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General Design Bayesian Generalized
Linear Mixed Models
Y. Zhao, J. Staudenmayer, B. A. Coull and M. P. Wand

Abstract. Linear mixed models are able to handle an extraordinary range
of complications in regression-type analyses. Their most common use is to
account for within-subject correlation in longitudinal data analysis. They
are also the standard vehicle for smoothing spatial count data. However,
when treated in full generality, mixed models can also handle spline-type
smoothing and closely approximate kriging. This allows for nonparametric
regression models (e.g., additive models and varying coefficient models) to
be handled within the mixed model framework. The key is to allow the ran-
dom effects design matrix to have general structure; hence our label general

design. For continuous response data, particularly when Gaussianity of the
response is reasonably assumed, computation is now quite mature and sup-
ported by the R, SAS and S-PLUS packages. Such is not the case for bi-
nary and count responses, where generalized linear mixed models (GLMMs)
are required, but are hindered by the presence of intractable multivariate in-
tegrals. Software known to us supports special cases of the GLMM (e.g.,
PROC NLMIXED in SAS or glmmML in R) or relies on the sometimes crude
Laplace-type approximation of integrals (e.g., the SAS macro glimmix or
glmmPQL in R). This paper describes the fitting of general design general-
ized linear mixed models. A Bayesian approach is taken and Markov chain
Monte Carlo (MCMC) is used for estimation and inference. In this gener-
alized setting, MCMC requires sampling from nonstandard distributions. In
this article, we demonstrate that the MCMC package WinBUGS facilitates
sound fitting of general design Bayesian generalized linear mixed models in
practice.
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1. INTRODUCTION

The generalized linear mixed model (GLMM) is one
of the most useful structures in modern statistics, al-
lowing many complications to be handled within the
familiar linear model framework. The fitting of such
models has been the subject of a great deal of research
over the past decade. Early contributions to fitting var-
ious forms of the GLMM include Stiratelli, Laird and
Ware (1984), Anderson and Aitkin (1985), Gilmour,
Anderson and Rae (1985), Schall (1991), Breslow and
Clayton (1993) and Wolfinger and O’Connell (1993).
A summary is provided by McCulloch and Searle
(2001, Chapter 10).

Most of the literature on fitting GLMMs is geared
toward grouped data. Examples include repeated bi-
nary responses on a set of subjects and standardized
mortality ratios in geographical subregions. However,
GLMMs are much richer than the subclass needed for
these situations. The key to full generality is the use
of general design matrices, for both the fixed and ran-
dom components. Once again, we refer to McCulloch
and Searle (2001, Chapter 8) for an overview of gen-
eral design GLMMs. An excellent synopsis of general
design linear mixed models is provided by Robinson
(1991) and the ensuing discussion. One of the biggest
payoffs from the general design framework is the in-
corporation of nonparametric regression, or smooth-
ing, through penalized regression splines (e.g., Wahba,
1990; Speed, 1991; Verbyla, 1994; Brumback, Ruppert
and Wand, 1999). Higher dimensional extensions es-
sentially correspond to generalized kriging (Diggle,
Tawn and Moyeed, 1998). This allows for smoothing-
type models such as generalized additive models to be
fitted as a GLMM and combined with the more tra-
ditional grouped data uses. This is the main thrust of
the recent book by Ruppert, Wand and Carroll (2003),
a summary of which is provided by Wand (2003). Gen-
eral designs also permit the handling of crossed ran-
dom effects (e.g., Shun, 1997) and multilevel models
(e.g., Goldstein, 1995; Kreft and de Leeuw, 1998).

The simplest method for fitting general design
GLMMs involves Laplace approximation of integrals
(Breslow and Clayton, 1993; Wolfinger and O’Connell,
1993) and is commonly referred to as penalized quasi-

likelihood (PQL). However, the approximation can be
quite inaccurate in certain circumstances. Breslow and

Lin (1995) and Lin and Breslow (1996) showed that
PQL leads to estimators that are asymptotically biased.
For situations such as paired binary data the PQL ap-
proximation is particularly poor. In their summary of
PQL, McCulloch and Searle (2001, Chapter 10, pages
283–284) concluded by stating that they “cannot rec-
ommend the use of simple PQL methods in practice.”
In this article we take a Bayesian approach and ex-
plore the Markov chain Monte Carlo (MCMC) fit-
ting of general design GLMMs. One advantage of a
Bayesian approach over its frequentist counterpart in-
cludes the fact that uncertainty in variance components
is more easily taken into account (e.g., Handcock and
Stein, 1993; Diggle, Tawn and Moyeed, 1998). As
summarized in Section 9.6 of McCulloch and Searle
(2001), the frequentist approach to this problem is
thwarted by largely intractable distribution theory. Un-
der a Bayesian approach, posterior distributions of pa-
rameters of interest take this variability into account.
The hierarchical structure of the Bayesian GLMMs
lends itself to Gibbs sampling schemes, albeit with
some nonconjugate full conditionals, to sample from
these posteriors. In addition, it is computationally sim-
pler to obtain variance estimates of the predictions of
the random effects. Booth and Hobert (1998) showed
that, in a frequentist framework, second-order estima-
tion of the conditional standard error of prediction for
the random effects requires bootstrapping the max-
imum likelihood estimates of the fixed effects and
variance components. For complicated random effects
structures, computation of a single maximum likeli-
hood fit can be expensive, making the bootstrap com-
putationally prohibitive. In the Bayesian framework,
interest focuses on the posterior variance of the ran-
dom effects given the data, which is a by-product of
the MCMC output. Note, however, that the Bayesian
approach involves specification of prior distributions
of all model parameters. This requires some care, es-
pecially when sample sizes are small.

