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Abstract. Notch flexure hinges are often used as revolute joints in high-precise compliant mechanisms, but

their contour-dependent deformation and motion behaviour is currently difficult to predict. This paper presents

general design equations for the calculation of the rotational stiffness, maximal angular elastic deflection and

rotational precision of various notch flexure hinges in dependence of the geometric hinge parameters. The novel

equations are obtained on the basis of a non-linear analytical model for a moment and a transverse force loaded

beam with a variable contour height. Four flexure hinge contours are investigated, the semi-circular, the corner-

filleted, the elliptical, and the recently introduced bi-quadratic polynomial contour. Depending on the contour,

the error of the calculated results is in the range of less than 2 % to less than 16 % for the suggested parameter

range compared with the analytical solution. Finite elements method (FEM) and experimental results correlate

well with the predictions based on the comparatively simple and concise design equations.

1 Introduction

In precision engineering applications, micromechanical sys-

tems or special applications often compliant mechanisms

(Howell, 2013; Zentner, 2014) are used instead of rigid-

body mechanisms. Due to their monolithic design, compli-

ant mechanisms are suitable to realize high reproducible mo-

tion without clearance, external friction and wear. In com-

pliant mechanisms with lumped compliance mostly flexure

hinges (Lobontiu, 2003) are used as material coherent revo-

lute joints. Among a variety of flexure hinge types the notch

flexure hinge is state of the art. Therefore, lots of cut-out

geometries are described in literatures, while the circular or

corner-filleted flexure hinge contour are mainly used in tech-

nical systems.

Based on the rigid-body model (Howell and Midha, 1994)

the rigid-body replacement method is widely used for the

synthesis of compliant mechanisms, especially in precision

engineering. In comparison to the optimal synthesis with a

continuum model, a better guiding accuracy of a coupler

point is possible with this method (Pavlović et al., 2010).

In contrast to the synthesis of rigid-body mechanisms the

stress and deformation behaviour as well as the motion be-

haviour must be considered as multi-objective design cri-

teria in the compliant mechanisms synthesis. Starting from

the rigid-body mechanism, this leads to a complex and itera-

tive model-based design process for compliant mechanisms.

Therefore, usually numerical methods and simulations are

needed. Regarding the required mechanism properties, the

step of the geometric design of the notch flexure hinges is a

key aspect in the synthesis of a compliant mechanism. There-

fore, many different approaches exist, but nevertheless no de-

tailed guidelines or concise design equations for the contour-

dependent and multi-criterial calculation of the flexure hinge

characteristics are known to the author. Existing design equa-

tions are not concise, have complex structural form, and are

limited to commonly used hinge contours (cf. Sect. 4). In

addition, the rotational precision depends on the approach to

model the position of the rotation axis during motion. Hence,

a suitable approach for the model-based investigations must

be used. In conclusion, simple and concise design equations

for flexure hinges would be of great benefit to the accelerated
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and goal-oriented synthesis of compliant mechanisms with-

out computer-aided simulations or the test of manufactured

prototypes.

Regarding a plane rotational motion due to a bending mo-

ment or a transverse force load, this paper addresses the de-

velopment of new general design equations for the simpli-

fied calculation of the rotational stiffness, maximal angular

elastic deflection and rotational precision of various notch

flexure hinges with a semi-circular, corner-filleted, elliptical,

and polynomial contour for an appropriate range of the ba-

sic hinge parameters. The design equations are derived ac-

cording to results of the analytical solution based on the non-

linear theory for modelling of large deflections of rods.

The remaining sections are organized as follows. In

Sect. 2, the state of the art of flexure hinges and their geomet-

rical notch design is presented together with the investigated

flexure hinge contours in this paper. In Sect. 3, the analytical

characterization of the flexure hinges is described regarding

the three mentioned performance criteria in dependence of

the hinge contour and the geometric parameters. In Sect. 4,

the method and results for the derived design equations are

presented. In Sect. 5, the equation-based results are discussed

and compared with the exact analytical solution and the re-

sults of a FEM-based and experimental characterization of

the regarded flexure hinges. Finally, conclusions are drawn

in Sect. 6.

2 Design of the flexure hinges

In contrast to form- and force-closed joints a flexure hinge

enables a restoring force which can be advantageous in tech-

nical systems (this performance criterion is named rotational

stiffness). According to the material coherent connection, the

angular deflection of a flexure hinge is limited by reach-

ing admissible material stress respective elastic strain values

(maximal angular deflection). Thus, the motion range of a

compliant mechanism is limited too? by the hinge in the kine-

matic chain with largest rotation angle. In addition, no ex-

act relative rotation is possible with a flexure hinge because

always a shift of its axis of rotation occurs in dependence

of geometric and load parameters (rotational precision). In

turn, this can lead to path deviations of the compliant mech-

anism compared to the rigid-body mechanism, which are not

negligible especially in precision engineering (Venanzi et al.,

2005; Linß et al., 2014).

As a flexure hinge in this paper a monolithic, small-length

and elastic deformable segment of a compliant mechanism

is meant, which realizes the function of a relative rotation

of two adjacent links mainly due to bending. The demand

for a larger angular deflection and a low shift of the rota-

tional axis during the rotation results in a variety of some-

times very complex flexure hinge types, like the butterfly

hinge (e.g. Henein et al., 2003; Pei and Xu, 2011) for ex-

ample. However, the investigations in this paper are focused

on notch flexure hinges. Due to their low complexity they

are easy to manufacture and therefore mainly used in plane

compliant mechanisms, especially for kinematic chains with

a higher link number. Furthermore, notch flexure hinges en-

able optimization potential regarding the rotational precision

and possible deflection as equivalent objectives, which is not

used yet. Hence, generalized design equations would be of a

great benefit.

2.1 Existing approaches for designing the notch

geometry of a flexure hinge

In the past, notch flexure hinges have been designed very fre-

quently so that various cut-out geometries are proposed to

describe the hinge contour, see Fig. 1. Mostly, there are pre-

defined basic geometry elements, which lead to three main

notch flexure hinge types, each with a typical character-

istic: The precise hinge with a semi-circular contour (e.g.

