]}, e is the

ellipticity, and θaa is the angle of the apoapsis; and (c)

oscillations along a straight path that crosses the critical

line ω(t) = −L sin φ(t) and g(t) = γ /2 + gos, where φ(t) =
2πt/T . For these examples the numerically simulated solution

R(t) is plotted in Fig. 5 and compared with the generalized

quasiadiabatic solution presented in Sec. III C, with � being

evaluated numerically. We see that in all cases the numerical

and analytic results match up perfectly.

Let us first consider path (a). For this path there are two

dynamical bifurcations in every period, as indicated, but the

departure time as determined by Eq. (26) is infinite. Therefore,

the solution never has enough time to be significantly repelled

from Rad(t) before Rad(t) becomes stable once again. As a

FIG. 5. (Color online) Plots of |R(t)| (three bottom panels) for

three different paths (top row). In every plot of |R(t)| the solid line

is our generalized quasiadiabatic solution, the open squares denote

the numerical solution, the dashed lines denote Rad(t) and Rnad(t),

and the dot-dashed lines denote critical times t∗. For the plots of the

path, the yellow-filled circle marks the position of the EP and the

dot-dashed line is the critical line where Imλ = 0. The parameter

settings chosen are (a) r = 0.1, T = 200, and gos = 0.2; (b) r = 0.1,

T = 200, e = 0.75, and θaa = π/4; and (c) L = 0.2, T = 200, and

gos = 0.05 (see the main text for details on the parametrization).

result, the system never leaves the neighborhood of Rad(t),

i.e., the solution is adiabatic. In some sense, the increased

frequency of dynamical bifurcations and the long departure

time has stabilized the adiabatic prediction. In path (b)

the opposite is the case. Here the solution undergoes a

nonadiabatic transition every period. The solution looks quite

similar to that shown in Fig. 5(a), except that the nonadiabatic

transitions occur earlier. One finds in this case that the delay

time is roughly 0.32T , slightly less than T/2. Finally, in

path (c) we have chosen again a path with two dynamical

bifurcations per period, but in this case the departure time is

roughly 0.15T , significantly less than T/2. Accordingly, we

observe two nonadiabatic transitions per period.

The last case can in fact be made to resemble either of the

former two cases by tuning gos, i.e., by changing the value

of λRe(t∗). In Fig. 6 we have plotted the departure time as a

function of gos. For gos < 0.05 the quasiadiabatic condition

breaks down. For 0.05 < gos � 0.12, i.e., close to the EP, the

solution resembles Fig. 5(c) and we observe two nonadiabatic

transitions in every period. Around gos = 0.12 the departure
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FIG. 6. Plot of the departure time t+ for path (c) in Fig. 5

with the same parametrization, except for gos, which we vary. The

solid line is t+ as determined by Eq. (26) and the open squares

denote the numerically observed departure time as determined via

|R(t)| = 1. Good agreement is exhibited between the analytic t+ and

the numerical t+. A particularly interesting feature is that t+ becomes

infinite for gos � 0.12. For large gos one then expects the system to

remain adiabatic for all times, as observed in Fig. 5(a).

time becomes infinite, which implies that for gos � 0.12 the

dynamics becomes fully adiabatic and resembles Fig. 5(a).

IV. NOISE

Finally, it is important to address the influence of noise,

which will be present in any experimental implementation. To

do so we simulated the dynamics of c∓ in the presence of

δ-correlated Gaussian noise ξ (t) with variance 〈ξ (t)ξ (t ′)〉 =
γNδ(t − t ′). The gray shaded area in Fig. 7 indicates the

resulting distribution of stochastic trajectories of R(t) for

N = 1/10. This resembles the case where the initial resonator

amplitude is a factor of 10 above the thermal noise floor.

For the first encircling period the fixed point Rnad(t) is still

robust, but the delay time t+ is significantly reduced. This again

demonstrates the extreme sensitivity of Eq. (11) upon initial

conditions. However, the dynamics of R is self-correcting

and after the first encircling period it settles into robust

periodic dynamics much resembling the case without noise.

This surprising observation can be understood as follows.

Initially, noise causes R to lose stability early; however, this

means that the total population of the system is increased

and therefore the effect of the constant noise background is

reduced.