There have been a few other contributions to Bayesi-
an formulations of GLMMs in the literature. Those
known to us are Zeger and Karim (1991), Clayton
(1996), Diggle, Tawn and Moyeed (1998) and Fahrmeir
and Lang (2001). However, each of these articles is
geared toward special cases of GLMMs. The GLMMs
described in this article are much more general and al-
low for random effects models for longitudinal data,
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crossed random effects, smoothing of spatial count
data, generalized additive models, generalized geo-
statistical models, additive models with interactions,
varying coefficient models and various combinations
of these (Wand, 2003).

Section 2 lays out notation for general design
GLMMs and gives several important examples.
MCMC implementation is described in Section 3, with
a focus on the WinBUGS package. Section 4 provides
three illustratory data analyses. We close with some
discussion in Section 5.

2. MODEL FORMULATION

The GLMMs for canonical one-parameter exponen-
tial families (e.g., Poisson, logistic) and Gaussian ran-
dom effects take the general form

[y|β,u] = exp{y⊤(Xβ + Zu)
(1)

− 1⊤b(Xβ + Zu) + 1⊤c(y)},

[u|G] ∼ N(0,G),(2)

where here and throughout the distribution of a random
vector x is denoted by [x] and the conditional distribu-
tion of y given x is denoted by [y|x].

In the Poisson case b(x) = ex , while in the logis-
tic case b(x) = log(1 + ex). A few other models (e.g.,
gamma, inverse Gaussian) also fit into this structure
(McCullagh and Nelder, 1989). A number of exten-
sions and modifications are possible. One is to allow
for overdispersion, especially in the Poisson case. In
this paper we will restrict attention to the canonical
one-parameter exponential family structure. In most
situations, the main parameters of interest are con-
tained in β and G, and prior distributions for them need
to be specified; see Sections 2.1 and 2.2.

It is important to separate out random effects struc-
ture for handling grouping. One reason is that this al-
lows for the possibility of hierarchical centering in the
MCMC implementations (Section 2.3). It also recog-
nizes the different covariance structures used in longi-
tudinal data modeling, smoothing and spatial statistics.
Such considerations suggest the breakdown

Xβ + Zu = XRβR + ZRuR

(3)
+ XGβG + ZGuG + ZCuC,

where

XR ≡




XR
1
...

XR
m


 , ZR ≡ blockdiag

1≤i≤m

(XR
i )

and

Cov(uR) ≡ blockdiag
1≤i≤m

(�R) ≡ Im ⊗ �R

correspond to random intercepts and slopes, as typi-
cally used for repeated measures data on m groups with
sample sizes n1, . . . , nm. Here XR

i is an ni ×qR matrix
for the random design corresponding to the ith group,
�R is an unstructured qR × qR covariance matrix and
⊗ denotes Kronecker product.

Next, XG and ZG are general design matrices, usu-
ally of different form than those arising in random ef-
fects models. In many of our examples, XG contains
indicator variables or polynomial basis functions of a
continuous predictor, while ZG contains spline basis
functions (e.g., Brumback, Ruppert and Wand, 1999).
The ZGuG term may be further decomposed as

ZGuG =
L∑

ℓ=1

ZG
ℓ uG

ℓ

with each ZG
ℓ , 1 ≤ ℓ ≤ L, usually corresponding to a

smooth term in an additive model. Also, in keeping
with spline penalization, we only consider

Cov(uG) = blockdiag
1≤ℓ≤L

(σ 2
uℓI).

Note that the decomposition (3) is not unique for a
particular model. For instance, in the crossed random
effects model given in the following Example 3, we
present two methods of decomposition.

The ZCuC component represents random effects
with spatial correlation structure. This can be done in
a number of ways (e.g., Wakefield, Best and Waller,
2001); we will just describe one of the more com-
mon approaches here. Suppose disease incidence data
are available over N contiguous regions. The ran-
dom effect uC vector is of dimension N with entries
UC

1 , . . . ,UC
N . The conditional distribution of UC

i given
UC

j , j �= i, is a univariate normal distribution with

mean equal to the average UC
j values of UC

i ’s neigh-

boring regions and variance equal to σ 2
c divided by the

number of neighboring regions. This is known as the
intrinsic Gaussian autoregression distribution (Besag,
York and Mollié, 1991). This leads to uC having an
improper density proportional to

exp

{
−

∑

i∼j

1
2σ−2

c (UC
i − UC

j )2

}
,(4)

where i ∼ j denotes spatially adjacent regions.
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The versatility of (3) can be appreciated by consid-
ering the following set of examples. Note that we use
truncated linear basis functions for smoothing compo-
nents to keep the formulations simple (e.g., Brumback,
Ruppert and Wand, 1999). In practice these may be
replaced by B-splines (Durbán and Currie, 2003) or
radial basis functions (French, Kammann and Wand,
2001). Knots are denoted by κk with possible super-
scripting. Ruppert (2002) discussed choice of knots of
univariate smoothings, whereas Nychka and Saltzman
(1998) described the choice of knots for multivariate
smoothing and kriging. In the examples we use 1d to
denote a d × 1 vector of ones.

EXAMPLE 1. Random intercept:

(Xβ + Zu)ij = β0 + Ui + β1xij ,

1 ≤ j ≤ ni, 1 ≤ i ≤ m,

XR
i = 1ni

, XG = [xij ],

ZG = ZC = ∅, �R = σ 2
u .

