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General Design of Multiway Multisection Power
Dividers by Interconnecting Two-Way Dividers

Jiafeng Zhou, Kevin A. Morris, and Michael J. Lancaster, Senior Member, IEEE

Abstract—It is common practice to design multiway power di-
viders by interconnecting two-way power dividers. Transmission
lines are used to link the two-way dividers. This paper investigates
the performance of the interconnected power divider and the ef-
fects of the interconnecting transmission lines. In particular, it will
be shown that the performance of multiway dividers constructed
by interconnecting even-number-section two-way dividers deteri-
orates significantly as the number of output ports increases. The
interconnecting lines can be used to improve the performance of
such dividers.

Index Terms—Broadband, power combiner, power divider,
power splitter, quarter-wavelength, transmission lines, Wilkinson.

I. INTRODUCTION

P
OWER dividers or combiners/splitters are passive mi-

crowave components used for distributing or combining

microwave signals. Multiway power dividers are needed in

many microwave applications such as phased antenna arrays

and power amplifiers. There are many ways to design power

dividers. Wilkinson-type dividers [1] are widely used. How-

ever, an -way Wilkinson power divider is planar only when

, and is not planar for . Planar multiway dividers

can usually be realized by interconnecting multiple two-way

Wilkinson dividers.

In an interconnected multiway divider, usually it is physically

difficult to link the two-way dividers directly with each other.

Unwanted cross-coupling may also exist if the two-way dividers

are too close to each other. To keep them apart, extra transmis-

sion lines are usually needed to link the two-way dividers. Al-

though many have reported the design [2], [3] and improvement

[4]–[6] of Wilkinson dividers, it is interesting to note that few

have investigated the interconnection of multiway dividers in

detail. It seems that the lengths of the interconnecting transmis-

sion lines are randomly chosen [7], [8]. This paper will investi-

gate the performance of interconnected multiway dividers and

the effects the interconnecting lines have on the performance of

the multiway dividers.
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Fig. 1. (a) Schematic layout of the traditional two-way Wilkinson divider and
(b) its typical performance.

II. FOUR-WAY SINGLE-SECTION DIVIDER

The simplest scenario of an interconnected multiway divider

is a four-way construction produced by linking three two-way

dividers.

A. Two-Way Wilkinson Divider

The traditional two-way Wilkinson divider is shown in

Fig. 1(a). It is composed of a pair of quarter-wavelength trans-

mission lines with a characteristic impedance of

and an isolation resistor of , where , usually 50 , is

the matched impedance of the divider. The typical performance

of the two-way Wilkinson divider is shown in Fig. 1(b). Since

all three ports in the divider are perfectly matched at the center

frequency , in the ideal case, the reflection is zero from

all ports. Due to the limited-bandwidth approximation of the

quarter-wavelength transmission lines, the input impedance

seen from each port is generally not at other frequencies,

and the return loss is, therefore, not infinite. The usable band-

width of a single-section Wilkinson divider can be taken as

for (reflection 20 dB)

and isolation 20 dB [9].

0018-9480/$25.00 © 2007 IEEE
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Fig. 2. Schematic layout of a four-way divider made by interconnecting three
two-way dividers, linked with transmission lines.

In the Wilkinson divider, the resistor plays a key role in pro-

viding the output-port match and isolation. Ideally, the resistor

should have no phase difference across it to provide the best

isolation; otherwise, the isolation of the output ports will not be

infinite at the center frequency.

B. Design of a Four-Way Divider

A four-way divider can be realized in a two-stage structure

by interconnecting three two-way Wilkinson dividers, as shown

in Fig. 2. As indicated above, the output ports of a two-way

Wilkinson divider should be kept as close as possible to min-

imize the phase shift across the resistor. Otherwise, extra trans-

mission lines would be needed to connect the resistor to the

ports, which introduce unwanted phase shift. It is, therefore,

physically difficult to interconnect the two-way dividers directly

without affecting each other. In practice, transmission lines with

impedance are usually used to link the two-way dividers. For

simplicity, the two lines used are of equal length.

It should be noted that transmission lines may also be needed

to connect the input and output ports to microwave components

outside the divider. These transmission lines have little effect

on the performance because a load with an impedance of

transformed by any length of an ideal transmission line with a

characteristic impedance of is always at all frequencies.