Paros and Weisbord, 1965; Wu and Zhou, 2002), the large-

deflective hinge with a corner-filleted contour (e.g. Lobontiu,

2003; Meng et al., 2013) or the elliptical hinge (e.g. Smith et

al., 1997; Chen et al., 2008) as a compromise. Furthermore,

flexure hinges are designed with other elementary geome-

tries to realize a special characteristic, like the parabolic or

hyperbolic contour (e.g. Lobontiu, 2003; Chen et al., 2009),

and cycloidal contour (Tian et al., 2010). Increasingly flex-

ure hinges are designed with a combination of the mentioned

basic geometries (e.g. Zelenika et al., 2009; Lobontiu et al.,

2011; Chen et al., 2011). Rarely special mathematical func-

tions are used that allow more precise shape variations of the

partial or whole hinge contour due to a higher number of ge-

ometric parameters, like the spline contour (Christen and Pf-

efferkorn, 1998; De Bona and Munteanu, 2005), the power-

function contour (Li et al., 2013), the exponent-sine contour

(Wang et al., 2013), the Lamé contour (Desrochers, 2008),

and the Bézier contour (Vallance et al., 2008). The design

with undefined freeform geometries based on topology opti-

mization (Zhu et al., 2014) is a very complex, non-intuitive

and not a general design process.

Nevertheless, special higher order polynomial functions,

which was suggested by author (Linß et al., 2011b), are not

state of the art. Among the variety of cut-out geometries es-

pecially polynomial contours offer high potential for opti-

mization while a comparatively simple contour modelling is

possible. Depending on the polynomial order and the coeffi-

cients arbitrary complex curves can be realized. Furthermore,

nearly any elementary geometry could be approximated.

While usually completely symmetric flexure hinges are

used, there are a several studies on transversal and axial sym-

metric hinges. Especially axial symmetric flexure hinges are

realised mostly as so-called hybrid hinges because they allow

combining the advantages of right circular and corner-filleted

flexure hinges (Chen et al., 2005). Further it is known, that

a better kinematic behaviour up to an ideal rotation axis can

be realized due to a smaller radius at the loaded hinge side
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Figure 1: Approaches for the geometric design of a flexure hinge contour with notches on both sides: (a) rectangular, (b) corner-
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Figure 1. Approaches for the geometric design of a flexure hinge contour with notches on both sides: (a) rectangular, (b) corner-filleted,

(c) semi-circular, (d) elliptical, (e) parabolic, (f) hyperbolic, (g) cycloidal, (h) polynomial higher order, (i) spline function, (j) special mathe-

matic functions, (k) freeform, (l) axial symmetric with transversal asymmetry.

(Linß et al., 2011a; Lin et al., 2013). However, in this paper

only transversal and axial symmetric notch flexure hinges are

investigated at first because they allow a holistic and intuitive

design with regard to the mechanism synthesis.

2.2 Regarded flexure hinge and investigated hinge

contours

Subject of the investigations in this paper is a separate notch

flexure hinge, which is fixed at one end, see Fig. 2a. A given

moment M = −Mez or transverse force F = −F ey leads to

an angular deflection of the free end with the rotation angle

ϕ.

The variable hinge contour height hn(x)is defined by the

chosen notch geometry. As it is known, that a deformation

not only occurs in the notch segment (Zettl et al., 2005; Yong

et al., 2008), the flexure hinge is always modelled with little

segments of the both adjacent links. Regarding the influence

on the flexure hinge properties, two groups of geometric de-

sign parameters are investigated: The basic hinge dimensions

(l, L, h, H , b) and the hinge contour (function hn(x)).

The determination of typical functional parameters of the

hinge contour, e.g. radii, can be done by selection, design of

experiments, or optimization, where this design step is not

in the focus of this paper. For the investigations, a flexure

hinge with the following characteristics of the hinge contour

hn(x) is regarded: A symmetric, continuously differentiable,

not undercut contour with the minimal notch height h in the

middle (at x = 0), and with a rectangular cross-section. The

total height H (which represents the link height in a compli-

ant mechanism too) as well as the total length L = 2H are

chosen to be constant for all investigations. Thus, the dis-

tance of the acting load to the middle of the hinge always

is the half-length of L to ensure comparability. The hinge

length l, the minimal hinge height h, and the hinge width b

are varied within the design domain according to the intro-

duced dimensionless ratios βl , βh, and βb with

βl =
l

H
,βh =

h

H
, andβb =

b

H
. (1)

The exact notch length ln depends on the notch contour and

is mostly equal to the hinge length l, as described in the fol-

lowing subsections. For the investigations in this paper four

flexure hinge contours are considered (see Fig. 2b), the three

typical corner-filleted, semi-circular and elliptical contours,

and the bi-quadratic polynomial contour of 4th order.

2.2.1 Corner-filleted contour

There exist different suggestions for the suitable design of the

geometric parameters of corner-filleted flexure hinges aiming

for low stress values by using a special ratio of the fillet ra-

dius and the minimal hinge height, e.g. r = 0.64h (Wittwer

et al., 2004), r = 0.7h (Schotborgh et al., 2005), or r > 2h

(Henein, 2011). As previous results show, also a stress opti-

mal fillet radius relating to the hinge length can be general-

ized with r = 0.1l (Linß et al., 2011a). This ratio is used by

Schotborgh et al. (2005) and Meng et al. (2013) too.

Therefore corner-filleted contours with a stress optimal

fillet radius of r = 0.1l are always regarded in this paper.

Hence, for the investigated flexure hinges there is a contin-

uously intersection of the circular arc with the both adjacent

horizontal and vertical lines, see Fig. 3. The used contour

function hn(x) for all corner-filleted flexure hinges is sec-

tional expressed by Eq. (2), and the notch length ln always

equals the hinge length l.

hn (x) =



































h + 2r − 2

√

r2 −
(

x +
l

2
− r

)2

, −
l

2
≤ x < −

l

2
+ r

h, −
l

2
+ r ≤ x ≤

l

2
− r

h + 2r − 2

√

r2 −
(

x −
l

2
+ r

)2

,
l

2
− r < x ≤

l

2

(2)

2.2.2 Semi-circular contour

To ensure principle similarity of circular contours for the

varying hinge dimensions l and h, in this work flexure hinges

with the radius R = 0.5l are always considered. In depen-

dence of h, this leads to contours which consist of an exact

(cf. Fig. 4a and b) or approximated (cf. Fig. 4c) semi-circular

arc. Therefore, three different models of a semi-circular flex-

ure hinge have become necessary.