 

 

FIG. 7. Here we reproduce the solution from the bottom panel of

Fig. 3 with our analytic prediction (solid line) with a stochastic spread

(shaded area). Specifically, the shaded area is one standard deviation

about the mean of R obtained from 10 000 stochastic numerical

integrations of c− and c+ (see Sec. IV for more details).

V. CONCLUSION

In summary, we have analyzed the quasiadiabatic evolution

of non-Hermitian systems near an EP. Our study shows that

various dynamical phenomena associated with this process can

be predicted from the analysis of the nonadiabatic transition

amplitudes R−(t) and R+(t). In particular, we identified a

characteristic switching pattern and stability loss delay. Our

analytic predictions for the delay times and the observed

robustness with respect to noise are relevant for experimental

investigations of these effects and provide the basis for

analyzing similar phenomena in more complex systems.
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APPENDIX A: NONSTANDARD ANALYSIS OF RELATIVE

NONADIABATIC TRANSITION AMPLITUDES

In this Appendix we briefly summarize the motivation

for the nonstandard analysis of quasiadiabatic non-Hermitian

systems [23,44,45] and its application to relative nonadiabatic

transition amplitudes [33,48–51]. In order to facilitate a simple

but rigorous mathematical treatment we augment the notation

of the paper by introducing a dimensionless time

s := t

T
, (A1)

where T −1 is considered small, and rewrite the governing

equation of motion

U̇ = −iM(s)U , (A2)

with U(0) = 1 and where U is the evolution operator and the

dot denotes the derivative with respect to time t as usual.

1. Quasiadiabaticity

We assume M(s) to be diagonalizable with eigenvalues

λi(s) for all s. Since M(s) is non-Hermitian it does not

in general have an orthonormal eigenbasis in the sense of

Dirac but rather a biorthogonal eigenbasis: a set of right

eigenvectors �ri(s) defined via M(s)�ri(s) = λi(s)�ri(s) and a set

of left eigenvectors �l T
i (s) defined via �l T

i (s)M(s) = �l T
i (s)M(s)

such that �l T
i (s)�rj (s) = δi,j . Ideal adiabatic dynamics may be

defined as that for which the dynamical coefficients of the

instantaneous eigenvectors decouple. In a parallel transported

eigenbasis, i.e., �l T
i (s)�r ′

i (s) = 0, where the prime denotes the

derivative with respect to s, the adiabatic solution, or adiabatic

prediction, is

Ui,j (t) = δi,j , (A3)
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where we have expanded the evolution operator U thus

U(t) =
∑

i,j

Ui,j exp

(

−iT

∫ s

0

ds ′λi(s
′)

)

�ri(s)�l T
j (0). (A4)

In the adiabatic solution the interaction between the

dynamical coefficients of the instantaneous eigenvectors due

to the finite variation of these eigenvectors is ignored. The full

equation of motion for U expanded as above is

U̇p,q = −i
∑

i �=p

T −1f̃p,i(s)

× exp

(

−iT

∫ s

0

ds ′[λi(s
′) − λp(s ′)]

)

Ui,p, (A5)

where we have defined

f̃p,i(s) := −i�l T
p (s)�r ′

i(s). (A6)

The adiabatic solution ignores f̃p,q(s) for p �= q. Assuming

the system to be initialized to the instantaneous eigenvector

q, first-order perturbation theory yields that the solution for

the coefficient xp of the instantaneous eigenvector p where

p �= q is

xp(t) ≃
T −1f̃p,q(s) exp

(

−iT

∫ s

0

ds ′[λq(s ′) − λp(s ′)]

)

λq(s) − λp(s)
.

(A7)

This expression vanishes linearly with |T −1/[λq(s) − λp(s)]|
but diverges exponentially with T Im

∫ s

0
ds ′[λq(s ′) − λp(s ′)] if

Im
∫ s

0
ds ′λq(s ′) > Im

∫ s

0
ds ′λp(s ′). Second-order perturbation

theory contains no more information as regards xp but does

reveal that xq(t) differs from unity with an analogous scaling.

