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Abstract Two-dimensional constrained Delaunay triangulations are geometric struc-
tures that are popular for interpolation and mesh generation because they respect the
shapes of planar domains, they have “nicely shaped” triangles that optimize several
criteria, and they are easy to construct and update. The present work generalizes con-
strained Delaunay triangulations (CDTs) to higher dimensions and describes con-
strained variants of regular triangulations, here christened weighted CDTs and con-

strained regular triangulations. CDTs and weighted CDTs are powerful and practical
models of geometric domains, especially in two and three dimensions.

The main contributions are rigorous, theory-tested definitions of CDTs and piece-
wise linear complexes (geometric domains that incorporate nonconvex faces with “in-
ternal” boundaries), a characterization of the combinatorial properties of CDTs and
weighted CDTs (including a generalization of the Delaunay Lemma), the proof of
several optimality properties of CDTs when they are used for piecewise linear inter-
polation, and a simple and useful condition that guarantees that a domain has a CDT.
These results provide foundations for reasoning about CDTs and proving the correct-
ness of algorithms. Later articles in this series discuss algorithms for constructing and
updating CDTs.
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1 Introduction

Many geometric applications can benefit from triangulations that have properties
similar to Delaunay triangulations, but are constrained to contain specified edges or
faces. Delaunay triangulations have virtues when they are used to interpolate multi-
variate functions [13, 28, 37, 50], including a tendency to favor “round” simplices
over “skinny” ones. However, some applications rely on the presence of faces that
represent specified discontinuities, as illustrated in Fig. 1, and the Delaunay triangu-
lation might not respect these constraints. Triangulations also serve as meshes that
represent objects for rendering or for the numerical solution of partial differential
equations. For these purposes, Delaunay triangulations have many advantages, but
the triangulations are required to assume the shapes of the objects being modeled,
and perhaps to resolve interfaces where different materials meet or where boundary
conditions are applied.

In two dimensions there are two popular alternatives for creating a Delaunay-like
triangulation that respects constraints. In either case, the input is a planar straight

line graph (PSLG), such as the one illustrated in Fig. 2(a). A PSLG X is a set of ver-
tices and segments (constraining edges) that satisfy two restrictions: both endpoints
of every segment in X are members of X, and a segment in X may intersect other seg-
ments and vertices in X only at its endpoints. A triangulation is sought that contains
the vertices in X and respects the segments in X.

The first alternative is to form a conforming Delaunay triangulation (Fig. 2(c)).
The vertices of X are augmented by additional vertices (sometimes called Steiner

points) carefully chosen so that the Delaunay triangulation of the augmented vertex
set conforms to all the segments—in other words, so that each segment is repre-
sented by a contiguous linear sequence of edges of the triangulation. Edelsbrunner

Fig. 1 A triangulation that
respects a discontinuity in a
function (b) can be a better
interpolating surface than one
that does not (a)

Fig. 2 The Delaunay triangulation (b) of the vertices of a PSLG (a) might not respect the segments
of the PSLG. These segments can be incorporated by adding vertices to obtain a conforming Delaunay
triangulation (c), or by forgoing Delaunay triangles in favor of constrained Delaunay triangles (d)
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Fig. 3 The edge e and the
triangle t are both constrained
Delaunay. Bold lines represent
segments

and Tan [20] show that a PSLG X can be triangulated with the addition of O(m2n)

augmenting vertices, where m is the number of segments in X, and n is the number of
vertices in X. For many PSLGs, their algorithm uses far fewer augmenting vertices,
but the numbers required in practice are often undesirably large. PSLGs are known
that have no conforming Delaunay triangulation with fewer than �(mn) augmenting
vertices. Closing the gap between the O(m2n) and �(mn) bounds remains an open
problem.

The second alternative is to form a constrained Delaunay triangulation (CDT)
[9, 29, 43], illustrated in Fig. 2(d). A CDT of X has no vertices not in X, and every
segment in X is a single edge of the CDT. However, a CDT, despite its name, is
not a Delaunay triangulation. In an ordinary Delaunay triangulation, every simplex
(triangle, edge, or vertex) is Delaunay. A simplex is Delaunay if its vertices are in
X and there exists a circumcircle of the simplex—a circle that passes through all its
vertices—that encloses no vertex in X. (Any number of vertices is permitted on the
circle.) In a CDT this requirement is waived, and instead every simplex must either
be a segment specified in X or be constrained Delaunay. A simplex is constrained
Delaunay if it has a circumcircle that encloses no vertex in X that is visible from
any point in the relative interior of the simplex—here visibility is occluded only by
segments in X—and furthermore, the simplex does not “cross” any segment. (For a
formal definition, see Section 1.1.)

Figure 3 demonstrates examples of a constrained Delaunay edge e and a con-
strained Delaunay triangle t . Segments in X appear as bold lines. Although there is
no empty circle that encloses e, the depicted circumcircle of e encloses no vertex that
is visible from the relative interior of e. There are two vertices inside the circle, but
both are hidden behind segments. Hence, e is constrained Delaunay. Similarly, the
sole circumcircle of t encloses two vertices, but both are hidden from the interior of
t by segments, so t is constrained Delaunay.

The advantage of a CDT over a conforming Delaunay triangulation is that it has no
vertex other than those in X. The advantage of a conforming Delaunay triangulation
is that its triangles are Delaunay, whereas those of a CDT are not. Nevertheless, CDTs
retain many of the desirable properties of Delaunay triangulations. For instance, a
two-dimensional CDT maximizes the minimum angle in the triangulation, compared
with all other constrained triangulations of X [29].

We live in a three-dimensional world, and those who model it have a natural in-
terest in constructing constrained and conforming triangulations in three or more di-
mensions. Algorithms by Murphy et al. [33], Cohen-Steiner et al. [12], Cheng and
Poon [8], and Pav and Walkington [34] can construct a conforming Delaunay tetra-
hedralization of any three-dimensional polyhedron by inserting carefully chosen ver-
tices on the boundary of the polyhedron. (Their algorithms work not only on poly-
hedra, but also on a more general input called a piecewise linear complex, defined
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Fig. 4 Schönhardt’s untetrahedralizable polyhedron (b) is formed by rotating one end of a triangular
prism (a), thereby creating three diagonal reflex edges. Every tetrahedron defined on the vertices of Schön-
hardt’s polyhedron sticks out (c)

below.) These algorithms might introduce a huge number of new vertices. No known
algorithm for finding conforming Delaunay tetrahedralizations is guaranteed to intro-
duce only a polynomial number of new vertices, and no algorithm of any complexity
has been offered for four- or higher-dimensional conforming Delaunay triangulations.