According to this, the notch length ln can be calculated

with Eq. (3). The used contour function hn(x) for flexure
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Figure 2. Investigated flexure hinge: (a) geometric parameters and deflected state as a result of a moment or a force load, (b) representation

of hn(x) for four different flexure hinge contours (half joint, βl = 1, βh = 0.2).
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Figure 3. Quarter model of a flexure hinge with a corner-filleted

contour with the stress optimal fillet radius r = 0.1l.

hinges with exact semi-circular arcs (2R ≤ H − h) is ex-

pressed by Eq. (4). Otherwise the contour is expressed in

sections.

ln =















l, R ≤
H − h

2

2

√

R2 −
(

H − h

2
− R

)2

, R >
H − h

2

(3)

hn (x) = h + 2R − 2
√

R2 − x2 (4)

2.2.3 Elliptical contour

For modelling similar elliptical contours the same approach

is used as for the semi-circular contours. Next, the elliptical

flexure hinges are always considered with the two radii rx =
0.5l and ry = 0.25l. Hence, there are three different models

of an elliptical hinge in dependence of h, see Fig. 5.

According to this, the notch length ln can be calculated

with Eq. (5). The used contour hn(x) for flexure hinges

with exact semi-elliptical arcs (rx ≤ H − h) is expressed by

Eq. (6). Otherwise the contour is expressed in sections.

ln =















l, rx ≤ H − h

2rx

√

√

√

√1 −
(

H−h
2

− ry
)2

r2
y

, rx > H − h
(5)

hn (x) = h + 2ry



1 −

√

1 −
x2

r2
x



 (6)

2.2.4 Polynomial contour

For modelling flexure hinges special polynomial contours are

suitable too (Linß et al., 2011b). In this case, the contour

function hn(x) with an even polynomial order n is expressed

by Eq. (7). An odd polynomial order can be also achieved if

the equation is only used for a quarter hinge, which has to be

mirrored twice in the CAD model afterwards.

hn (x) = h +
(H − h)
(

l
2

)n xn (7)

Based on FEM simulations the influence of the polynomial

order n (see Fig. 6) on the hinge properties has been investi-

gated (Linß, 2015). For a given deflection angle it has been

shown, that 16th-order polynomial contours lead to compa-

rable low stress values like corner-filleted contours. Further-

more it was found, that 4th-order polynomial contours are

suitable to realize both, a precise rotation with low stress

in general. Therefore these bi-quadratic polynomial contours

are used for the following investigations and the development

of design equations. In addition, a further direct optimization
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Figure 4. Quarter model of a flexure hinge with a semi-circular contour with R = 0.5l: (a) if 2R < H − h, (b) if 2R = H − h (right semi-

circular contour), (c) if 2R > H − h.
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Figure 5. Quarter model of a flexure hinge with an elliptical contour with rx = 0.5l and ry = 0.25l: (a) if rx < H − h, (b) if rx = H − h

(right elliptical contour), (c) if rx > H − h.
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Figure 6. Quarter model of a flexure hinge with polynomial con-

tours of a different order n.

of the order n in compliant mechanisms with different hinges

in one mechanism is possible (Linß et al., 2015).

The used 4th-order polynomial contour function hn(x) is

expressed by Eq. (8).

hn (x) = h +
(H − h)
(

l
2

)4
x4 (8)

3 Analytical characterization of the flexure hinges

In this section, the approach of the non-linear analytical char-

acterization of a notch flexure hinge and the results for its ro-

tational stiffness, strain distribution, maximal angular elastic

deflection, and rotational precision are presented in depen-

dence of the hinge contour and the geometric parameters βl ,

βh, and βb.

The analytical characterization is based on the non-linear

theory for modelling large deflections of curved rods, e.g.

Zentner (2014), for which the dimensions of a cross-section

are small compared to the rod length. Equilibrium equations

are used to describe a rod element on the basis of the as-

sumptions of a static problem for a slender structure with an

axial inextensible line and the val idity of Bernoulli hypothe-

sis, Saint-Venant’s principle, and Hooke’s law. Thus, for de-

scribing a flexure hinge as a beam four non-linear differential
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Figure 7. Parameters of the characterized flexure hinge (drawing of the initial and deflected position) with the model for the determination

of the rotational axis shift based on guiding the centre with a constant distance (fixed centre approach).
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Figure 8. Influence of the hinge contour – analytical results for the rotational stiffness of a flexure hinge with various contours (βl = 1,

βh = 0.03, βb = 0.6): (a) moment load, (b) force load.

equations result:

dM

ds
+ F cosθ = 0, (9)

dθ

ds
− κ = 0, with κ =

M

E Iζ

and Iζ =
bh3

n

12
, (10)

duξ

ds
− cosθ + 1 = 0, (11)

duη

ds
− sinθ = 0. (12)

The model considers a stationary coordinate system ξηζ with

the origin O at the neutral axis at the fixed end of the flexure

hinge, see Fig. 7. The parameter s describes the arc length

of the neutral axis at the regarded cross-section point and

it represents the coordinate of the axial beam line, which is

equal to the ξ axis only for the non-deflected hinge. Since

the flexure hinge is symmetric, no initial curvature of the

beam is regarded in this paper. Hence, at every point s of the

beam, the curvature κ describes the gradient of the bending

angle θ as a result of the given moment or force load. Due

to the non-linear differential equation system, closed-form

equations which describe the deflected state cannot be de-

rived. However, for the regarded hinge, which is fixed at one

Mech. Sci., 8, 29–49, 2017 www.mech-sci.net/8/29/2017/



S. Linß et al.: General design equations for the rotational stiffness 35
text

0.00

0.02

0.04

0.06

0.08

0.10

0° 1° 2° 3° 4° 5°

M 

φ 

Nm 

βl = 0.5 

2 
1.75 

1.5 

1.25 

1 

0.75 

0

2

4

6

8

10

0° 1° 2° 3° 4° 5°

F 

φ 

N 

βl = 0.5 

2 

1.75 

1.5 

1.25 

1 

0.75 

(a) (b)

Figure 1: Test

text

1

Figure 9. Influence of the hinge dimensions – analytical results for the influence of βl on the rotational stiffness of a semi-circular flexure

hinge (βh = 0.03,βb = 0.6): (a) moment load, (b) force load.
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Figure 10. Influence of the hinge dimensions – analytical results for the influence of βh on the rotational stiffness of a semi-circular flexure

hinge (βl = 1,βb = 0.6): (a) moment load, (b) force load.

side and loaded at the free end, the following four boundary

conditions and transformations can be applied for numerical

solution:

κ(L) =
M

E Iζ

,θ (0) = 0,uξ (0) = 0, uη(0) = 0. (13)

This boundary value problem is solved approximately with

MATLAB by means of a classical four-step Runge-Kutta

method which is implemented in the used ode45 function.