C. Reflection Seen at the Input

Since the resistor has no contribution to the input reflection

coefficient, the input impedance of the traditional two-way

Wilkinson divider can be obtained by calculating two loads

transformed by the quarter-wavelength transmission lines in

parallel, which is given by

(1)

where is the length of the transmission line and is the phase

constant. At the center frequency , the electrical length of the

transmission line is . At frequency , or the

normalized frequency , the electrical

length is given by . The reflection coefficient

of the two-way divider seen at the input can be calculated by

(2)

For the four-way divider, if the two two-way dividers in the

second stage are connected directly to the output ports of the

first stage, the input impedance of the four-way divider can be

calculated as a two-way divider loaded with frequency-depen-

dent impedances given by (1).

Assuming that the electrical length of the interconnecting

transmission lines is at , the electrical length at is given

by . The input impedance of the four-way divider seen

at the input port can be calculated by

(3)

where

(4)

Using (1)–(4), the reflection coefficient of the four-way divider

is given by

(5)

where

The reflection coefficient at the input port of the four-way

divider has a few interesting characteristics that can be deduced

from (5) as follows.

• when , or , as is infinite, i.e.,

the input port of the four-way divider is always matched at

the center frequency. Other nulls of are dependent on

, and given by .

• only when

. The reflection from the divider is symmet-

rical about only when the interconnecting trans-

mission line is zero length or multiple quarter-wavelength.

This property is important because it points out the optimal

length of the transmission line to achieve good reflection.

More details will be given below.

The calculated input reflection, i.e., of the four-way di-

vider, is shown in Fig. 3(a) with different lengths of intercon-

necting lines of , , , and . It can be seen that,

in the band 1.18 : 0.82 ( , the usable band of

the two-way divider, as given in Section II-A), the input reflec-

tion is the lowest when , and is the second lowest when

. It will be shown in Section IV that generally the per-

formance of the four-way divider is optimal when

. In Fig. 3(a), the reflection is symmetrical

only when , , or , and is not symmetrical when



2210 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 55, NO. 10, OCTOBER 2007

Fig. 3. Calculated: (a) input reflection S , (b) output reflection S , and
(c) isolation S of the four-way divider with different lengths of intercon-
necting transmission lines.

, as indicated above. Indeed, the length of the inter-

connecting transmission line has significant effects on the per-

formance of the divider.

D. Reflection and Isolation of the Output Ports

The reflection and isolation at the two output ports of the

two-way divider can be calculated by network analysis. To cal-

culate the reflection and isolation, the input port can be regarded

as a resistor to ground with an impedance of . Thus, the three-

port network is simplified to a two-port network. The network

between the output ports can be represented by two sub-net-

works connected in parallel. One of the sub-networks is the

isolation resistor; the other consists of two quarter-wavelength

transmission lines with a resistor to ground in between.

The reflection coefficient at the output ports can be expressed

as

(6)

The isolation is given by

(7)

The reflection and isolation of the four-way divider can be

calculated in a similar way described above. They can be com-

puted, and the expression will be much more complicated than

(6) and (7). However, by comparing (6) and (2), it can be seen

that the reflection from the output port of a two-way divider is

very small in the usable band. The relationship of the magni-

tudes of the input and output reflection coefficient is given by

(8)

From (8), it can be seen that the magnitude of the output re-

flection is always better than the input reflection in the whole

band. For the 1.18 : 0.82 band of interest, the output reflection

is at most 39.8 dB. At any frequency in this band, the reflec-

tion seen at the output is at least 19.8 dB better than that at the

input port. Therefore, the impedance seen at the output is well

matched to in the band of interest.

The input of the second stage elementary two-way divider

is loaded with the output impedance of the first stage one

transformed by the interconnecting transmission line. Since the

output impedance of the two-way divider is very close to ,

as deduced above, the isolation between adjacent output ports

of the four-way divider is, therefore, very similar to a two-way

one, and is not significantly affected by the interconnecting

transmission lines. Due to the way the dividers are connected,

the isolation between nonadjacent output ports is better than

that of adjacent ports.