Prior to the present work (in its first incarnation [45]), CDTs had not been gen-
eralized to dimensions higher than two. One reason is that in three or more dimen-
sions, there are polytopes that cannot be triangulated at all without additional vertices.
Schönhardt [41] furnishes a three-dimensional example depicted in Fig. 4(b). The
easiest way to envision this polyhedron is to begin with a triangular prism (Fig. 4(a)).
Imagine twisting the prism so that the top triangular face rotates slightly like the lid of
a jar, while the bottom triangular face is fixed in place. Each of the three square faces
is broken along a diagonal reflex edge (an edge at which the polyhedron is locally
nonconvex) into two triangular faces. After this transformation, the upper left corner
and lower right corner of each (formerly) square face are separated by a reflex edge,
and the line segment connecting them is outside the polyhedron. Any four vertices of
the polyhedron include two separated by a reflex edge; thus, any tetrahedron whose
vertices are vertices of the polyhedron does not lie entirely within the polyhedron, as
illustrated in Fig. 4(c). Schönhardt’s polyhedron cannot be tetrahedralized without an
additional vertex. (One extra vertex at its center will do.)

Ruppert and Seidel [40] add to the difficulty by proving that it is NP-hard to de-
termine whether a three-dimensional polyhedron is tetrahedralizable. Even among
polyhedra that can be triangulated without additional vertices, there is not always a
triangulation that is in any reasonable sense “constrained Delaunay.”

What features of polytopes make them amenable to being triangulated with
Delaunay-like simplices? This article offers a partial answer by proposing a conserv-
ative extension of the definition of CDT to higher dimensions, and by demonstrating
that there is an easily tested and enforced, sufficient (but not necessary) condition
that guarantees that a CDT exists. This article also shows that CDTs optimize several
criteria for the accuracy of piecewise linear interpolation of certain classes of func-
tions. These results extend to weighted CDTs (a constrained generalization of regular
triangulations), wherein each vertex is assigned a numerical weight that influences
the triangulation.
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Fig. 5 Each facade of a PLC (a) may have holes, slits, and interior vertices, which are used to constrain a
triangulation or to support intersections with other facades. (b) The constrained Delaunay triangulation of
the PLC in (a). It is a PLC, too

There is more than one way in which the notion of “constrained Delaunay” might
generalize to three or more dimensions. The choices made here yield useful CDTs
and efficient algorithms for their construction, though other generalizations of CDTs
might be discovered in the future.

This article is the first in a three-part series. The second article discusses sweep and
gift-wrapping algorithms for constructing the CDT of any piecewise linear complex
that has one, except for a class of difficult, “nongeneric” inputs. It also demonstrates
the NP-completeness of determining whether a nongeneric polyhedron has a CDT.
The third article discusses algorithms for updating a CDT to reflect the insertion or
deletion of a (d − 1)-facade, a vertex, or several vertices, as well as an incremen-
tal algorithm for constructing CDTs that have a property called “ridge protection”
(described in the next section).

1.1 Summary of Results

The input is a piecewise linear complex (PLC), following Miller et al. [32].1 A PLC is
a finite set of facades in an ambient space Ed . A facade is a polytope (roughly speak-
ing) of any dimension from zero to d , possibly with holes and lower-dimensional
facades inside it. Figure 5 illustrates a three-dimensional PLC. As the figure shows, a
facade may have any number of sides, may be nonconvex, and may have holes, slits,
or vertices inside it. A k-facade is a k-dimensional facade. 0-Facades are vertices,
and 1-facades are segments. Observe that a PSLG is a two-dimensional PLC without
2-facades.

PLCs have restrictions similar to those of PSLGs or any other type of complex.
For each facade f in a PLC X, the boundary of f must be composed of lower-
dimensional facades in X. Nonempty intersections of facades in X must be facades
in X. For details, see Section 2.1, where the terms facade and PLC are defined with
full mathematical rigor.

The purpose of most facades is to constrain a triangulation. A d-dimensional PLC
typically includes d-facades, whose purpose is to specify what region the triangula-
tion should fill. The union of all the facades in a PLC X is the triangulation domain

1Miller et al. call it a piecewise linear system, but their construction is so obviously a complex that a
change in name seems obligatory.
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Fig. 6 (a) Examples of triangles that respect a shaded facade. (b) Examples of triangles that do not respect
the facade. (c) Examples of triangles that respect the facade, but do not respect all its edges and vertices
(which are facades themselves)

|X|, the portion of space a user wishes to triangulate. The specification of a triangu-
lation domain is sometimes crucial, because there are PLCs for which a CDT of the
triangulation domain exists but a CDT of its convex hull does not. For example, it is
easy to tetrahedralize the region sandwiched between Schönhardt’s polyhedron and a
suitable bounding box, even though the interior of the polyhedron is not tetrahedral-
izable.

The complement of the triangulation domain, Ed\|X|, is called the exterior do-

main and includes any hollow cavities enclosed by the triangulation domain, as well
as outer space. Because X is a complex, some of its (d − 1)-facades separate the in-
terior of the triangulation domain from the exterior domain. However, not all (d −1)-
facades play this role. Figure 5 includes several dangling lower-dimensional facades
that are not part of any d-facade. Some facades are internal facades, which do not
lie on the boundary of the exterior domain. These facades allow PLCs to represent
multiple-component domains and domains with nonmanifold boundaries.