Based on the calculated deflected state due to the applied load

in point P ′
2 the both displacements uξ and uη, and the bend-

ing angle θ can be determined for every point s. We anal-

ysed the three results in point P ′
1, for example. Further, the

bending angle θ (L) corresponds to the rotation angle ϕ of the

flexure hinge and it equals nearly exactly the bending angle

in point P ′
1 too.

The following analytical characterization for the rotational

stiffness, the strain, and the rotational precision is exem-

plified for the hard aluminium alloy EN AW 7075 with

a Young’s modulus of E = 72GPa and Poisson’s ratio of

ν = 0.33, which is widely used for precision engineering ap-

plications because of the high admissible elastic strain up to
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Figure 1: TestFigure 11. Required load for a discrete angular deflection – analytical results for a semi-circular flexure hinge at ϕ = 5◦ in dependence of

βl and βh (βb = 0.6): (a) moment load, (b) force load.

0.5 %. As assumption a typical hinge height of H = 10mm

is chosen. According to this, appropriate values of the geo-

metric hinge parameters βl , βh, and βb are used to investigate

the influence of these design parameters.

3.1 Rotational stiffness

As rotational stiffness of a flexure hinge in this paper the

M(ϕ) respectively F (ϕ) characteristic is considered in de-

pendence of the load case. The influence of the hinge contour

on the rotational stiffness is exemplarily shown in Fig. 8 for

hinge dimensions, which are appropriate in precision engi-

neering applications.

The principal load-angle-behaviour is almost linear, which

leads to a constant stiffness for the regarded small angular

deflections up to 5◦. The qualitative correlation and quantita-

tive characteristic between the four hinge contours is similar

for both loads. The following order can be generalized from

the lowest to the highest stiffness: The corner-filleted con-

tour, the polynomial 4th-order contour, the elliptical contour,

and the semi-circular contour. A flexure hinge with a semi-

circular contour is six times stiffer than with a corner-filleted

contour for the regarded basic hinge dimensions.

The influence of the basic hinge dimensions on the rota-

tional stiffness is investigated for all hinge contours. The in-

fluence of βl is shown in Fig. 9 and the influence of βh is

shown in Fig. 10 exemplarily for a flexure hinge with a semi-

circular contour, since they are state of the art. The following

results can be generalized over all four flexure hinge con-

tours:

– The rotational stiffness increases with a decreasing

hinge length ratio βl .

– The rotational stiffness increases with an increasing

hinge height ratio βh.

– The rotational stiffness increases with an increasing

hinge width ratio βb.

– The characteristic is qualitative and quantitative similar

for both load cases.

Because flexure hinges are used in compliant mechanisms,

the load characteristic for a discrete angular deflection is in-

teresting too. The resulting loads M and F for a given angle

ϕ at the free end can be calculated using a further boundary

condition (θ (L) = ϕ). Regarding the load for the example of

a typical rotation angle of ϕ = 5◦. it is obvious, that βh has a

stronger influence on the rotational stiffness than βl indepen-

dent form the load (see Fig. 11). Furthermore, if the rotation

angle is given, any results can be calculated and used for de-

sign graphs to determine the required load for given hinge

dimensions or vice versa.

3.2 Strain distribution and maximal angular deflection

In this section, additionally the bending stress is analysed af-

ter linear beam theory to characterize the maximum stress of

the entire flexure hinge for a given deflection as a result of

the moment or force load:

σb (ξ )|ηmax
=
∣

∣

∣

∣

Mb (ξ )

wb(ξ )

∣

∣

∣

∣

. (14)

According to the used theory, the maximum bending stress

always results at the outer fibre for the maximum coordi-

nate of η, which corresponds to the flexure hinge contour

function. To characterize the stress of a flexure hinge, in lit-

erature mostly contour-dependent stress concentration fac-
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Figure 12. Analytical results for the strain distribution of a flexure hinge with various contours along hn(ξ ) at ϕ = 5◦ (βl = 1, βh = 0.03):

(a) moment load, (b) force load
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Figure 13. Analytical results for the maximal angular deflection ϕmax of a flexure hinge with various contours in dependence of the admis-

sible elastic strain εadm (βl = 1, βh = 0.03): (a) moment load, (b) force load.

tors are considered (Chen et al., 2014), with which the in-

crease of stress due to a contour variation is always estimated

compared to a flexure hinge with the constant thickness h

(nominal stress of minimum cross-section). In this paper, the

contour-dependent stress is directly determined by consider-

ing the exact contour function of each flexure hinge. With

the elastic section modulus for a rectangular cross-section

and according to elastic deformation with a linear relation

between stress and strain, the material independent strain is

considered below. Thus, in dependence of the load case the

contour-dependent strain is given by Eq. (15) for a moment

load and by Eq. (16) for a transverse force load.

ε (ξ ) =
6M

E bh2
n(ξ )

(15)

ε (ξ ) =
6 (L − ξ ) F

E bh2
n(ξ )

(16)

Now, taken into account a discrete angular deflection, we ob-

tain the strain distribution along the outer fibre in dependence

of the used contour function hn, as shown in Fig. 12 for both

load cases and comparable hinge dimensions. The required

input loads M and F are taken from Sect. 3.1. According
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to the theory, the maximum strain is independent from the

width b for a given deflection.

Among the four regarded contours, the semi-circular con-

tour always leads to the highest strain values. In this case,

the maximum admissible elastic strain would be exceeded

for the aluminium material AW 7075. According to the fol-

lowing order – of using the elliptical, the polynomial, and

the corner-filleted contour – the maximum strain value can

be reduced.

For a moment load it is obvious, that the maximum strain

occurs in the hinge centre in general. In contrast to this, the

critical coordinate ξcrit depends on the flexure hinge contour

for a force load. While the maximum strain approximately

occurs in the hinge centre for semi-circular and elliptical

contours too, the critical point ξcrit moves in direction of the

clamped hinge side the more the flexure hinge contour takes

the form of a simple beam, e.g. the corner-filleted contour.