EXAMPLE 2. Random intercept and slope:

(Xβ + Zu)ij = β0 + Ui + (β1 + Vi)xij ,

1 ≤ j ≤ ni, 1 ≤ i ≤ m,

XR
i =




1 xi1
...

...

1 xini


 , XG = ZG = ZC = ∅,

�R =
[

σ 2
u ρuvσuσv

ρuvσuσv σ 2
v

]
.

EXAMPLE 3. Crossed random effects model:

(Xβ + Zu)ii′ = β0 + Ui + U ′
i′,

1 ≤ i ≤ n, 1 ≤ i ′ ≤ n′,

XG = 1nn′, ZG = [In ⊗ 1n′ |1n ⊗ In′],

XR = ZR = ZC = ∅,

uG = [U1, . . . ,Un,U
′
1, . . . ,U

′
n′]⊤,

Cov(uG) = blockdiag(σ 2
u In, σ

2
u′In′).

An alternative representation of this model is

XR
i = 1n′×1, ZG = [1n ⊗ In′], XG = ZC = ∅,

�R = σ 2
u , Cov(uG) = σ 2

u′In′ .

This allows for implementation of hierarchical center-
ing as described in Section 2.3.

EXAMPLE 4. Nested random effects model:

(Xβ + Zu)ijk = β0 + Ui + Vj (i) + β1 xijk,

1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ k ≤ p,

XG = [1 xijk ]1≤i≤m,1≤j≤n,1≤k≤p,

ZG = [Im ⊗ 1np|Im ⊗ (In ⊗ 1p)],

XR = ZR = ZC = ∅,

uG =
[
U1, . . . ,Um,V1(1), . . . ,

Vn(1), . . . , V1(m), . . . , Vn(m)

]⊤
,

Cov(uG) = blockdiag(σ 2
u Im, σ 2

v Inp).

EXAMPLE 5. Generalized scatterplot smoothing:

(Xβ + Zu)i = β0 + β1xi +
K∑

k=1

uk(xi − κk)+,

XG = [1 xi ]1≤i≤n,

ZG =
[
(xi − κk)+

1≤k≤K

]

1≤i≤n

,

XR = ZR = ZC = ∅,

Cov(uG) = σ 2
u IK .

EXAMPLE 6. Generalized additive model:

(Xβ + Zu)i = β0 + βssi +
Ks∑

k=1

us
k(si − κs

k )+

+ βt ti +
K t∑

k=1

ut
k(ti − κ t

k)+,

XG = [1 si ti ]1≤i≤n,

ZG =
[
(si − κs

k )+
1≤k≤Ks

(ti − κ t
k)+

1≤k≤K t

]

1≤i≤n

,

XR = ZR = ZC = ∅,

Cov(uG) = blockdiag(σ 2
usIKs , σ 2

utIK t ).

EXAMPLE 7. Generalized additive semiparametric
mixed model:

(Xβ + Zu)ij = β0 + Ui + (βq + Vi)qij

+ (βr + Wi)rij + β1xij

+ βssij +
Ks∑

k=1

us
k(sij − κs

k )+

+ βt tij +
K t∑

k=1

ut
k(tij − κ t

k)+,
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XR
i =




1 qi1 ri1
...

...
...

1 qini
rini


 ,

XG = [ sij tij xij ]1≤j≤ni ,1≤i≤m,

ZG =
[
(sij − κs

k )+
1≤k≤Ks

(tij − κ t
k)+

1≤k≤K t

]
,

ZC = ∅,

�R = unstructured 3 × 3 covariance matrix,

Cov(uG) = blockdiag(σ 2
usIKs , σ 2

utIK t ).

EXAMPLE 8. Generalized bivariate smoothing/
low-rank kriging:

(Xβ + Zu)i = β0 + β⊤
1 xi +

K∑

k=1

ukC(‖xi − κk‖),

XG = [1 x⊤
i ]1≤i≤n,

ZG =
[
C

(
‖xi − κk‖

1≤k≤K

)]

1≤i≤n

,

XR = ZR = ZC = ∅,

Cov(uG) = σ 2
u I.

Here ‖v‖ ≡
√

v⊤v, C(r) = r2 log |r| corresponds to
low-rank thin plate splines with smoothness parame-
ter set to 2 (as defined in Wahba, 1990) and C(r) =
exp(−|r/ρ|)(1 + |r/ρ|) corresponds to Matérn low-
rank kriging with range ρ > 0 and smoothness parame-
ter set to 3/2 (as defined in Stein, 1999; Kammann and
Wand, 2003). Several more examples could be added,
including some where ZC �= ∅.

2.1 Fixed Effects Priors

Throughout we take the prior distribution of the fixed
effects vector β to be of the form

[β] ∼ N(0,F)

for some covariance matrix F. In practice it is com-
mon to take F to be diagonal with very large entries,
corresponding to noninformative priors on the entries
of β . Such a strategy ensures that, with appropriate
choice of prior for the variance components, the re-
sulting joint posterior distribution of the parameters
will be proper. Even so, the resulting posterior distribu-
tions approximate those based on uniform priors for β .
For normal models, Gelman (2005) noted that because
we typically have enough data to estimate these co-
efficients from the data, any noninformative prior is
adequate. For binary response models, Natarajan and

Kass (2000) showed that, under mild regularity condi-
tions that usually amount to soft requirements on the
number of successes and failures in the data set, use
of a uniform distribution for β in conjunction with an
appropriate prior for the variance components results
in a proper posterior. For logistic regression, Bedrick,
Christensen and Johnson (1997) noted that the normal
prior for β is convenient in large sample situations in
which the posterior is approximately normal. In other
situations, one should be cautious about using a normal
prior with large covariances, because the induced prior
distributions for each P(y = 1) can have point masses
at zero and one. In such cases, it may be preferable to
use the conditional means priors proposed by Bedrick,
Christensen and Johnson (1996), which specify prior
distributions on the success probabilities directly.