The traditional quantum adiabatic condition

εp,q (t) :=
∣

∣

∣

∣

T −1f̃p,q(s)

λq(s) − λp(s)

∣

∣

∣

∣

≪ 1 (A8)

and therefore only ensures adiabaticity for those elements

of U for which Im
∫ s

0
ds ′λi(s

′) is greatest, i.e., the least

dissipative instantaneous eigenvectors. It obviously cannot be

the case that every eigenvector is least dissipative, unless all

are degenerate, and it is therefore impossible that the adiabatic

solution (A3) holds. In the context of non-Hermitian systems

it therefore seems pertinent to call Eq. (A8) the quasiadiabatic

condition. So long as we initialize to the least dissipative

instantaneous eigenstate and so long as this eigenstate remains

the least dissipative, the quasiadiabatic condition ensures

adiabaticity. However, if we initialize to an eigenstate that is

not the least dissipative, or the quality of being least dissipative

is exchanged, then perturbation theory breaks down.

2. Relative nonadiabatic transition amplitudes

as a slow-fast system

In the main text we argued that for our two-dimensional

case the simplest encompassing dynamical description of

adiabaticity is afforded by the relative nonadiabatic transition

amplitudes, the ratios of the elements of the evolution operator

expressed in a parallel transported eigenbasis. Let us recall

the equation of motion for the relative nonadiabatic transition

amplitude R(t) as defined in the paper:

Ṙ = −2iλ(s)R − iT −1f̃ (s)(1 + R2). (A9)

Treating λ and f̃ as dynamical variables themselves, in the

limit T −1 → 0 this becomes

Ṙ = −2iλ(s0)R − iT −1f̃ (s0)(1 + R2), (A10)

where s0 = T −1t0 and t0 is the initial time. On the other

hand, we may rewrite the equation of motion using s as the

independent variable

T −1R′ = −2iλ(s)R − iT −1f̃ (s)(1 + R2), (A11)

whereupon similarly taking T −1 → 0 yields

0 = −2iλ(s)R − iT −1f̃ (s)(1 + R2). (A12)

The difference between Eqs. (A10) and (A12) is that the former

is over a time scale of order T −1 and is hence fast, while the

latter is over a time scale of order 1 and is hence slow; we have

a slow-fast system. Furthermore, we notice here that the fast

time-scale equation is differential and the slow algebraic. This

is often taken as the definition of a singularly perturbed system

and it means that any perturbative approach in T −1 can only

be valid for times of order T −1. In order to study the long-time

behavior we must turn to a nonstandard analysis.

3. Slow manifolds

The solutions of the slow time scale (A12) are the fixed

points of the fast time scale (A10) and as such are known

as instantaneous fixed points. We recall their approximate

expressions from the main text:

Rad(s) ≃ −T −1f̃ (s)

2λ(s)
,

Rnad(s) ≃ − 2λ(s)

T −1f̃ (s)
.

(A13)

Since these are the fixed points of Eq. (A10) we may use

Eq. (A10) to perform a stability analysis. One finds that Rad(s)

is stable if and only if Imλ(s) < 0, while Rnad(s) is stable if and

only if Imλ(s) > 0, and the possible local phase portraits are

stable star, stable spiral, center, unstable spiral, and unstable

star [52]. Evidently, the only possible bifurcation is from a

stable spiral to an unstable spiral through a center. The locus

of points Rad(s) over s is called a slow manifold and is defined

as Mad = {Rad(s) : s}, and similarly for Rnad(s).

4. Adiabatic manifolds

Due to finite variations in λ(s) and f̃ (s), the slow manifolds

Mad and Mnad are in fact not locally invariant. Nevertheless,

a theorem due to Fenichel [53] ensures the existence of

locally invariant manifolds in a T −1 neighborhood of Mad and

Mnad. These locally invariant manifolds are called adiabatic

manifolds and are denoted by Mad and Mnad, respectively.

The adiabatic manifolds do not obey a simple equation of

motion, but we may find a good approximation by considering

the particular integral of the N -times linearized equation of

motion. We focus on Mad for clarity. Following the argument
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of example 2.1.10 in Ref. [33], one arrives at Mad = {Rad(s) :

s}, where

R
ad(s) ≃

N−1
∑

n=0

T −n

( −1

2iλ(s)

d

ds

)n

Rad(s) (A14)

and N is an optimal truncation with a remainder of order

e−C/T −1

for some C > 0. The expression for Rnad(s) is

analogous. We describe Rad(s) and Rnad(s) as attractive or

unattractive analogously to Rad(s) and Rnad(s) being stable or

unstable, respectively.