Furthermore, regarding a concrete application in a com-

pliant mechanism, the admissible elastic strain εadm of the

used material should be higher than the critical strain of each

flexure hinge:

εadm ≥ ε (ξcrit) =
6M

E bh2
n(ξcrit)

, (17)

εadm ≥ ε (ξcrit) =
6 (L − ξcrit) F

E bh2
n(ξcrit)

. (18)

Hence, the contour-dependent correlation of the material-

given admissible elastic strain εadm to the maximum allow-

able rotation angle ϕmax is interesting. We obtain this correla-

tion by stepwise increasing the load, determining the critical

strain with a MATLAB procedure, and calculating the rota-

tion angle according to the numerical solution of Eqs. (9) to

(12). The resulting ϕmax(εadm) correlation is shown in Fig. 13

for both load cases. Of course, for the practical application it

is common to use a safety factor in addition. But this factor

can be simply included in the admissible strain value too.

Because the maximum strain value limits the deflection,

the maximum rotation angle of a flexure hinge always is

possible with a corner-filleted contour, while a semi-circular

contour leads to the lowest possible angles. The rotation an-

gle of corner-filleted contour is more than five respectively

four times higher than of a semi-circular contour. Especially

for flexure hinges made from plastic, with admissible strain

values higher than 1 %, a large angular deflection can be re-

alized in dependence of the chosen minimal height h. Ac-

cording to the same position of ξcrit, the ϕmax(εadm) curve of

a semi-circular and elliptical contour shows a qualitative and

quantitative similar behaviour for both load cases. Due to a

higher maximum strain, the maximum angular deflection de-

creases for a force load, at most for a corner-filleted contour.

3.3 Rotational precision

In particular in precision engineering, the rotational precision

of a flexure hinge is a very important performance criterion

for the kinematic behaviour of a compliant mechanism. Be-

cause of the serial connection of several flexure hinges in the

kinematic chain, the rotational axis shift v of a single flex-

ure hinge (cf. Fig. 7) can influence the path deviation of a

coupler point of the compliant mechanism compared to the

rigid-body mechanism. As rotational precision of a flexure

hinge in this paper the rotational axis shift-angle characteris-

tic v(ϕ) is considered in dependence of the load case.

Since there is no stationary rotation axis, the rotational axis

shift v has to be determined model-based. Therefore, in lit-

erature four different approaches to define the axis of rota-

tion of a notch flexure hinge are mainly suggested, which

lead to a different direction and absolute value of the axis

shift (Linß et al., 2011a): Mostly, the shift respectively off-

set u(s = L
2

) of the centre point of the flexure hinge at the

neutral axis is calculated on the basis of the deformed state

(e.g. Lobontiu, 2003; Chen et al., 2005; Tian et al., 2010),

whereas the kinematic behaviour is not considered. A sec-

ond approach considers the intersection of the tangents at the

neutral axis in the two points O and P ′
1, why the axis shift

can only be calculated in ξ direction (e.g. Horie et al., 1997;

Smith, 2000). Thirdly, the fixed centrode is calculated with

the help of a geometrical approximation method (e.g. Dirk-

sen and Lammering, 2011; Palmieri et al., 2012), what leads

to high numerical effort since the accuracy here depends on

the given step size and the load levels (infinitesimal analy-

sis). Fourthly, a rigid-body model based approach considers

the guiding of the initial centre point with a constant distance

of the half hinge length during the motion (fixed centre ap-

proach, e.g. Tseytlin, 2002; Zelenika et al., 2009). As com-

parative investigations show, the latter approach is suitable

regarding a direct and accurate modelling of the rotational

axis of a flexure hinge (Linß et al., 2011a). Therefore, the

fixed centre approach is chosen to investigate the rotational

precision in this paper (cf. Fig. 7).

In this case, the absolute value of the rotational axis shift

v, based on the hinge centre point in the initial position,

equals the circular path deviation of any regarded point on

the loaded segment of the flexure hinge:

v =

√

(

ξC′ −
L

2

)2

+ η2
C′

=

√

(

uξ −
l

2
cosϕ +

l

2

)2

+
(

uη −
l

2
sinϕ

)2

. (19)

To determine the axis shift, the deformation u of one arbitrary

point at the free end and the rotation angle ϕ must be known

only. In this case, we used the deformation u
(

L
2

+ l
2

)

in Point

P ′
1. Thus, the simultaneous investigation based on analytical,

experimental and simulative methods is possible. Due to the

used beam theory, the variation of the hinge contour and the

ξ -displacement of the free end are considered, which has a

non-negligible influence on the axis shift too. Furthermore,

for a force load it is known, that the direction of the shift is
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Figure 14. Influence of the hinge contour – analytical results for the rotational precision of a flexure hinge with various contours (βl = 1,

βh = 0.03): (a) moment load, (b) force load.text
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Figure 15. Influence of the hinge dimensions – analytical results for the influence of βl on the rotational precision of a semi-circular flexure

hinge (βh = 0.03): (a) moment load, (b) force load.

dominant according to the force direction. However, in this

paper the absolute value of the rotational axis shift is in the

focus of investigations.

The influence of the hinge contour on the rotational pre-

cision is shown in Fig. 14. The qualitative axis shift-angle-

behaviour is non-linear for a moment load and almost linear

for a force load. Furthermore, the load case has an influence

on the absolute value: Independent from the hinge contour, a

transverse force leads to a significant larger axis shift than a

moment load for an equal angle ϕ.

The hinge contour has a strong influence on the axis shift,

which can be in the range of several micrometres up to the

millimetre range in dependence of the basic dimensions βl

and especially βh. With regard to a high rotational precision

respective a small axis shift the following order can be gener-

alized for thin hinges: The semi-circular contour, the ellipti-

cal contour or polynomial 4th order contour, and the corner-

filleted contour. A flexure hinge with a semi-circular contour

can be more than 30 times more precise than with a corner-

filleted contour (e.g. for βl = 1, βh = 0.01, and a force load).
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Figure 16. Influence of the hinge dimensions – analytical results for the influence of βh on the rotational precision of a semi-circular flexure

hinge (βl = 1): (a) moment load, (b) force load.
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Figure 17. Rotational axis shift for a discrete angular deflection – analytical results for a semi-circular flexure hinge at ϕ = 5◦ in dependence

of βl and βh: (a) moment load, (b) force load.