2.2 Covariance Matrix Priors

Over the last decade and-a-half, prior elicitation for
the variance components in Bayesian GLMMs has
been an active area of statistical research. Several
authors have demonstrated that the use of improper
priors for these parameters can lead to improper pos-
teriors, with Gibbs samplers unable to detect such ill-
conditioning (Hobert and Casella, 1996). As a result,
a popular choice is the use of proper but “diffuse”
conditionally conjugate priors. In the GLMM setting
with normal random effects, this corresponds to an in-
verse gamma (IG) distribution for a single variance
component and an inverse Wishart distribution for a
variance–covariance matrix. For hierarchical versions
of GLMMs, however, recent research has shown that
these priors can actually be quite informative, lead-
ing to inferences that are sensitive to choice of the
hyperparameters for these distributions (Natarajan and
McCulloch, 1998; Natarajan and Kass, 2000; Gelman,
2005). Natarajan and Kass (2000) and Gelman (2005)
have proposed alternative prior elicitation strategies
that improve upon the conditionally conjugate priors.
In Section 4 we outline a sensitivity analysis approach
that takes these latest proposals into account.

2.3 Hierarchical Centering

Hierarchical centering of parameters can improve
convergence of Markov chain Monte Carlo schemes
(Section 3) for fitting Bayesian mixed models (e.g.,
Gelfand, Sahu and Carlin, 1995). In the context of this
section, hierarchical centering involves reparametriza-
tion of (βR,uR) to (βR,γ ), where

γ ≡ {(ZR)⊤ZR}−1(ZR)⊤XRβR + uR.
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The new vector of parameters γ can be further divided
into m subvectors γ i with γ i = βR + uR

i , so that

γ =




γ 1
...

γ m


 .

Then the general design generalized linear mixed
model becomes

Xβ + Zu = ZRγ + XGβG +
L∑

ℓ=1

ZG
ℓ uG

ℓ + ZCuC .

Note that hierarchical centering is not a well-defined
concept for general design or spatial structures,
because uG and uC cannot be centered in a hierarchi-
cal way similarly to that for uR . As a result, the gen-
eral design and spatial structures do not contribute to
the model for the mean in a conditionally hierarchical
manner.

2.4 Applications

This section describes three public health applica-
tions that benefit from general design Bayesian GLMM
analysis. The analyses are postponed to Section 4.

2.4.1 Respiratory infection in Indonesian children.

Our first example involves longitudinal measurements
on 275 Indonesian children. Analyses of these data
have appeared previously in the literature (e.g., Diggle,
Liang and Zeger, 1994; Lin and Carroll, 2001), so our
description of them will be brief. The response variable
is binary: the indicator of respiratory infection. The co-
variate of most interest is the indicator of vitamin A
deficiency. However, the age of the child has been seen
in previous analyses to have a nonlinear effect.

A plausible model for these data is the Bayesian lo-
gistic additive mixed model

logit{P(respiratory infectionij = 1)}
(5)

= β0 + Ui + β⊤xij + f (ageij ),

where 1 ≤ i ≤ 275 indexes child and 1 ≤ j ≤ ni in-

dexes the repeated measures within child. Here Ui
ind.∼

N(0, σ 2
U ) is a random child effect, xij denote measure-

ments on a vector of nine covariates—height and indi-
cators for vitamin A deficiency, sex, stunting and visit
number—and f is modeled using penalized splines

with spline basis coefficients uk
ind.∼ N(0, σ 2

u ).

2.4.2 Caregiver stress and respiratory health. The
Home Allergen and Asthma study is an ongoing longi-
tudinal study that is investigating risk factors for in-
cidence of childhood respiratory problems including
asthma, allergy and wheeze (Gold et al., 1999). The
portion of the study data that we will consider consists
of 483 families who were followed for two and-a-half
years after the birth of a child. At the start of the study,
a number of demographic variables were measured
on each family, including race, categorized household
income, categorized caregiver educational level and
child’s gender. Additionally, one of the hypothesized
risk factors for childhood respiratory problems is ex-
posure to a stressful environment (Wright et al., 2004).
Each child’s environmental stress level was measured
approximately bimonthly by a telephone interview and
assessed on a discrete ordinal scale from 0 (no stress)
to 16 (very high stress). This assessment was based on
the four-item Perceived Stress Scale (PSS-4) (Cohen,
1988).

Let 1 ≤ i ≤ 483 index family and let 1 ≤ j ≤ ni

index the repeated measurements within each family.
We arrived at the following Bayesian Poisson additive
mixed model for stress experience by caregiver i when
the child was ageij :

stressij
(6)

∼ Poisson[exp{β0 + Ui + β⊤xij + f (ageij )}].

The random intercept, Ui
ind.∼ N(0, σ 2

U ), is a random
family effect, and xi includes indicators of annual fam-
ily income and race (see Figure 4 for details). The term
f (ageij ) is a nonparametric term that we model us-

ing penalized splines with spline coefficients uk
ind.∼

N(0, σ 2
u ). We include the nonparametric term in the

model for the effect of stress as a function of child’s
age because, outside of anecdotal evidence, we do not
know of a biologically motivated parametric model for
stress as a function of child’s age. We arrived at the
other terms in the model (and removed other demo-
graphic terms and interactions from the model) based
on discussions with the investigators in the study and
exploratory data analyses that we fitted via maximum
PQL.