The goal of this work is to subdivide a domain into simplices. A k-simplex is
a k-dimensional simplex—the convex hull of k + 1 affinely independent points. A
triangulation or simplicial complex T is a finite set of simplices that intersect each
other “nicely”: T contains every face of every simplex in T , and the intersection of
any two simplices in T is either empty or a face of both simplices. A triangulation
T fills a PLC X if

⋃
t∈T t = ⋃

f ∈X f ; that is, if the union of simplices in T is the
triangulation domain |X|.

Of course, not all triangulations that fill X are equally good. Facades constrain
what sort of simplex is acceptable. A simplex s respects a facade f if s ∩f is a union
of faces of s (possibly empty). As Fig. 6 illustrates, the intersection of a nonconvex
facade and a triangle that respects it might be the empty set, a vertex, an edge, the
entire triangle, the union of two or all three edges, the union of two or all three
vertices, or the union of an edge and opposite vertex of the triangle. Loosely speaking,
if s respects f , then s cannot “cross” f or f ’s boundary.

A simplex s respects X if s ⊆ |X| and s respects every facade in X, except perhaps
some of the vertices. (Weighted CDTs may omit some of the vertices in X, unlike
ordinary CDTs, but some designated vertices must be respected; see Section 2.3 for
details.)

A triangulation T is a triangulation of X if T fills X, every simplex in T respects
X, and every vertex in T is in X. This definition implies that every facade in X

(except perhaps the vertices) is a union of simplices in T . (See Section 2.3 for a
discussion of why the definition does not explicitly require every vertex in X to be
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Fig. 7 A constrained Delaunay
tetrahedron t

in T . This requirement arises implicitly if every vertex is designated as one that must
be respected.)

Sometimes it is desirable to permit a triangulation to have vertices not present in
X—and sometimes it is necessary, as Schönhardt demonstrates. A triangulation T is a
conforming triangulation or Steiner triangulation of X if T fills X and every simplex
in T respects X. This article is devoted to pure triangulations in which extra vertices
are not permitted, but Steiner triangulations are investigated elsewhere [47, 49].

Within a PLC X, the visibility between two points p and q is occluded if pq �⊆ |X|
or there is a facade between p and q whose affine hull contains neither p nor q .
(Note, however, that some vertices do not obstruct visibility—namely those that the
triangulation is not required to respect. See Section 2.4.) The points p and q are
visible from each other if pq ⊆ |X| and X contains no occluding facade.

Let s be a k-simplex (for any k) whose vertices are in X (though s is not neces-
sarily a facade in X). Let S be a (full-dimensional) hypersphere in Ed . S is a circum-

sphere of s if S passes through all the vertices of s. If k = d , then s has a unique
circumsphere; otherwise, s has infinitely many circumspheres. The simplex s is De-

launay if there exists a circumsphere S of s that encloses no vertex in X. The simplex
s is strongly Delaunay if there exists a circumsphere S of s such that no vertex in
X lies inside or on S, except the vertices of s. Every 0-simplex (vertex) is trivially
strongly Delaunay.

A simplex s is constrained Delaunay if

• the vertices of s are in X,
• s respects X, and
• there is a circumsphere S of s such that no vertex of X inside S is visible from any

point in the relative interior of s.

Figure 7 depicts a constrained Delaunay tetrahedron t in E3. The intersection of t

with the facade f is a face of t , so t respects X. The circumsphere of t encloses one
vertex v, but v is not visible from any point in the interior of t , because f occludes
its visibility.

A constrained Delaunay triangulation T of X is a triangulation of X in which
every d-simplex is constrained Delaunay. If X has dangling facades, this charac-
terization is insufficient, and we must resort to the (less readable) true definition:
a CDT T of X is a triangulation of X in which each simplex is constrained De-
launay “within” the lowest-dimensional facade in X that includes it. For example,
a three-dimensional CDT fills each 2-facade (dangling or not) with triangles that
are constrained Delaunay “within” that 2-facade, and collectively comprise a two-
dimensional CDT of the 2-facade. However, those triangles might not be constrained
Delaunay within the three-dimensional PLC—they might have empty circumcircles,
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Fig. 8 (a) A PLC with no CDT.
(b) The sole tetrahedralization of
this PLC. Its three tetrahedra are
not constrained Delaunay.
(c) The two Delaunay tetrahedra
do not respect the central
segment

but not empty circumspheres. (That is why the 2-facade is there—to enforce the pres-
ence of triangles that might otherwise be absent.) The definition of “CDT” is therefore
recursive in the dimension. See Section 2.4 for details.

The first main result of this article is a characterization of many basic properties
of constrained Delaunay and weighted constrained Delaunay triangulations, analo-
gous to the well-known properties of Delaunay triangulations. (Weighted CDTs are
defined in Section 2.4.) For example, every face of a constrained Delaunay simplex is
itself constrained Delaunay within some facade. A CDT of a facade includes CDTs of
all the facade’s faces (Section 3.1). If a PLC has no d +2 vertices lying on a common
hypersphere, then its constrained Delaunay simplices have disjoint relative interiors
and form a simplicial complex, and it has at most one CDT (Section 3.3). The Delau-
nay Lemma, which guarantees that a triangulation of a vertex set is Delaunay if and
only if its facets are locally Delaunay [14], generalizes to CDTs (Section 3.2). The
Delaunay Lemma is a fundamental tool for verifying that a triangulation is a CDT,
and for dynamically maintaining the CDT of a PLC whose vertices are moving or
changing their weights.

The second main result is that CDTs are optimal by several criteria (described in
Section 4) when they are used for piecewise linear interpolation. This fact is among
the reasons why CDTs are so valuable.

The third main result is a condition that guarantees the existence of a CDT. The
main impediment to the existence of CDTs is the difficulty of respecting facades of
dimension d − 2 or less. Figure 8 offers an example of a three-dimensional PLC with
no CDT. There is one segment that runs through the interior of the PLC. There is only
one tetrahedralization of this PLC—composed of three tetrahedra encircling the cen-
tral segment—and its tetrahedra are not constrained Delaunay, because each of them
has a visible vertex inside its circumsphere. If the central segment were removed, the
PLC would have a CDT made up of two tetrahedra.