The calculated reflection is shown in Fig. 3(b), when

, , , and . It can be seen that the output re-

flection is well below 20 dB in the band of interest. Due to

symmetry, the reflection at other output ports is the same as port

2. The isolation is shown in Fig. 3(c), when , ,

, and . It can be seen that the isolation is affected negli-

gibly, as indicated above.

E. Transmission

In these equal power dividers, a signal enters the input port,

and is split into equal-amplitude equal-phase output signals at

the output ports. Since each end of each isolation resistor is at

the same potential, no current flows through it and, therefore, the

resistors are decoupled from the input. Thus, the transmission

coefficient maintains high values with little loss as long as the
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input and output are well matched. If the reflection is better than

20 dB from the input and output ports, the transmission will

be better than 0.09 dB if the network is lossless, except for the

resistors.

Due to symmetry, the transmission coefficients to all output

ports are equal magnitude and equal phase.

III. MULTIWAY SINGLE-SECTION DIVIDERS

The input impedance of a multiway divider can be calculated

in a similar way to the four-way one described above. More

generally, the input impedance of an -stage -way divider

constructed by interconnecting two-way dividers can be

calculated by the recursive function

(9)

where

if

if (9a)

where , , and are defined above, and .

is the electronic length of transmission lines interconnecting the

th and th stage of the divider.

For , the expression to calculate the input reflection co-

efficient will be much more complicated than that given in (5). It

is probably more straightforward to simulate the response by cir-

cuit simulation using commercial software (e.g., Agilent Tech-

nologies’ ADS [10] or Applied Wave Research’s Microwave

Office [11]). However, the theory above still applies that the

lengths of the interconnecting transmission lines mainly affect

the input reflection coefficient, and the response is symmetrical

about the center frequency only when . The trans-

mission , output reflection , and isolation are much

less sensitive to the length of the interconnecting transmission

lines.

IV. MULTISECTION POWER DIVIDERS

A. Multisection Two-Way Divider

As discussed above, a single-section divider usually has

usable bandwidth of approximately 1.44 : 1. To achieve wider

bandwidth, the design of broadband multisection two-way

power dividers was introduced in [9] and was widely used in

many applications [12], [13]. The design of broadband dividers

with Butterworth and Chebyshev responses are detailed in [9]

and [14]. The Butterworth type has a maximally flat perfor-

mance in the specified band. The Chebyshev type has a wider

usable band with equal-magnitude ripples in the band, and is

favored when wide bandwidth is the main interest.

For an -section Chebyshev two-way divider, the input re-

flection coefficient has nulls in the specified band. In partic-

ular, when is an even number, the reflection coefficient at the

center frequency is not null. The magnitude of the reflection co-

efficient is the value of the ripple, and can be determined in the

design procedure.

It will be shown below that the performance of an -stage

( -way) -section divider deteriorates dramatically while

Fig. 4. (a) Layout and (b) simulated response of the two-way two-section di-
vider with f =f = 3 : 1.

increases, especially when is an even number. By choosing

the interconnecting transmission lines to be quarter-wavelength,

the performance of the even-number-section divider can be sig-

nificantly improved.

B. Two-Section Two-Way Divider

The schematic layout of a two-way two-section divider

is shown in Fig. 4(a). The two-section divider has two pairs

of quarter-wavelength transmission lines with characteristic

impedance of and . Two resistors, i.e., and , are

associated with the transmission lines. The method to calculate

the values of , , , and is detailed in [9] and [14]. To

design a two-section divider with , these values

are found to be , , , and

, assuming .

The response of the two-section two-way divider can be cal-

culated in a similar way described in Section II. The calculated

response of the divider is shown in Fig. 4(b). The input reflec-

tion is 18.7 dB at the center frequency.

C. Design of Multiway Multisection Dividers

Multiway dividers can be designed by interconnecting the

two-way dividers. The response of such a divider can be cal-

culated in a similar way as discussed in Section IV-B. While the

output port reflection and isolation are not affected significantly,

the input reflection coefficient is quite different, and can be cal-

culated using a recursive equation similar to (9). Although the

expression will be much more complicated, it can be easily eval-

uated by computer. It still applies that the performance of the di-

vider is symmetrical about the center frequency only when the

interconnecting transmission lines are zero length or multiple
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quarter-wavelength. Some other useful characteristics are ana-

lyzed below.