2.4.3 Standardized cancer incidence and proximity

to a pollution source. Elevated cancer rates were ob-
served in a region of Massachusetts, USA, known as
Upper Cape Cod, during the mid-1980s, and one risk
factor of interest is a fuel dump at the Massachusetts
Military Reservation (MMR) (Kammann and Wand,
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2003; French and Wand, 2004). For nearly 20 years the
Massachusetts Department of Public Health (MDPH)
has maintained a cancer registry data base which
records incident cases for 22 types of cancers, includ-
ing lung, breast and prostate cancers. In this example
we focus on female lung cancer between 1986 and
1994.

We use a semiparametric Poisson spatial model to
investigate the relationship between census tract level
female lung cancer standardized incidence rates (SIRs)
and distance to the MMR. Let i = 1, . . . ,45 represent
the census tracts in the study, and let observedi and
expectedi be the observed and expected number of
incident cases of female lung cancer in tract i (i.e., nu-
merator and denominator of the SIR), respectively. Af-
ter fitting a number of models that included terms for
additional demographic factors and water source, we
arrived at the semiparametric Poisson spatial model

observedi

∼ Poisson[expectedi exp{β0 + UC
i + β1xi(7)

+ f (disti)}],

where xi is the percentage of women in tract i who
were over 15 and employed outside the home in 1989,
and disti is the distance from the centroid of cen-
sus tract i to the centroid of the MMR. Here, uC =
(UC

1 , . . . ,UC
45)

⊤ is a vector of spatially correlated ran-
dom effects with intrinsic Gaussian autoregression dis-
tribution parametrized by variance component σ 2

c , as
defined in (4). To complete the specification of the
spatial correlation model, we choose a cutoff distance
value d and treat two census tracts as neighbors if
the distance between their centroids is less than or
equal to d . We choose d = 7.5 km, which corre-
sponds to the cutoff such that every census tract has
at least one neighbor. We model the nonparametric
term f (disti) using penalized splines with coeffi-

cients uk
ind.∼ N(0, σ 2

u ).

3. FITTING VIA MARKOV CHAIN MONTE CARLO

In the general design GLMM (1) and (2), the poste-
rior distribution of

ν⊤ ≡ [β⊤ u⊤ ]

is

[ν|y] =
(∫

exp{y⊤Cν − 1⊤b(Cν)

− 1
2

(
log |G| + ν⊤V−1ν

)
} [G]dG

)
(8)

·
(∫ ∫

exp
{
y⊤Cν − 1⊤b(Cν)

− 1
2

(
log |G| + ν⊤V−1ν

)}

· [G]dGdν

)−1

,

where C ≡ [X Z ], V ≡ blockdiag(F,G) and [G] is
the prior on the variance components in G. These in-
tegrals are analytically intractable for most problems.
Furthermore, in the applications we consider, the di-
mensionality precludes the use of numerical integra-
tion. A standard remedy is to apply a Markov chain
Monte Carlo algorithm to draw samples from (8). An
overview of MCMC is provided by Gilks, Richardson
and Spiegelhalter (1996).

The MCMC methods break up the model parame-
ters into subsets and then sample from the conditional
distributions given the remaining parameters and data,
which are often called full conditionals. In the general
design GLMM, the natural breakdown of the parame-
ters is into ν and G, leading to the full conditionals

[ν|G,y] and [G|ν,y].

The latter full conditional has a standard form when the
prior on the variance components is inverse gamma or
Wishart, which are “conditionally conjugate” priors for
this model, but not when, say, a folded-Cauchy prior is
used (e.g., Gelman, 2005). The first full conditional has
the general form

[ν|G,y] ∝ exp
{
y⊤Cν − 1⊤b(Cν) − 1

2ν⊤V−1ν
}
,

which is a nonstandard distribution unless y is condi-
tionally Gaussian. Clever strategies such as adaptive
rejection sampling (Gilks and Wild, 1992) and slice
sampling (e.g., Besag and Green, 1993; Neal, 2003) are
required to draw samples. The most common versions
of these algorithms work with the full conditionals of
the components ν. When V is diagonal, these full con-
ditionals are of the form

[νk|ν−k,G,y]

∝ exp
{
(C⊤y)kνk − 1⊤b(ckνk + C−kν−k)(9)

− 1
2ν2

k/(V)kk

}
.

Here ck is the kth column of C, C−k is C with the
kth column omitted, νk is the kth entry of ν and ν−k

is ν with the kth entry omitted. It is easily shown
that (9) is log-concave, which permits use of adaptive
rejection sampling and simplifies slice sampling. These
algorithms can also be used to sample from the full
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conditionals for the variance components when neces-
sary.

Zhao (2003) provides a detailed account of MCMC
for general design GLMM and compares several strate-
gies via simulation. One of the conclusions drawn
from the simulations is that the WinBUGS package
(Spiegelhalter, Thomas and Best, 2000) performs ex-
cellently among various “off-the-shelf” competitors.
This is very good news because it saves the user hav-
ing to write his or her own MCMC code. However,
it should be noted that for large models WinBUGS

can take quite some time to obtain a fit. Also, the
analysis must be performed on a particular platform
(Windows). Assuming that computation time is not an
issue and that Windows is available, we can report that
fitting of general design GLMMs via WinBUGS has a
large chance of success. For our analyses we had access
to several personal computers and ran multiple chains
in parallel to assess convergence and prior sensitivity.
This reduced the elapsed time it took to compute each
one of the analyses by an order of magnitude.