The condition that guarantees that a PLC has a CDT is easiest to describe, and eas-
iest to enforce, in three dimensions. A three-dimensional PLC X is ridge-protected if
every segment (1-facade) in X is strongly Delaunay. (See Section 2.4 for the general-
dimensional definition.) Every ridge-protected PLC has a CDT. This result, called the
CDT Theorem, makes three-dimensional CDTs useful in geometric modeling appli-
cations.

It is not sufficient for every segment to be Delaunay. If Schönhardt’s polyhedron
is embedded so that all six of its vertices lie on a common sphere, then all of its edges
(and its triangular faces as well) are Delaunay, but it still does not have a tetrahedral-
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ization. It is not possible to place the vertices of Schönhardt’s polyhedron so that all
three of its reflex edges are strongly Delaunay (though any two may be).

Here is a stronger and even more useful version of the CDT Theorem. In three
dimensions a segment may serve as a boundary to several 2-facades, which can be
sorted by their rotary order around the segment. A segment is grazeable if two con-
secutive 2-facades in the rotary order are separated by an interior angle of 180◦ or
more, or if the segment is included in fewer than two 2-facades and is internal, not
dangling. (An interior angle subtends the interior of the triangulation domain. Exte-
rior angles of 180◦ or more are irrelevant to the CDT Theorem.) Only the grazeable
segments need to be strongly Delaunay to guarantee a CDT. A three-dimensional PLC
X is weakly ridge-protected if every grazeable segment in X is strongly Delaunay.
Every weakly ridge-protected PLC has a CDT.

Segments that are not grazeable are common. For instance, in a complex of convex
polyhedra, no segment is grazeable. The stronger result exempts the segments of the
complex from the need to be strongly Delaunay.

Testing whether a PLC is ridge-protected, or weakly ridge-protected, is straight-
forward. See the comments following Definition 23.

This article’s results extend to weighted CDTs, which are described in Section 2.4.
Weighted CDTs are central in the design of flip algorithms for updating and con-
structing CDTs; see the third article in this series. Several researchers have shown
that weighted Delaunay triangulations are useful for three-dimensional mesh gener-
ation, because some undesirable tetrahedra can be removed by adjusting the vertex
weights [6, 7, 16]. Weighted CDTs share this virtue and are even more powerful,
because of the ease with which they respect the shape of a domain.

The definition of “ridge-protected” generalizes to weighted PLCs, and every
weakly ridge-protected, weighted PLC has a weighted CDT. Interestingly, even in
two dimensions there are weighted PLCs that do not have weighted CDTs.

1.2 Benefits of the CDT Theorem

Why is it useful to know that weakly ridge-protected PLCs have CDTs? Although a
given PLC X might not be weakly ridge-protected, the insertion of additional vertices
can transform it into a weakly (or fully) ridge-protected PLC Y , which has a CDT.
The CDT of Y is not a CDT of X, because it has vertices that X lacks, but it is a
conforming CDT or Steiner CDT of X: “conforming” or “Steiner” because boundary
conformity is obtained by inserting new vertices (Steiner points), and “CDT” because
the simplices of the Steiner CDT are constrained Delaunay (rather than Delaunay).

Compare this idea with the most common methods of recovering missing facades
in three-dimensional Delaunay-based mesh generation algorithms, which insert ad-
ditional vertices into all the missing facades. Some of these algorithms produce con-
forming Delaunay meshes [8, 34, 39], and some recover the missing facades by bi-
secting and flipping tetrahedra, yielding a mesh that is not necessarily Delaunay nor
constrained Delaunay, although you might say it is “almost” Delaunay [22, 27, 52,
53]. Figure 9 illustrates the advantage of a Steiner CDT. All the procedures use ver-
tex insertions to recover missing grazeable segments, but the customary approaches
require additional vertex insertions to recover missing 2-facades and non-grazeable
segments. A Steiner CDT does not need these extra vertices.
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Fig. 9 Two methods for
recovering a 2-facade in the
interior of a cubical
triangulation domain. The initial
Delaunay tetrahedralization
does not respect the facade. (For
clarity, the tetrahedra are not
shown.) Both methods insert
new vertices to recover missing
segments. Next, the customary
method is to insert more vertices
to recover missing 2-facades
(top), but no additional vertices
are needed if constrained
Delaunay tetrahedra are used
(bottom)

Fig. 10 (a) It is difficult to mesh the interior of this box with Delaunay tetrahedra that conform to all the
facades. (b) The box can be meshed with constrained Delaunay tetrahedra with the addition of just the
vertices shown

Figure 10(a) depicts an example of a PLC for which a Steiner CDT is much more
effective than a conforming Delaunay tetrahedralization. In the interior of the box,
many oddly shaped 2-facades adjoin a single shared segment. The triangulation do-
main is the entire box. Vertices inserted to recover one 2-facade—so that it is a union
of triangular faces of the Delaunay tetrahedralization—are likely to knock out trian-
gles from the adjacent 2-facades. The aforementioned algorithms of Murphy et al.
and others [8, 12, 33, 34] can construct conforming Delaunay tetrahedralizations of
this PLC, but they require many more vertices than are needed to form a Steiner CDT,
most of them in the 2-facade interiors. The PLC augmented with a modest number of
vertices (Fig. 10(b)) is weakly ridge-protected and has a CDT.

I conjecture that for the worst three-dimensional PLCs, conforming Delaunay tri-
angulations need asymptotically more vertices than Steiner CDTs. It is an open ques-
tion whether this is true, but based on the two-dimensional complexity results, it
seems like a safe gamble.
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An algorithm that decides how to choose new vertices so that there are provably
good bounds on the edge lengths of the Steiner CDT (i.e. edges are not made un-
necessarily short) is described elsewhere [47]. This algorithm does not guarantee a
polynomial bound on the number of new vertices, but its guarantees on edge lengths
are in some ways more useful, because the Steiner CDT is an excellent starting trian-
gulation for several algorithms for three-dimensional mesh generation. One algorithm
uses the constrained Delaunay property to guarantee its ability to tetrahedralize any
PLC [46], and another uses it to establish provable bounds on the quality of the tetra-
hedra it produces and on the edge lengths of the final mesh [44]. The results in this
article underpin those algorithms.