But especially for short and thick hinges, a corner-filleted

contour is exactly as precise as a semi-circular contour (e.g.

for βl = 0.5, βh = 0.2, and a force load). This is a novel re-

sult and it has been confirmed for the use of flexure hinges in

compliant mechanisms too (Linß et al., 2014).

The influence of the basic hinge dimensions βl and βh on

the rotational precision is shown in Figs. 15 and 16 for a flex-

ure hinge with a semi-circular contour. The following results

can be generalized over all four flexure hinge contours:

– The rotational precision increases (the axis shift de-

creases) with a decreasing hinge length ratio βl .

– The rotational precision increases with an increasing

hinge height ratio βh.

– The rotational precision and the kinematic behaviour

are independent of the hinge width ratio βb.

– The characteristic is qualitative and quantitative differ-

ent for both load cases.

– The influence of the hinge contour decreases with an

increasing hinge height ratio βh, in particular for thick

hinges.
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Finally, the rotational axis shift for a discrete angular de-

flection of ϕ = 5◦ is shown in Fig. 17 in dependence of βl and

βh for both load cases. Hence, if the rotation angle is given,

any results can be calculated and used for design graphs to

predict the rotational precision of a flexure hinge for given

basic dimensions or to determine the dimensions in order to

realize required specifications.

4 Design equations for the flexure hinges with

various notch geometries

In this section, novel general design equations for the rota-

tional stiffness, the maximal angular elastic deflection, and

the rotational precision of a notch flexure hinge in depen-

dence of the load case are derived based on the analytical

results. The approach and the method are described briefly

and the developed design equations are presented together

with the contour-specific coefficients.

In literature, design equations exist in particular for the

rotational stiffness of a flexure hinge with a semi-circular,

corner-filleted or elliptical contour (e.g. Paros and Weisbord,

1965; Tseytlin, 2002; Wu and Zhou, 2002; Lobontiu, 2003;

Chen et al., 2008, 2011; Meng et al., 2013). Design equa-

tions for calculating the contour-dependent maximal angular

elastic deflection are not state of the art, because the few ex-

isting design equations consider solely the stress (e.g. Chen

et al., 2014) or the correlation between the load and the strain

(Tres, 1995; Kunz, 2007; Dirksen, 2013), but not explicit the

rotation angle. Especially regarding the rotational precision,

the presented design equations are limited due to the use of

standard hinge contours and a different approach to model

the axis of rotation. In literature, closed-form equations are

mainly presented for the approach of the offset of the hinge

centre point (e.g. Lobontiu, 2003; Chen et al., 2009; Hu et

al., 2012; Li et al., 2013). Rarely, empirical design equations

based on FEM simulation results are suggested for semi-

circular (Yong et al., 2008) and corner-filleted (Meng et al.,

2013) flexure hinges.

However, all suggested design equations are character-

ized by a long expression and complex structural form, and

they are only valid for a special group of flexure hinge con-

tours. Simple and concise analytically derived design equa-

tions, whose principal structural form is independent from

the notch geometry, are not known to the authors.

To develop the novel design equations, first the analytical

results for the rotational stiffness and rotational precision of

a flexure hinge are calculated, as in Sect. 3 described, for the

following parameters and ranges of variation:

– four flexure hinge contours (semi-circular, corner-

filleted, elliptical and bi-quadratic polynomial contour);

– three basic hinge dimensions of βl (in the range of 0.5

to 2 in steps of 0.25), βh (0.01 to 0.2 in steps of 0.01)

and βb (0.1 to 1 in steps of 0.1);

– the angular deflection of ϕ ≤ 5◦ (in steps of 1◦);

– the load case of a moment load or a transverse force

load close to the hinge centre at L = 2H = 20mm (free

end).

Second, with the help of MATLAB the contour-specific

coefficients of a power function are determined based on a fit-

ting procedure in order to realize the smallest maximum error

over all calculated result points. The approach is explained

in Sect. 4.1 exemplarily for the rotational stiffness and the

moment load case. The remaining design equations for the

contour-dependent maximal angular deflection are obtained

by conversion and the additional introduction of a correc-

tion factor for considering the location of the critical strain.

Finally, the rounded coefficients (two digits) are determined

again for a reduced parameter range for βl (0.5 ≤ βl ≤ 1.5)

and βh (0.03 ≤ βh ≤ 0.1) in order to improve the accuracy of

the developed design equations (see Table 1). According to

the theory, the accuracy of the results is independent of the

parameter range for βb. Depending on the contour, the rel-

ative root mean squared error erms over all parameter com-

binations is in the range of less than 2 % to less than 16 %

compared to the analytical solution.

4.1 Rotational stiffness

Based on the numerically calculated analytical results, a

power function is used to express the functional load-angle-

correlation M(ϕ) respectively F (ϕ) in dependence of the rel-

evant geometric parameters over all parameter ranges. The

used power function for the moment load for example has

the following initial form:

M

ϕ
= k1 E βb β

(k2)
l β

(k3)
h H (1+k2+k3). (20)

A power function with three coefficients k1, k2 and k3 was

used at first, to consider the different characteristic for each

flexure hinge contour. We have chosen the power function

because its form is suitable to express the principle depen-

dence of the basic geometric parameters, which is strictly

monotonic increasing. Furthermore, the power function of-

fers great shape variability with a minimal number of coef-

ficients. Because the correlation of M and b is exactly pro-

portional, coefficients are only considered for the geometric

parameters l and h.

Following the dimensional analysis theory, we consider

the geometric hinge parameters according to the defined di-

mensionless ratios βl , βh, and βb. Due to this, the only re-

maining parameter with a length unit is the total height H .

Thus, a simple scaling of the whole flexure hinge is possible

in dependence of the chosen value of H .

To obtain the optimal coefficients of the non-linear power

function a curve fit was realized based on the Nelder-Mead

simplex algorithm for each hinge contour. This optimization

www.mech-sci.net/8/29/2017/ Mech. Sci., 8, 29–49, 2017



42 S. Linß et al.: General design equations for the rotational stiffness
text

(a) (b)

Figure 1: Test

text

1

Figure 18. FEM-based characterization of a flexure hinge: (a) CAD Model, (b) FEM model with initial and deformed hinge.