4. DATA ANALYSES

4.1 Input Values and Prior Distributions

We used WinBUGS to fit the models described in
Section 2.4. However, several input values and prior
distributions needed to be specified, so we preface the
analyses with the particular choices that were made.
A more detailed study on the use of WinBUGS for fit-
ting models of this type is provided by Crainiceanu,
Ruppert and Wand (2005).

Based on the recommendations of Gelfand, Sahu and
Carlin (1995), we used hierarchical centering of ran-
dom effects. All continuous covariates were standard-
ized to have zero mean and unit standard deviation.
A strategy such as this is necessary for the method
to be scale invariant given fixed choices for the hy-
perparameters. We used radial cubic basis functions
for smooth function components. Apart from mak-
ing the fitted functions smooth and requiring a rel-
atively small number of knots, Crainiceanu, Ruppert
and Wand (2005) reported that they had good mix-
ing properties in MCMC analysis. Radial cubic ba-
sis function modeling of a function f entails putting
f (x) = β0 + β1 x + Zxu, where

Zx =
[
|x − κk|3

1≤k≤K

][
|κk − κk′ |3

1≤k,k′≤K

]−1/2

and

(10)
u ∼ N(0, σ 2

u I)

(French, Kammann and Wand, 2001), with κk =
( k+1
K+2)th quantile of the unique predictor values. In

general, K can be chosen using rules such as

K = min
(1

4(number of unique predictor values),35
)

or those given in Ruppert (2002). However, often
considerably smaller K can be used through exper-
imentation with the benefit of faster MCMC fitting.
This approach was taken in our analyses.

We considered several common variance component
priors. These were inverse gamma with equal scale and
shape,

[σ 2] ∝ (σ 2)−(a+1)e−a/σ 2
,

denoted by IG(a, a) for a = 0.001,0.01,0.1
(Spiegelhalter et al., 2003), and the folded-t class of
priors for σ (Gelman, 2005)

[σ ] ∝
(

1 +
1

ν

(
σ

s

)2)−(ν+1)/2

,

where s and ν are fixed scale and degrees of freedom
hyperparameters, respectively. We investigated the sen-
sitivity of the model fit to the choice of the hyperpara-
meters. Results showed that fits based on the IG priors
were stable for a ≥ 0.01, but those obtained assum-
ing a = 0.001 behaved erratically. Out of the remain-
ing choices, the folded-Cauchy prior, a member of the
folded-t class of priors, performed well.

As a result of these empirical comparisons, in our
examples we take the approach of fitting models un-
der multiple prior distributions for the variance com-
ponents and assessing the sensitivity of the results to
these assumptions. Due to its popularity, we fit gen-
eral design GLMMs using independent IG(0.01, 0.01)
priors for each variance component. Results suggest
this prior performs well for the examples considered in
this paper. We also refitted the models using indepen-
dent folded-Cauchy prior distributions for each vari-
ance component. For a variance component square root
σ and fixed scale parameter s, the folded-Cauchy dis-
tribution has probability distribution

[σ ] ∝ (σ 2 + s2)−1.

Following Gelman (2005), we take s = 25 in our exam-
ples and check the sensitivity of results to this choice
by also fitting the models for s = 12. This prior can
be implemented in WinBUGS using the flexible feature
that allows a user to code an arbitrary prior distribution
for the model parameters (see the Appendix). We also
ran the models using a Uniform(0, 100) prior on σ .
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A theoretical comparison of such priors in the general
design GLMM setting is a topic worthy of future re-
search.

Table 1 summarizes the input values and prior distri-
butions that were used.

4.2 Respiratory Infection in Indonesian Children

Using the prior distributions and input values given
in Table 1, WinBUGS produced the output for the β

coefficients summarized in Figure 1. It is seen that,
for this model, the chains mix quite well with little
significant autocorrelation and Gelman–Rubin

√
R̂ val-

ues (Gelman and Rubin, 1992) all less than 1.01. Vita-
min A deficiency is seen to have a borderline positive
effect on respiratory infection, which is in keeping with
previous analyses. Similar comments apply to sex and
some of the visit numbers.

FIG. 1. Summary of WinBUGS output for parametric components of (5). The full titles for columns are name of variable, trace plot of

sample of corresponding coefficient, plot of sample against 1-lagged sample, sample autocorrelation function, Gelman–Rubin
√

R̂ diagnostic,
kernel estimate of posterior density and basic numerical summaries.
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TABLE 1
Input values and prior distributions used in WinBUGS for analyses

Hierarchical centering used for random intercepts.
Continuous covariates standardized to have
zero mean and unit standard deviation.
Radial cubic basis functions for smooth functions.

length of burn-in 5000
length of “kept” chain 5000
thinning factor 5
prior for fixed effects N(0, 108)

prior for variance components





IG(0.01, 0.01)

folded-Cauchy with s = 12,25
Uniform(0,100)

The estimated effect of age is summarized in the top

left panel of Figure 2 and is seen to be significant and

nonlinear. The remaining panels show good mixing of

the chains corresponding to the estimated age effect at

quartiles of the age data. Gelman–Rubin
√

R̂ plots (not
shown here) support convergence of these chains.