5. Stability loss delay

At certain critical times t∗, or s∗, the stability of the

instantaneous fixed points swaps. For example, Rad(s) be-

comes unstable and Rnad(s) becomes stable at s = s∗ such that

Imλ(s∗) = 0 and Imλ′(s∗) > 0. One might naively suppose an

immediate transition between Mad and Mnad at s = s∗, but this

is not the case. The bifurcation is dynamical and the type is

degenerate Hopf, which in general exhibits the phenomenon

known as stability loss delay: The solution R(t) continues to

follow, say, Rad(s) for a significant time past its loss of stability.

Following the argument in Sec. 2 of Ref. [51], one finds that

away from s = s∗ the solution has the asymptotic expansion

R(t) ∼ Ae�̃(s)/T −1 + R
ad(s), (A15)

where

�̃(s) = −2i

∫ s

s∗

ds ′λ(s ′), (A16)

while at s = s∗ the solution exhibits the discontinuity

� = −i

∫ s∗
+

s∗
−

dsf̃ (s)e−�̃(s)/T −1

, (A17)

where s∗
− < s∗ and s∗

+ > s∗ are the intersections of the level

curve of Re� that includes the point z∗ ∈ C such that λ(z∗) =
0. In order to incorporate this discontinuity in the asymptotic

expansion of the solution for R(t) we add the term �(s −
s∗)�e�̃(s)/T −1

, where � is the Heaviside step function. This

term is proportional to e[�̃(s)−�̃(z∗)]/T −1

and therefore diverges

as T −1 → 0 for any time t such that Re�̃(s) − Re�̃(z∗) > 0.

Thus, the times t∗− < t∗ and t∗+ > t∗ corresponding to s∗
− and

s∗
+ are such that (i) if the solution enters a neighborhood of

Mad before t∗− then it must leave at t∗+, (ii) if the solution

enters a neighborhood of Mad after t∗− at t− < t∗ then it must

leave at t+ > t∗ such that Re�̃(s+) − Re�̃(s−) = 0, and (iii)

if the solution leaves a neighborhood of Mad after t∗+ then it

must have entered at t∗−. Since the third case is sure to be rare,

one typically calls t∗+ the maximal delay time. Note that this

maximal delay time is precisely the quasiadiabatic limit of the

delay time t+ calculated via Eq. (26).

For an analytic example of a maximal delay time, let us

consider the path analyzed in Sec. III B. In this case the level

curves of Re�̃ are

e−π Imz cos(πRez) ≃ const. (A18)

FIG. 8. Plot of the theoretical maximal delay time (solid line)

and numerically observed departure times from a 5% neighborhood

of Rad(s) (open squares) for case (c) from Sec. III E.

Evidently, any s− < 0 such that s− > −1/2 is connected to

s+ = −s− > 0 by these level curves. The maximal delay time

is therefore t∗+ = T/2, which agrees with the main text.

For a numerical example, let us consider case (c) from

Sec. III E. Here we calculate the theoretical maximal delay

time by numerically finding the complex root of λ(z), i.e., z∗,

and then numerically finding where the level curve of Re�̃ on

which z∗ lies intersects the real axis. The results are plotted in

Fig. 8. Also plotted in the figure are the results of a numerical

solution where we have initialized to a neighborhood of

Rad(s) at s = s∗
− and asked for when the numerical solution

departs from this neighborhood. The agreement between the

theoretical maximal delay time and the numerically observed

departure time is very good. Furthermore, we see qualitatively

the same results as those shown in Fig. 6; the quantitative

difference is simply due to the finite time required for R(t) to

leave a small neighborhood of Mad and reach |R(t)| = 1.

APPENDIX B: NONADIABATIC TRANSITIONS AS A

MANIFESTATION OF THE STOKES PHENOMENON

OF ASYMPTOTICS

The Stokes phenomenon of asymptotics is that subdominant

exponentials in the asymptotic expansion of certain functions

disappear and reappear in different sections of the complex

plane with different coefficients. In Stokes’s words [54],

“ . . . the inferior term enters as it were into the mist, is

hidden for a little while from view, and comes out with its

coefficient changed.” Berry and Uzdin [26] uncovered the

presence of the Stokes phenomenon of asymptotics in the

solutions of specific exactly solvable models of quasiadiabatic

non-Hermitian systems and identify nonadiabatic transitions

in such systems as a manifestation. In this appendix we review

one such example.