Why does this article take PLCs as the input rather than, for simplicity, boundary
triangulations? Consider finding a tetrahedralization of a cube. The edges of the cube
are strongly Delaunay, so the CDT Theorem guarantees that the cube has a CDT.
By contrast, consider a boundary triangulation of a cube. Any boundary triangula-
tion bisects each square face of the cube with a diagonal edge. These diagonals are
not strongly Delaunay, so the CDT Theorem does not apply. Moreover, a tetrahe-
dralization respecting the boundary triangulation might not exist (depending on the
choice of diagonals). Thus, the option to specify facades more general than simplices
is an advantage both for the theorem and for CDT construction algorithms, which can
choose a compatible set of diagonals.

If a PLC is ridge-protected, its CDT can be built by a simple incremental facade
insertion algorithm described in the third article in this series. PLCs that are not ridge-
protected (but have CDTs) currently require a more complicated sweep algorithm or
a slower gift-wrapping algorithm, described in the second article in this series.

2 Complexes

This section defines the geometric constructions and ideas at the center of this work.
The input structures—facades and PLCs—are formalized in Section 2.1. The output
structures, a generalization of CDTs called weighted CDTs, are described in Sec-
tions 2.2–2.4. Definitions are often a perfunctory part of a mathematics article, so it
is worth noting that 8 years of trial and error led to the definitions given here. “Con-
strained Delaunay” and the notion of visibility are defined differently here than in
the earlier incarnation of this work [45], and the present definitions are more sound.
These and other definitions in this article evolved with the proofs of the theorems
here and in the sequel articles.

Throughout this article, the terms “simplex,” “triangle,” “tetrahedron,” and “con-
vex hull” refer to closed, convex sets of points; for instance, a “triangle” is not just
three edges, but the points inside as well. The notation conv(S) represents the convex
hull of the point set S.

Some simplices of specific dimensions have their own names. Of course, a vertex
is a 0-simplex, an edge is a 1-simplex, a triangle is a 2-simplex, and a tetrahedron is a
3-simplex. In a d-dimensional ambient space, a (d −2)-dimensional convex polytope
or (d − 2)-simplex is called a ridge, and a (d − 1)-dimensional convex polytope or
(d − 1)-simplex is called a facet.
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The notation pq denotes a line segment with endpoints p and q . The notation
p · q denotes the Euclidean inner product, |p| = √

p · p is the Euclidean norm, and
|pq| = |p − q| is the Euclidean length of pq . It might help the reader to know that
this article strictly distinguishes between the verbs contain for set membership (∋)
and include for set inclusion (⊇).

2.1 Piecewise Linear Complexes

Consider points in an ambient space Ed . A k-flat (k-dimensional flat) is the affine hull
of k + 1 affinely independent points. (A flat is also known as an affine subspace—
unlike a true subspace it is not required to contain the origin. For readers familiar
with flats but not affine hulls, the affine hull of a point set is the lowest-dimensional
flat that includes it.) A set of points S ⊆ Ed is k-dimensional if the affine hull of S

is a k-flat. (In other words, S contains k + 1 affinely independent points, but does
not contain k + 2 affinely independent points.) A hyperplane is a (d − 1)-flat. The
set of points on one designated side of a hyperplane, excluding every point of the
hyperplane itself, is an open halfspace. By contrast, a closed halfspace includes the
hyperplane as well.

An open convex k-polyhedron is the nonempty intersection of a k-flat and a finite
number of open halfspaces. It is bounded if it does not include a ray (equivalently,
if its diameter is finite). A closed convex k-polyhedron is the closure of an open
convex k-polyhedron. The closure of a polyhedron has its usual meaning from real
analysis—the set of all the points and accumulation points of the polyhedron—and
more intuitively is a point set containing all the points of the polyhedron, plus all the
points on its boundary.

Definition 1 (Facade) An open k-facade is the union of a finite number of bounded,
open, convex k-polyhedra, all included in some common k-flat. A closed k-facade is
the closure of an open k-facade.

Observe that a facade is not required to be connected. A 0-facade (open or
closed—there is no difference) is a vertex, and a 1-facade is either a segment or a
sequence of collinear segments.

A closed facade is equivalent to Hadwiger’s classic polyhedron [26], which is de-
fined to be a union of closed convex polyhedra. It is the open facades that motivate
the new name. In geometric modeling, open facades are more versatile than closed
facades as abstractions of geometric domains and their boundaries, because an open
facade can have internal boundaries. Internal boundaries serve at least two purposes:
they support intersections between surfaces, as Fig. 11 illustrates, and they constrain
the permissible triangulations of the facade—for instance, to support the applica-
tion of boundary conditions to a finite-element mesh, or to model discontinuities in
the lighting of a surface for computer graphics. Internal boundaries are necessary to
model some domains with nonmanifold boundaries, like the domain in Fig. 5.

Definition 2 (External and Internal Boundaries) The external boundary of a facade
is the boundary of the closure of the facade. (Observe that the external boundary in-
cludes boundaries of holes.) The internal boundary of an open facade is the boundary
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Fig. 11 At left are two connected 2-facades and a 1-facade (composed of two segments). At center and
right appear one of the 2-facades, represented as both an open and a closed facade. Dashed lines and open
circles represent points that are not part of the open facade. The internal boundary includes a slit and an
isolated vertex, both of which are needed to support contacts with other facades. The internal boundary
cannot be inferred from the closed facade alone

of the open facade minus the external boundary. (Equivalently, it is the intersection
of the boundary with the relative interior of the closure of the facade.) See Fig. 11.

Throughout this article, relative interior has its usual meaning from real analysis,
but boundary is used as shorthand for relative boundary, and open for relatively open.

The faces of a facade are defined in a fundamentally different way than the faces
of a convex polyhedron. The faces of a convex polyhedron are an intrinsic property
of the polyhedron, whereas the faces of a facade are defined only in the context of a
PLC. Compare the following two definitions.

Definition 3 (Face of a Convex Polyhedron) The faces of a closed, convex k-poly-
hedron P are P and every polyhedron found by taking the intersection of P with a
hyperplane that does not intersect the relative interior of P . The proper faces of P

are the faces of dimensionalities zero through k − 1.