As explained in Section IV-A, the two-section divider is not

perfectly matched at its center frequency. It can be calculated

that, at the center frequency , the impedance seen at the

input port is given by

(10)

For an -stage ( -way) two-section divider constructed by

interconnecting dividers directly, the input impedance

at the center frequency is given by

(11)

It is evident from (11) that the mismatch at the center fre-

quency deteriorates exponentially with the number of stages

of the divider. The calculated input reflection of the 64-way

two-section divider with without intercon-

necting transmission lines is shown in Fig. 5(a). For the 64-way

divider, the input reflection is as low as 4.4 dB at the center

frequency, which is not good enough for most applications.

Calculation indicates that the input reflections are 9.5 and

5.6 dB at the center frequency for the eight- and 32-way

dividers, respectively.

It was proposed above that it is usually physically necessary

to use transmission lines to interconnect the two-way dividers.

It was also proven by calculation that the performance of the di-

viders can be significantly affected by the transmission line in-

terconnections. It will be shown below that the interconnecting

transmission lines are useful to tune the performance of the mul-

tisection dividers.

If a pair of quarter-wavelength transmission lines is added

between adjacent stages of the two-section divider, the input

impedance at the center frequency seen at the first stage is iden-

tical to the output impedance seen at the output port of the

second stage. Taking a four-way two-section divider for an ex-

ample, the input impedance seen at the input port of the second

stage two-way divider is given by (10). If quarter-wavelength

transmission lines with a characteristic impedance of are

added after the first stage, the input impedance seen at the input

port of the first stage can be calculated in a similar way to (10),

and is given by

(12)

The input port is perfectly matched at the center frequency!

Hence, the reflection is optimal around the center frequency.

More generally, the electrical length of the transmission lines

added can be . Obviously it can be easily ex-

trapolated that any two adjacent stages in an -stage divider can

be “paired” to provide best matching. Therefore, the following

conditions result.

1) The input impedance, seen at the input port of

even-number-stage even-number-section dividers, can be

perfectly matched in the vicinity of the center frequency

by adding quarter-wavelength (or )

transmission lines between adjacent stages.

Fig. 5. Calculated response of the 64-way two-section divider when all
two-way dividers are interconnected: (a) directly and (b) by quarter-wavelength
transmission lines.

2) The input impedance, seen at the input port of odd-number-

stage even-number-section dividers, can be matched to be

similar to that of a single even-number-section two-way

divider in the vicinity of the center frequency by adding

quarter-wavelength (or ) transmission

lines between adjacent stages.

3) Although the input port is always perfectly matched for

odd-number-section dividers, including the single-section

dividers detailed in Sections II and III, the input impedance

is optimal by adding half-wavelength ( or ) trans-

mission lines between adjacent stages. For even-number-

stage odd-number-section dividers, the input impedance is

well matched in the vicinity of the center frequency. For

odd-number-stage odd-number-section dividers, the input

impedance is similar to a single-stage divider around the

center frequency.

It should be pointed out that the above are sufficient condi-

tions to achieve optimal responses. They are not necessary con-

ditions to achieve the best match at the center frequency. For ex-

ample, the input of a 16-way divider is perfectly matched at the

center frequency if all stages are interconnected with quarter-

wavelength transmission lines. It is also perfectly matched at
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Fig. 6. Layout of the eight-way two-section divider, where the two-way di-
viders are connected by transmission lines with electrical lengths of 3�=2 and
�=2 (not to scale).

the center frequency if quarter-wavelength transmission lines

are added only between the second and third stages.

The response of even-number-section dividers is generally

most optimal when all adjacent stages are interconnected

by quarter-wavelength transmission lines. The

response of odd-number-section dividers is generally most

optimal when all adjacent stages are interconnected directly

, or by using half-wavelength transmission

lines if direct interconnection is physically difficult. This has

been confirmed by the calculated responses of the four-way

divider discussed in Section II, where and have

better performance than the other cases do. Due to the nature of

the quarter-wavelength transformers, the optimal bandwidth of

the divider will be reduced if longer interconnecting transmis-

sion lines, rather than quarter-wavelength or half-wavelength

ones, are used.