FIG. 2. Summary of WinBUGS output for estimate of f (age). The top left panel is the posterior mean of the estimated probability of

respiratory infection with all other covariates set to their average values. The shaded region is a corresponding pointwise 95% credible set.
The remaining panels are trace plots of samples used to produce the top left plot at quartiles of the age data.
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To assess the sensitivity of our conclusions to the
choice of variance component priors, we also ran the
Gibbs samplers assuming the folded-Cauchy and Uni-
form priors for the random effects standard deviations
(see Section 2.2). Figure 3 shows the posterior esti-
mates and 95% credible intervals for the regression co-
efficients of interest using the default independent IG
priors, independent folded-Cauchy priors with s = 25,
independent folded-Cauchy priors with s = 12 and in-
dependent U(0,100) priors. This figure shows that re-
sults are not sensitive to this choice, with the changes
in the posterior means never more than 2% of that
obtained from the IG specification and the credible in-
tervals never more than 6.5% wider than their IG coun-
terparts.

4.3 Caregiver Stress and Respiratory Health

For this example, we also used the priors and input
values given in Table 1 and we provide the WinBUGS

code in the Appendix. For the spline we used 12 knots
that were spaced evenly on the percentiles of age. We
found that the fit did not change noticeably if we used
more knots and we chose a small number of knots for
computational efficiency.

Figure 4 shows the Bayes estimates and credible in-
tervals for the β coefficients as well as an assessment of
the convergence of the chains. The coefficients can be
interpreted as category-specific offsets from the pop-
ulation mean. The chains had a moderate autocorrela-
tion and the Gelman–Rubin

√
R̂ values were all less

than 1.04. Figure 5 contains the estimated age effect
and trace plots for the effect of age at the quartiles of
the data. Again, the Gelman–Rubin

√
R̂ values were

less than 1.04 and support convergence. The figures are
based on the chain that used the independent inverse
gamma priors for the variance components. Fits that
used independent Cauchy (s = 25) priors for the square

FIG. 3. Results of sensitivity analysis for variance component priors for model (5).
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FIG. 4. Summary of WinBUGS output for parametric components of (6). The full titles of columns are name of variable, trace plot of sample

of corresponding coefficient, plot of sample against 1-lagged sample, sample autocorrelation function, Gelman–Rubin
√

R̂ diagnostic, kernel

estimate of posterior density and basic numerical summaries. The coefficients can be interpreted as time invariant offsets to the time varying

population mean.

root of the variance components changed neither the
posterior means nor the widths of the credible intervals
for the parameters of interest by more than 4.7%. The
posterior mean and confidence set for f (age) was also
relatively insensitive to the prior on the variance com-
ponents in this example.

Two aspects of the fit that were of interest to the in-
vestigators in the study included the inverse dose re-

sponse relationship between income and stress, and
that race was significantly related to environmental
stress even after accounting for the effect of income.
The nonparametric estimate of stress as a function of
the child’s age was also interesting and suggests that
relatively stressful times include the first few months,
when the child is approximately a year old, and beyond
age two.
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FIG. 5. Summary of WinBUGS output for estimate of f (age). The top left panel is the posterior mean of the mean stress (PSS-4) as a

function of age with all other covariates set to their average values. The shaded region is a corresponding pointwise 95% credible set. The

remaining panels are trace plots of samples used to produce the top left plot at quartiles of the age data.

4.4 Standardized Cancer Incidence and Proximity

to a Pollution Source

As in the previous examples, we started with the
prior distributions and inputs in Table 1. In this case
though, the chain required a longer burn in. We found
that a burn in of length 15,000 was sufficient to pro-
duce acceptable convergence. Figure 6 (bottom panel)
contains the resulting convergence diagnostics and in-
ferences for the parameters in the model. The middle
panel of Figure 6 contains an estimate of the contri-
bution of distance to the MMR to the standardized in-
cidence and trace plots of the function estimate at the
quartiles of distance. The Gelman–Rubin

√
R̂ values

for the estimates at these quartiles were less than 1.04
and support convergence. Finally, the top panel of Fig-
ure 6 maps the estimated SIRs based on the model fit,

demonstrating the smoothing achieved by the spatial
model. The figures are based on fits that used indepen-
dent IG(0.01, 0.01) priors for the variance components.
Fits that used independent Cauchy (s = 25) priors for
the square root of the variance components decreased
the length of the credible interval for the effect of per-
cent working by 6.7% and lowered the posterior mean
by 3.1%. The posterior mean and confidence set for
f (disti) also changed very little.

The fitted model suggests a nominally positive rela-
tionship between the percentage of women who were
working outside the home in 1989 and standardized
lung cancer incidence rates at the census tract level.
Further, the estimated curve f (disti) suggests an in-
creased standardized incidence rate for census tracts
that are closer than about 10 km to the MMR after
controlling for other factors, and the map suggests
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FIG. 6. Summary of WinBUGS output for the fit of (7). The top panel contains a spatial plot of the smoothed SIRs ( posterior means of

the Uc
i ’s). The middle panel shows the estimated f (dist) and a corresponding pointwise 95% credible set along with trace plots of the

samples of the function at the quartiles of distance. The bottom panel displays summaries of other parameters of interest and convergence

diagnostics. Additionally, the Gelman–Rubin
√

R̂ diagnostics were less than 1.03 for all the Uc
i ’s and for the f (dist) at the quartiles of

distance. The MMR is the area in the center of the map that is excluded from the analysis.
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that areas immediately east of the MMR exhibit the
highest SIRs. None of the estimated effects of the
model covariates is strongly significant. Regardless of
statistical significance, however, we emphasize that
this type of “cancer cluster” study should be viewed
as exploratory since the study design is ecological
(e.g., Kelsey, Whittemore, Evans and Thompson, 1996,
Chapter 10). Additionally, reanalyses of similar stud-
ies have demonstrated that unmeasured confounders
could radically change the conclusions in these types
of analyses (e.g., Aherns et al., 2001).