This standard construction also defines the faces of a simplex. For example, the
faces of a tetrahedron include its four vertices, its six edges, its four triangular faces,
and the tetrahedron itself. By convention, the empty set is considered to be a (−1)-
dimensional face of every polyhedron. This article makes no use of this convention,
but in some circumstances it is convenient to assume that ∅ is a member of every
nonempty PLC and triangulation.

PLCs and the faces of a facade are defined in a way that gives a geometric model
the power to constrain how the boundary of a facade can be triangulated.

Definition 4 (Piecewise Linear Complex; Face of a Facade) An open piecewise lin-

ear complex (PLC) X is a set containing a finite number of open facades that satisfy
the following two restrictions:

• For every facade f ∈ X, the boundary of f is a union of facades in X.2 For ex-
ample, X contains both endpoints of every segment in X, and every 2-facade’s
boundary is a union of segments and vertices in X.

2The boundary of a vertex is the empty set, which is a union of zero facades.



Discrete Comput Geom (2008) 39: 580–637 593

• For any two facades f,g ∈ X, f ∩ g = ∅.

The faces of a facade f are {g ∈ X : g ⊆ closure(f )}. They include f itself and
its vertices. The proper faces of f are all its faces except f and ∅.

For any open PLC X, {closure(f ) : f ∈ X} is a closed piecewise linear complex.

It is possible to reverse the transformation and convert a closed PLC into an open
PLC by subtracting from each facade every facade of lower dimension. Hence, for a
closed facade in a closed PLC, define the internal boundary of the closed facade to be
the internal boundary of the corresponding open facade. The internal boundary of a
closed facade is not really part of the boundary of the closed facade, and it is defined
only in the context of a PLC.

Definition 5 (Triangulation Domain) Let |X| denote the union of facades
⋃

f ∈X f .
|X| is called the triangulation domain, or simply the domain. (It is also known as the
underlying space of X.)

A corollary of the definition of PLC is that
⋃

f ∈X f is the same for an open PLC
and the corresponding closed PLC. Another corollary is that a closed PLC Y satisfies
the restrictions that Miller et al. [32] specified when they introduced the notion of a
PLC.

• For every facade f ∈ Y , the boundary of f is a union of facades in Y .
• For any two facades f,g ∈ Y , f ∩ g is a union of facades in Y . (Usually f ∩ g is a

single facade or the empty set, but imagine two nonconvex 2-facades that intersect
each other at several isolated vertices and along several line segments. Each of
these vertices and line segments must be in Y .)

• For any two facades f,g ∈ Y , if f ∩ g has the same dimensionality as f , then
f ⊂ g, and f is of lower dimensionality than g.

Miller’s third restriction is somewhat cryptic; its main effect is to prevent two
facades of the same dimensionality from having overlapping relative interiors. The
formulation of PLCs in terms of open facades is more elegant, because no similarly
cryptic restriction is needed. However, closed PLCs offer a more elegant model for
the incremental update of a PLC (discussed in the third article of this series). The
insertion or deletion of a facade in a closed PLC can imply several modifications to
the corresponding open PLC. For instance, when a vertex is added to an open PLC,
if a facade contains the vertex, the facade must have that point removed.

This formal hair-splitting between open and closed facades is necessary because it
is the open facades that determine the facade boundaries, but it is the closed facades
that occlude visibility, and simplices must respect the closed facades. The rest of this
article maintains an uneasy duality, wherein every use of the word “facade” refers to
both the open and the closed versions of the facade. Fortunately, the bijective map
between open and closed PLCs usually makes it unnecessary to specify which type
of PLC is under discussion.

The reader should be aware that every reference to the “boundary of a facade”
or the “faces of a facade” regards the boundary of the open facade, including the
internal boundary. Similarly, the “relative interior of a facade” refers to the open
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facade. However, wherever this article states that a facade contains a point, a facade
obstructs visibility, or a simplex respects a facade, the closed facade is implied.

It makes no difference to most of this article’s results whether or not facades are
connected. An open facade made up of n connected components can be replaced
with n separate facades without changing any essential properties of the PLC. Some
components of a facade may be grazeable while others are not, so breaking up a
facade into its components may improve the prospects for having a weakly ridge-
protected PLC. However, there is an important convention for weighted CDTs. If
a vertex in a PLC is an endpoint of two collinear segments and is not needed to
support their intersection with some other facade, it is usually better to think of the
two segments as parts of a single 1-facade, because the vertex might be absent from
the weighted CDT. (See Definition 12 in Section 2.3 for details.)

There appear to be few publications exploring the properties of geometric par-
titions that permit the existence of faces with internal boundaries. An interesting
exception by Grünbaum and Shephard [25] shows how to reliably compute Euler
characteristics for a class of objects more general than PLCs. One can convert an
open PLC into a “relatively open convex dissection” by partitioning its open facades
into open convex facades (polyhedra), whereupon its Euler characteristic is easy to
calculate. This method is particularly interesting when applied to an open facade with
a complicated internal boundary, or to a subset of an open PLC that allows faces of
facades to be absent.

The notion of a PLC generalizes to complexes of curved manifolds. For example,
every semialgebraic or subanalytic set of points can be partitioned into a stratifica-

tion—a set of strata (which generalize open facades), each of which is a manifold.
See Gomes [23] for an excellent introduction to the topic.

How might a PLC be represented as a data structure? Here are a few suggestions.
A 0-facade (vertex) is represented by its d coordinates. For j ≥ 1, a j -facade f is
most easily represented by a list of its proper faces. To conserve space, f can be rep-
resented by a list of every proper face of f that is not a proper face of a proper face of
f ; the unlisted faces can be inferred by reading the listed faces’ lists. This represen-
tation differs in several ways from the usual face lattice representation of polyhedra
and polyhedral complexes. First, the faces in f ’s list are not necessarily all (j − 1)-
faces, because f ’s internal boundary may include lower-dimensional faces that are
not included in any (j −1)-face. For example, a 2-facade may have an isolated vertex
inside it. Second, this representation is technically not a lattice. For example, two 2-
facades might intersect at two separate vertices that are included in no other facades,
so a pair of facades do not necessarily have a unique meet and join, contrary to the
definition of “lattice.” See Ziegler [54] for a definition and discussion of face lattices.