Table 1. Coefficients for design Eqs. (21)–(26) in dependence of the flexure hinge contour, valid for appropriate hinge dimensions

(0.5 ≤ βl ≤ 1.5, 0.03 ≤ βh ≤ 0.1, βb arbitrary) and an angular deflection ϕ ≤ 5◦.

Hinge contour kM1 [10−3] kM2 kF1 [10−2] kF2 kcrit kvM1 [10−3] kvM2 kvF1 [10−2] kvF2 erms [%]

Semi-circular 107.9 0.52 10.55 0.51 0.5 99.85 0.52 19.12 0.94 4.64

Corner-filleted 83.95 0.96 8.41 0.96 0.5 − 0.2βl 85.76 0.95 9.2 1.89 2.08

Elliptical 82.5 0.54 8.27 0.54 0.5 114.35 0.57 18.21 1.14 2.5

Bi-quadratic polynomial 112.1 0.74 10.79 0.72 0.4β
(−0.08)
l

β
(−0.04)
h

69.78 0.74 5.83 1.5 15.96

has been implemented in MATLAB with the function fmin-

search in order to minimize the maximum error of all cal-

culated results of the design equation compared with each

analytical result over the parameter range. Since a special

correlation between the both coefficients k2 and k3 have be-

come obvious during the investigations for each performance

criterion, we express this with one combined coefficient be-

low. This leads to a simple and short design equation with

only two coefficients.

Hence, for a moment load we finally obtain the contour-

independent design equation for the rotational stiffness of a

flexure hinge as

M

ϕ
= kM1 E βb β

(−kM2)
l β

(2+kM2)
h H 3, (21)

and taken into account a transverse force load we obtain the

rotational stiffness as

F

ϕ
= kF1 E βb β

(−kF2)
l β

(2+kF2)
h H 2. (22)

The resulting contour-dependent coefficients for all design

equations are given in Table 1.

4.2 Maximal angular deflection

To obtain the design equations for the ϕmax(εadm) correlation

in dependence of the load case, the load M (represented in

Eq. 21) and the load F (Eq. 22) are used in Eqs. (17) and

(18). Next, the critical location ξcrit for the maximum strain at

the outer fibre and the hinge height hn(ξcrit) for this location

have to be considered in dependence of the load case.

For a moment load, the maximum strain occurs contour-

independent in the hinge centre. Therefore, the critical hinge

height hn(ξcrit) always equals the minimum hinge height h.

If h is expressed by βh, this leads to the following design

equation for the maximal angular deflection due to a moment

load:

|ϕmax| =
εadm

6kM1

(

βl

βh

) kM2

. (23)

For a transverse force load, the critical location depends on

the hinge contour. For this reason, an additional dimension-

less correction factor kcrit for the deviation to the hinge centre

at ξ = L
2

is introduced in this case, and the maximum length

L is eliminated. This leads to the following design equation

for the maximal angular deflection due to a transverse force

load:

|ϕmax| =
εadm

12 (1 − kcrit)kF1

(

βl

βh

) kF2

. (24)

According to the results in Sect. 3.2 (cf. Fig. 12b) it is as-

sumed, that the maximum strain occurs approximately in the

hinge centre for a semi-circular and an elliptical contour,

what leads to kcrit = 0.5. The correction factor for the investi-

gated corner-filleted contour with an optimal fillet radius can

be expressed by the geometric parameter βl in general (see

Table 1). Thus, in all three cases, the relevant critical hinge

height hn(ξcrit) equals the minimum hinge height h too. To

determine the correction factor for the polynomial contour

of 4th order, a power function with three constants was fit-

ted with the function fminsearch in MATLAB too, based on

the calculated results for the locations ξcrit over the parameter

range.
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Figure 19. Experimental characterization of a force loaded flexure hinge: (a) experimental setup, (b) displacement or force driven load in

P2, (c) test specimens with a semi-circular and corner-fileted hinge contour (βl = 1, βh = 0.03, βb = 0.6, aluminium AW 7075).text
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Figure 20. Comparison of results for the rotational stiffness of a flexure hinge with various contours (βl = 1, βh = 0.03, βb = 0.6): (a) mo-

ment load, (b) force load.

4.3 Rotational precision

The design equations for the v(ϕ) characteristic were devel-

oped based on the power function, as already described in

Sect. 4.1. According to the analytical results (cf. Sect. 3.3)

it is further assumed that v correlates with ϕ2 for a moment

load and with ϕ for a force load.

Hence, for a moment load we obtain the contour-

independent design equation for the rotational precision of

a flexure hinge as:

v

ϕ2
= kvM1 β

kvM2

l βh
(1−kvM2)H, (25)

and taken into account a transverse force load we obtain the

rotational precision as

v

ϕ
= kvF1 β

kvF2

l βh
(2−kvF2)H. (26)

5 Discussion of results

In this section, the design equation results are compared with

the analytical results, and with further results based on FEM

simulations and experimental tests of selected flexure hinge

contours. The FEM model and the experimental setup are de-

scribed briefly. Then, the results are discussed for appropriate

hinge dimensions.
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Figure 21. Comparison of results with existing design equations

for the rotational stiffness of a moment loaded semi-circular flexure

hinge (βl = 1, βh = 0.03, βb = 0.6).

5.1 FEM-based characterization

For the FEM-based simulation of the flexure hinges AN-

SYS Workbench 16.2 is used. The CAD model and the FEM

model are shown in Fig. 18. The CAD model includes an

additional part to realize the direct determination of the rota-

tional axis C according to the chosen fixed centre approach

(cf. Fig. 7). In the FEM model one end of the flexure hinge is

fixed and the free end is loaded with a moment or transverse

force load at the edge in point P2. After determining the re-

sulting rotation angle with two points of the free end, the

three performance criteria, the rotational stiffness M(ϕ) re-

spectively F (ϕ), the maximal angular deflection ϕmax(εadm)

and the rotational precision v(ϕ) are analysed in dependence

of the hinge contour for the investigated geometric parame-

ters.

According to the literature, the flexure hinge is modelled

as a solid structure (Zhang and Hu, 2009) with adjacent link

segments (Zettl et al., 2005; Yong et al., 2008), like they

are considered for the analytical characterization too. In the

FEM simulation large deflection is considered due to non-

linear beam theory. Further assumptions are linear material

behaviour for the used aluminium AW 7075 material (with

the same parameters like in Sect. 3) and a comparable and

fine discretisation of the hinge for all the different contours.