Let us consider again the parametrization studied in

Sec. III B: ω(t) = r sin φ(t), γ (t) = 1, and g(t) = 1/2 +
r cos φ(t) with r ≪ 1 and φ̇(t) = φ̇ = 2π/T = const. An

exact solution for this example is presented by Berry [31],

which we now review. Constructing the analogous quantity to

R in the circular basis

�r� = 1√
2

(

1

i

)

, �r� = 1√
2

(

1

−i

)

, (B1)
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which we denote by p, i.e., �x(t) = c�(t)�r� + c�(t)�r� and

p(t) = c�(t)/c�(t), one arrives at the equation of motion

ṗ ≃ reiφ(t) + p2, (B2)

where we have used r ≪ 1. Note that �r� and �r� are not

eigenvectors. Introducing the new independent variable ζ =
(i/2)(2ε)−1eiφ(t)/2, where ε = π/4

√
rT , and using the ansatz

p(t) = −(d/dt) log f (ζ ) yields

ζ 2 d2f

dζ 2
+ ζ

df

dζ
+ ζ 2f = 0. (B3)

This is the zeroth-order Bessel equation and the solution from

time t = t0 is thus

p(t) = i

2
φ̇ζ

C1(ζ )

C0(ζ )
, (B4)

where Cn(ζ ) = cJ Jn(ζ ) + cY Yn(ζ ) is a linear combination of

order n Bessel functions of the first and second kinds with the

ratio

cY

cJ

= − 2ip(t0)J0(ζ0) + φ̇ζ0J1(ζ0)

2ip(t0)Y0(ζ0) + φ̇ζ0Y1(ζ0)
, (B5)

where p(t0) is the initial condition for p and ζ0 =
(i/2)(2ε)−1eiφ(t0)/2.

In order to translate this result into an expression for R(t)

we have only to transform from the circular basis (B1) to the

original basis and then from that to the parallel transported

eigenbasis (5),

�r−(t) =
(

cos ϑ(t)/2

sin ϑ(t)/2

)

, �r+(t) =
(

− sin ϑ(t)/2

cos ϑ(t)/2

)

, (B6)

where tan ϑ(t) = −g(t)/[ω(t) + iγ (t)/2]. Recognizing the

effect of such transformations on p and R as Möbius

transformations, it is immediately seen that

p(t0) = eiϑ(t0) 1 + iR(t0)

1 − iR(t0)
, (B7)

where R(t0) is the initial condition for R, and

R(t) = i
1 − e−iϑ(t)p(t)

1 + e−iϑ(t)p(t)
. (B8)

Let us focus on the asymptotic expansion about

t = t∗ where Rad(t) becomes unstable. Recalling that

λ(t) ≃ √
reiφ(t)/2 and Imλ(t∗) = 0, we see that with ζ∗ =

(i/2)(2ε)−1eiφ(t∗)/2 we have Reζ∗ = 0. Without loss of gen-

erality, we suppose Imζ∗ > 0. Using 9.1.35, 9.1.36, 9.2.1,

and 9.2.2 in Ref. [47] and assuming that the solution is

exponentially close to Rad(t) by t = t∗ yields

R(t) ∼ i
1 − eϑ(t)pad(t) + 2i�(−Reζ )e2iζ [1 − eϑ(t)pnad(t)]

1 + eϑ(t)pad(t) + 2i�(−Reζ )e2iζ [1 + eϑ(t)pnad(t)]

(B9)

for −π/2 < arg ζ < 3π/2, where pad(t) and pnad(t) cor-

respond to Rad(t) and Rnad(t), respectively, and � is the

Heaviside step function. The discontinuity in this asymptotic

expansion is precisely the Stokes phenomenon of asymptotics.

For t ∈ (t∗ − T/2,t∗ + T/2) the discontinuous term is sub-

dominant and R(t) ∼ Rad(t), whereas for t > t∗ + T/2 it is

dominant and R(t) ∼ Rnad(t). The connection to the expansion

(16) from Sec. III B is more clearly seen by expanding to first

order about Rad(t):

R(t) ≈ Rad(t) − 2�(t − t∗)e− exp[iφ(t)/2]/2ε. (B10)

Comparing this expansion to Eq. (16), we find very good

agreement. The small difference that here the discontinuity

at t = t∗ is � = −2e−1/2ε whereas in Sec. III D we found

� = −πe−1/2ε is principally due to the asymptotic expansions

employed in calculating Eq. (B9), which differ from those used

in calculating Eq. (16).
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