Within the affine hull of a j -facade f , each (j − 1)-face of f has two sides. In
an implementation of the sweep algorithm or gift-wrapping algorithm for CDT con-
struction, the list of f ’s (j − 1)-faces should include annotations that indicate which
side (or sides) of each (j − 1)-face adjoins f . A (j − 1)-face on f ’s internal bound-
ary adjoins f on both sides. If an open (j −1)-face is composed of several connected
components, it needs one annotation for each side of each connected component.

For the algorithms described in the sequel articles, it is unnecessary to specify the
d-facades explicitly as part of the input. Instead, each side of each (d − 1)-facade
should bear an annotation that indicates whether it adjoins the exterior domain or the



Discrete Comput Geom (2008) 39: 580–637 595

interior of the triangulation domain. A (d − 1)-facade is part of the internal boundary
of a PLC if both sides adjoin the triangulation domain, part of the external boundary
if one side adjoins the exterior domain, and a dangling facade if both sides adjoin the
exterior domain.

Definition 6 (Dangling Facade) Let X be a d-dimensional PLC. A facade in X is a
dangling facade if it is not a face of any d-facade in X.

To a programmer, the distinction between open and closed facades is almost irrel-
evant. Any reasonable PLC data structure simultaneously represents both.

2.2 Weighted Delaunay Triangulations

This section reviews known facts about weighted Delaunay triangulations [2] and
introduces new terminology as a preliminary to introducing weighted CDTs in Sec-
tion 2.4. Consider the Euclidean space Ed+1, and let x1, x2, . . . , xd+1 be the coor-
dinate axes. Ed is the subspace of Ed+1 orthogonal to the xd+1-axis. In the space
Ed+1, a d-flat is vertical if it includes a line parallel to the xd+1-axis.

Definition 7 (Polyhedral Complex; Triangulation) A polyhedral complex T is a set
containing a finite number of closed, convex polyhedra that satisfy the following two
restrictions:

• For every polyhedron s ∈ T , every face (in the sense of Definition 3) of s is in T .
• For any two polyhedra s, t ∈ T , if s and t are not disjoint, then s ∩ t is a face of

both s and t .

A triangulation or simplicial complex is a polyhedral complex whose members
are all simplices.

Every polyhedral complex is a PLC. Observe that polyhedral complexes are less
general than PLCs whose facades are all convex, because they use a different defin-
ition of “face.” In a PLC, one side of a tetrahedron might be subdivided into several
triangular faces, and a (closed) tetrahedron might have an edge passing through its
interior. In a polyhedral or simplicial complex, both circumstances are forbidden: a
side of a tetrahedron is represented by exactly one triangular face, and a tetrahedron’s
interior intersects no other simplex of equal or lesser dimension.

A d-dimensional triangulation or polyhedral complex is regular if it is the vertical
projection of one “side” of some convex (d + 1)-polyhedron.

Definition 8 (Downward-Facing; Underside; Regular) Let P be a convex (d + 1)-
polyhedron in Ed+1. A face f of P is downward-facing if no point in P is directly
below any point in f (i.e. having the same x1- through xd -coordinates but a lesser
xd+1-coordinate). The underside of P is the set of all its downward-facing faces.

A d-dimensional triangulation or polyhedral complex is regular if it can be
formed by vertically projecting the underside of some convex (d + 1)-polyhedron
P into Ed (by dropping the xd+1-coordinate of each vertex).
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Fig. 12 The parabolic lifting
map. In this illustration a
two-dimensional vertex set V is
lifted to a paraboloid in E3 . The
underside of the convex hull of
the lifted vertices is a lifted
Delaunay triangulation

The best-known regular triangulation is the Delaunay triangulation. The regularity
of most Delaunay triangulations is demonstrated by the well-known parabolic lifting

map of Seidel [18, 42] (inspired by a spherical lifting map suggested by Brown [5]).
Let V be a set of vertices in Ed for which a Delaunay triangulation is sought. The
lifting map maps each vertex in V to a vertex on a paraboloid in a space one dimen-
sion higher, as Fig. 12 illustrates. Specifically, each vertex v = (vx1 , vx2 , . . . , vxd

) ∈ V

maps to a point v+ = (vx1 , vx2, . . . , vxd
, v2

x1
+ v2

x2
+ · · · + v2

xd
) in Ed+1.

Definition 9 (Companion) The pair of vertices v and v+ are called companions: v+

is the lifted companion of v, and v is the projected companion of v+.
If s is a k-simplex with vertices v0, v1, . . . , vk , then its lifted companion s+ is the

k-simplex embedded in Ed+1 whose vertices are v+
0 , v+

1 , . . . , v+
k ; and s is the pro-

jected companion of s+. Note that s+ is flat, and does not curve to hug the paraboloid.

Let V + = {v+ : v ∈ V }. The Delaunay triangulation of V is regular because it has
the same combinatorial structure as the underside of the convex hull of V +, as the
forthcoming Theorem 2 shows. Each downward-facing simplex of conv(V +) projects
to a Delaunay simplex of V . This connection is routinely used to transform any (d +
1)-dimensional convex hull construction algorithm into a d-dimensional Delaunay
triangulation construction algorithm.

Lemma 1 Let S be a hypersphere in Ed . Let S+ = {p+ : p ∈ S} be the ellipsoid

found by lifting S to the paraboloid. Then the points of S+ lie on a non-vertical d-

flat h. (Recall that a d-flat is vertical if it is parallel to the xd+1-axis.) Furthermore, a

point p inside S lifts to a point p+ below h, and a point p outside S lifts to a point p+

above h. Therefore, testing whether a point p is inside, on, or outside S is equivalent

to testing whether the lifted point p+ is below, on, or above h.