5. DISCUSSION

As illustrated by the analyses in the previous sec-
tion, general design Bayesian GLMMs are a very use-
ful structure. In this article we have demonstrated that
WinBUGS provides good off-the-shelf MCMC fitting
of these models. Some of the reviewers have pointed
out the possibility of designing MCMC algorithms that
take advantage of the special structure of Bayesian
GLMMs that is summarized in Section 2. We have
done some exploration in this direction (Zhao, 2003),
but would welcome such research from MCMC spe-
cialists. In the meantime, use of WinBUGS is our rec-
ommended fitting method.

APPENDIX: WINBUGS CODE

In this Appendix we list the WinBUGS code used
for the data analyses of Section 4. Note that the spline
basis functions and hyperparameters are inputs.

The following code was used to fit (5) to the data
on respiratory infection of Indonesian children. Here
inverse gamma priors are used on all variance compo-
nents.
model

{

for (i in 1:num.obs)

{

X[i,1] <- age[i]

X[i,2] <- vitAdefic[i]

X[i,3] <- sex[i]

X[i,4] <- height[i]

X[i,5] <- stunted[i]

X[i,6] <- visit2[i]

X[i,7] <- visit3[i]

X[i,8] <- visit4[i]

X[i,9] <- visit5[i]

logit(mu[i])

<- gamma[subject[i]]

+ inprod(beta[],X[i,])

+ inprod(u.spline[],Z.spline[i,])

resp[i] ~ dbern(mu[i])

}

for (i.subj in 1:num.subj)

{

gamma[i.subj] <- beta0 + u.subj[i.subj]

u.subj[i.subj] ~ dnorm(0,tau.u.subj)

}

for (k in 1:num.knots)

{

u.spline[k] ~ dnorm(0,tau.u.spline)

}

beta0 ~ dnorm(0,tau.beta)

for (j in 1:num.pred)

{

beta[j] ~ dnorm(0,tau.beta)

}

tau.u.spline ~ dgamma(A.u.spline,

B.u.spline)

tau.u.subj ~ dgamma(A.u.subj,B.u.subj)

}

The following code was used to fit (6) to the data on
caregiver stress and respiratory health. This code il-
lustrates the use of folded-Cauchy priors on variance
components. As noted in the WinBUGS user manual
(Spiegelhalter, Thomas and Best, 2000), a single zero
Poisson observation with mean φ contributes a term
exp(φ) to the likelihood for σ , which is then combined
with a flat prior over the positive real line to produce
the folded-Cauchy distribution.
model

{

for (i in 1:num.obs)

{

X[i,1] <- age[i]

X[i,2] <- income1[i]

X[i,3] <- income2[i]

X[i,4] <- race[i]

log(mu[i])

<- gamma[house[i]]

+ inprod(beta[],X[i,])

+ inprod(u.spline[],Z.spline[i,])

y[i] ~ dpois(mu[i])

}

for (i.house in 1:num.house)

{

gamma[i.house] <- beta0+u.subj[i.house]

u.subj[i.house] ~ dnorm(0,tau.u.subj)

}

for (k in 1:num.knots)

{

u.spline[k] ~ dnorm(0,tau.u.spline)

}

beta0 ~ dnorm(0,tau.beta)

for (j in 1:num.pred)

{

beta[j] ~ dnorm(0,tau.beta)

}

tau.u.spline <- pow(sigma.u.spline,-2)

zero.u.spline <- 0

sigma.u.spline ~ dunif(0,1000)
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phi.u.spline <- log((pow(sigma.u.spline,2)

+ pow(phi.scale.u.spline,2)))

zero.u.spline ~ dpois(phi.u.spline)

tau.u.subj <- pow(sigma.u.subj,-2)

zero.u.subj <- 0

sigma.u.subj ~ dunif(0,1000)

phi.u.subj

< - log((pow(sigma.u.subj,2)

+ pow(phi.scale.u.subj,2)))

zero.u.subj ~ dpois(phi.u.subj)

}

Below is the code that we used to fit the spatial
model (7) to the Cape Cod female lung cancer data.
Please note that the variance components have inverse
gamma priors, and adj, weights, and num are in-
puts to car.normal, the normal conditional autore-
gressive function in WinBUGS.
model

{

for (i in 1:num.regions)

{

X[i,1] <- working[i,1]

X[i,2] <- distance[i,1]

theta[i] <- beta0+u.spatial[i]

+ inprod(beta[],X[i,])

+ inprod(u.spline[],

Z.spline[i,])

log(mu[i]) <- log(E[i])+theta[i]

O[i] ~ dpois(mu[i])

SIRhat[i] <- 100*mu[i]/E[i]

}

u.spatial[1:num.regions]

~car.normal(adj[],weights[],

num[],tau.u.spatial)

for (k in 1:num.knots)

{

u.spline[k] ~ dnorm(0.0,tau.u.spline)

}

for (j in 1:num.pred)

{

beta[j] ~ dnorm(0.0,tau.beta)

}

beta0 ~ dnorm(0.0,tau.beta)

tau.u.spatial~dgamma(A.u.spatial,

B.u.spatial)

tau.u.spline~dgamma(A.u.spline,B.u.spline)

}
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