The calculated response of a 64-way divider interconnected

by quarter-wavelength transmission lines at all stages is shown

in Fig. 5(b). Compared to Fig. 5(a), it can be seen that the reflec-

tion at the input port is significantly improved by adding the in-

terconnecting transmission lines. On the other hand, the output

reflection is much better than the input reflection, and gener-

ally around 20 dB lower in both Fig. 5(a) and (b). The isola-

tion is very similar in both cases. In fact, this isolation is also

similar to that of the single-stage two-section divider shown in

Fig. 4(b). This again confirms the theory derived in Section II-D,

i.e., the reflection and isolation are not significantly affected in

the interconnected multiway dividers. The overall performance

of the 64-way divider meets the specified 3 : 1 bandwidth of the

single-stage two-section divider very well. The input reflection

is better than 17.2 dB, the isolation is better than 19.7 dB,

and the output reflection is better than 32.0 dB in the band of

interest.

D. Experimental Results

To validate the theory above, an eight-way two-section di-

vider was designed and tested. The layout of the circuit is shown

in Fig. 6. As indicated above, for this two-section divider, the in-

terconnecting transmission lines should be quarter-wavelength

or to achieve optimal performance. In the de-

sign, transmission lines with electrical lengths of and

were chosen to interconnect the two-way dividers at different

stages, respectively.

The divider was designed at -band with a center frequency

of 5.75 GHz. The circuit was designed in a microstrip struc-

ture to be constructed on Duroid RO4003 laminate. The lami-

nate has a dielectric constant of 3.38, a loss tangent of 0.0027,

Fig. 7. (a) Input reflection, (b) transmission, (c) output reflection, and (d) iso-
lation of the eight-way two-section divider with 3�=2- and �=2-long intercon-
necting transmission lines between different stages.

and a thickness of 0.305 mm. Two pairs of bended transmission

lines are used to construct the elementary two-way two-section
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divider, as shown in Fig. 6. Different linewidths are used to re-

alize the required characteristic impedances. The isolation re-

sistors used in practice are 200 and 110 , respectively.

To compensate for the nonideal T-junction and bend effects

of the transmission lines, the lengths of the interconnecting lines

and the dimensions of the two-way divider were further opti-

mized by EM software [15] to achieve optimal performance.

The calculated, simulated, and measured performance of the

divider is shown in Fig. 7. It can be seen that the calculated

isolation is 18.7 dB at the center frequency, the same as the

two-way two-section one. The reflection at the center frequency

would be 9.5 dB if the two-way dividers were connected

directly. The measured performance is in good agreement with

the calculated and simulated performance. The input reflection

is better than 15.5 dB, the output reflection is better than

19 dB, and the isolation is better than 19 dB as well in

the band of interest. The minimum measured insertion loss is

10 dB, including the loss of the input and output connectors,

only 1 dB on top of the 9-dB intrinsic loss of an eight-way

divider.

V. CONCLUSIONS AND FUTURE WORK

The general design of multiway multisection dividers by

interconnecting two-way dividers is described in this paper.

Transmission lines are needed to interconnect the dividers.

These transmission lines not only provide the physical link

among the two-way dividers, but can also be used to tune the

performance of the dividers. It is proven by calculation that

the response of the dividers is symmetrical about the center

frequency only when the electric lengths of the interconnecting

transmission lines are multiple quarter-wavelength. The mul-

tiway divider can achieve a similar usable bandwidth to that

of its two-way dividers by properly choosing the lengths of

the interconnecting transmission lines. It is also indicated in

the paper that the interconnection has much less effect on the

reflection and the isolation between the output ports.

In particular, the input reflection of a multiway even-number-

section divider is optimal when the interconnecting transmis-

sion lines are quarter-wavelength or an odd-number of quarter-

wavelengths. Without these interconnecting lines, the input re-

flection deteriorates rapidly. The input reflection of a multiway

odd-number-section divider is optimal when the interconnecting

transmission lines are zero-length or multiple-half-wavelength.

It is expected that this paper can provide general guidance

on the design of multiway multisection dividers. It is antici-

pated that the analysis method can also be applied to analyze un-

equal power dividers and other interconnected microwave com-

ponents, such as filters and couplers.
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