5.2 Experimental characterization

For the experimental investigation of the deflected state of the

flexure hinge a coordinate-reading microscope (Carl Zeiss

ZKM 01-250C) was used. The realized experimental setup

with the clamped flexure hinge is shown in Fig. 19. The

frame of the experimental setup is fixed to a xy stage, which

is synchronized with the microscope during the measure-

ment. By the optical measurement of the coordinates of two

points at the free end, the resulting rotation angle ϕ and thus

the calculated location of the rotational axis C′ can be deter-

mined due to the given load.

Because the load case of an ideal moment cannot be real-

ized due to the inherent rotational axis shift with the required

accuracy, a transverse force is regarded only. In order to

measure the rotational precision and the rotational stiffness,

the force load can be implemented displacement driven (mi-

crometre screw drive, Owis MS 6-12) or force driven (dead

weight drive). The force load is transmitted from the input

by a pushing rod and a cylindrical pin to a second orthogonal

pin, which is fixed to the flexure hinge and which is coinci-

dent with the load acting point P2. Because of the widest ex-

pected difference, as test specimens two flexure hinges with

a semi-circular and a corner-fileted contour are investigated.

5.3 Comparison of results for appropriate hinge

dimensions

For the comparison of the design equation results for vari-

ous notch flexure hinges with the results of the analytical,

FEM-based and experimental characterization, typical pa-

rameter values for the hinge dimensions (βl = 1, βh = 0.03,

βb = 0.6) are used. The results are shown in Fig. 20 for the

rotational stiffness, in Fig. 22 for the maximal angular de-

flection, and in Fig. 23 for the rotational precision. Addition-

ally, in Fig. 21 the deformation characteristic of a moment

loaded semi-circular flexure hinge is compared with design

equations from the literature and with the FEM simulation.

Generally, regarding all three performance criteria, the

equation-based results are in good correlation with the an-

alytical solution as well as with the FEM simulation and the

measured results (qualitative as well as quantitative). Thus,

the principle conclusions of Sect. 3 concerning the influence

of the hinge contour and the geometric parameters on the

rotational precision, the maximal angular deflection and the

rotational precision have been confirmed by different meth-

ods. The little differences, especially to the FEM results, can

be explained in particular with a more accurate modelling

of a flexure hinge by means of FEM simulation. Regarding

the experimental investigation, especially the measurement

of the rotational axis shift in the micrometre range is chal-

lenging, but the principle absolute value could be confirmed

for a flexure hinge with a semi-circular and a corner-filleted

contour.

The comparison of results for the rotational stiffness of a

moment loaded semi-circular flexure hinge with existing de-

sign equations from literature (cf. Fig. 21) and the FEM result

shows, that Eq. (21) is accurate and very close to the sim-

plified expression of Paros and Weisbord (1965). The used

equations from the literature are mentioned in Eqs. (A1),

(A2) and (A3).
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(b) force load.

In conclusion, the suggested design equations are suitable

to predict the deformation and motion behaviour of a flex-

ure hinge in dependence of the hinge contour within the

investigated parameter range. The presented design equa-

tions are advantageous, because they are concise, and with

only two coefficients their structural form is simple, contour-

independent and, with the exception of the parameter H for

geometric scaling, dimensionless. The principle influence of

scaling, which is expressed by the parameter H in the de-

sign equations, was also found by means of FEM simulations

(Linß and Zentner, 2015). Taken into account a possible in-

creasing error, the design equations could be applied for a

larger parameter range and rotation angle too.

Regarding the compliant mechanism application, the con-

tour comparison confirms the potential of elliptical and bi-

quadratic polynomial contours to realize a large motion range

with high precision. A strong influence of the contour on the

flexure hinge performance exists in particular for thin hinges,

which are suitable for application due to low strain values and

thus larger angular deflections. Furthermore, the use of dif-

ferent flexure hinges in the same mechanism is very promis-

ing especially in terms of variable higher order polynomial

contours, cf. Eq. (7). In this case, the polynomial order can
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be adjusted easily in dependence of the relative rotation an-

gle in the mechanism by means of using design graphs (Linß

et al., 2015).

6 Conclusions

In this paper, general design equations for the calculation

of the rotational stiffness, maximal angular elastic deflection

and rotational precision of various notch flexure hinges in

dependence of the geometric hinge parameters are suggested

and evaluated. The power function based equations are de-

rived for a moment and a transverse force loaded beam by

fitting the analytical results which are obtained due to non-

linear modelling with the theory of large deflections of rods.

For the accurate model-based investigation of the rotational

precision the fixed centre approach is used to define the axis

of rotation. Among the variety of existing notch geometries,

four flexure hinge contours are selected and investigated:

Three usual contours, the semi-circular, corner-filleted and

elliptical contour, and the recently introduced bi-quadratic

polynomial contour of 4th order, which simultaneously pro-

vides a large angular deflection and a high rotational pre-

cision. Depending on the contour, the maximum root mean

squared error of the calculated results is in the range of

less than 2 % to less than 16 % for an appropriate parame-

ter range compared with the analytical solution. Furthermore,

the FEM simulations and experimental results correlate well

with the predictions based on the design equations. The pre-

sented equations are advantageous because with only two

coefficients their structural form is simple, concise, contour-

independent and dimensionless. Thus, the novel design equa-

tions contribute to the accelerated and goal-oriented synthe-

sis of compliant mechanisms with the most commonly used

hinge contours or the promising polynomial flexure hinges.

More hinge contours, like higher order polynomial contours

of a different order, can also be considered by determining

the values of their coefficients in further research.
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Appendix A: Circular flexure hinge design equations

(adapted to the symbols of this paper)

Paros and Weisbord (1965), simplified expression:

M

ϕ
=

2Ebh2.5

9π
√

R
. (A1)

Tseytlin (2002):

M

ϕ
=

Eb
(

h
2

)2

4

(

1 +
√

1 + 2R 0.1986
h

) . (A2)

Lobontiu (2003):

M

ϕ
=

Ebh3(2R + h)(4R + h)3

24R
[

h (4R + h)
(

6R2 + 4Rh + h2
)

+ 6R(2r + h)2

√

4(4R + h)tan−1

(
√

1 +
4R

h

)

]−1

. (A3)
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