Proof Let O and r be the center and radius of S, respectively. Let p be a point
in Ed . The xd+1-coordinate of p+ is |p|2. By expanding |O − p|2, we have that
|p|2 = 2O · p − |O|2 + |Op|2.
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With O and r fixed and x ∈ Ed varying, the equation xd+1 = 2O · x − |O|2 + r2

defines a non-vertical d-flat h in Ed+1. For every point p ∈ S, |Op| = r , so S+ ⊂ h.
For every point p �∈ S, if |Op| < r , then the lifted point p+ lies below h, and if
|Op| > r , then p+ lies above h. �

Theorem 2 [42] Let s be a simplex whose vertices are in V , and let s+ be its lifted

companion. Then s is Delaunay if and only if s+ is included in some face of the

underside of conv(V +). The simplex s is strongly Delaunay if and only if s+ is a

face of the underside of conv(V +) and no vertex in V + lies on s+ except the vertices

of s+.

Proof If s is Delaunay, there is a circumsphere S of s such that no vertex of V lies
inside S. Let h be the unique d-flat in Ed+1 that includes S+. By Lemma 1, no vertex
in V + lies below h. The d-flat h includes s+ because the vertices of s+ are in S+.
Therefore, s+ is included in a downward-facing face of the convex hull of V +. If s

is strongly Delaunay, no vertex in V + lies below h, and no vertex in V + lies on h

except the vertices of s+. Therefore, s+ is a downward-facing face of the convex hull
of V +.

The converse implications follow by reversing the argument. �

A weighted Delaunay triangulation is like a Delaunay triangulation, but each
vertex v ∈ V is assigned a real-valued weight wv . A vertex v lifts to a companion
v+ = (vx1, vx2 , . . . , vxd

, v2
x1

+ v2
x2

+ · · · + v2
xd

− wv). The xd+1-coordinate |v|2 − wv

is called the height of v. The weighted Delaunay triangulation of V is the projection
to Ed of the underside of conv(V +). It follows that a weighted Delaunay triangula-
tion is regular.

Some faces of conv(V +) might not be simplices, because some selection of d + 2
or more of the lifted vertices might lie on a common non-vertical d-flat. (Observe that
vertices that lie on a common vertical d-flat do not cause trouble, because a vertical
face cannot be downward-facing. This is good news, because a typical real-world ver-
tex set V includes large groups of cohyperplanar vertices.) These non-simplicial faces
can be filled with any compatible triangulation, so V has more than one weighted
Delaunay triangulation. However, some faces can be triangulated with triangulations
that are not regular, so not all weighted (or unweighted) Delaunay triangulations are
regular! Section 6 describes a simple way to perturb the weights to simulate the cir-
cumstance that no d + 2 vertices in V + lie on a common non-vertical d-flat.

If its weight is sufficiently small, a lifted vertex v+ might not be downward-
facing—it might not lie on the underside of conv(V +)—in which case the vertex v

is absent from the weighted Delaunay triangulation of V , as illustrated in Fig. 13(a).
Then v is said to be submerged. If every vertex has a weight of zero, the weighted
Delaunay triangulation is the Delaunay triangulation, and no vertex is submerged,
because every point on the paraboloid is on the underside of the convex hull of the
paraboloid.

Weights necessitate a generalization of the notion of a “Delaunay simplex.”

Definition 10 (Semiregular; Witness; Weighted Delaunay Triangulation) A simplex
s whose vertices are in V is semiregular if s+ is included in a downward-facing face
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Fig. 13 (a) The triangles r , s, and t are all semiregular, but only t is regular. Triangles r and s have the
same witness d-flat hr = hs , and t has a different witness ht . The vertex v is submerged. (b) The bold edge
is a constraining segment. The triangles r , s, and t are all constrained semiregular, but only t is constrained
regular. No triangle is semiregular

of conv(V +). In other words, there exists a non-vertical d-flat hs ⊂ Ed+1 such that
hs includes s+, and no vertex in V + lies below hs . The d-flat hs is called a witness3

to the semiregularity of s.
A weighted Delaunay triangulation of V is a simplicial complex that fills conv(V )

wherein every simplex is semiregular.

Figure 13(a) illustrates three semiregular triangles and their witnesses. All their
edges and vertices are semiregular as well, but the submerged vertex v is not semi-
regular.

Definition 11 (Regular) A simplex s is regular if s+ is a downward-facing face of
conv(V +), and no vertex in V + lies on s+ except the vertices of s+. In other words,
there exists a non-vertical d-flat hs ⊂ Ed+1 that is a witness to the regularity of s: hs

includes s+, and every vertex in V + lies above hs , except the vertices of s+.
A triangulation is regular if there exists an assignment of weights to its vertices

for which every simplex is regular.

Of the three triangles in Fig. 13(a), only t is regular. All the edges are regular
except the edge shared by r and s. All the vertices are regular except v.

In a weighted Delaunay triangulation, a witness serves the same purpose that a
circumsphere serves in an ordinary Delaunay triangulation. Theorem 2 shows that
if all the weights are zero, “semiregular” is equivalent to “Delaunay” and “regular”
is equivalent to “strongly Delaunay.” If a simplex s is semiregular, it appears in at
least one weighted Delaunay triangulation of V . If s is regular, it appears in every

weighted Delaunay triangulation of V (see Theorem 19).

2.3 Triangulations of PLCs

For some geometric applications, the notion of a “constrained triangulation” of a PLC
should permit some vertices to be left out, just as weighted Delaunay triangulations

3A witness for a semiregular or regular simplex is also known as a supporting hyperplane of conv(V +),
but a witness for a constrained semiregular simplex is not necessarily a supporting hyperplane.



Discrete Comput Geom (2008) 39: 580–637 599

submerge vertices with insufficient weight. However, some vertices cannot be omit-
ted, because they support other facades. The following definition identifies vertices
that could conceivably be submerged.

Definition 12 (Submersible) A vertex v in a closed PLC X is submersible if v is a
proper face of some other facade (i.e. v is not isolated), and the removal of v from
X (and possibly the merging of two collinear 1-facades) yields a valid closed PLC.
Equivalently, either

• v lies on the internal boundary of a facade f ∈ X such that f is a face of every
facade (except v) that contains v, or

• v is an endpoint of two collinear 1-facades in X, and the condition above is satisfied
by merging them into a single 1-facade f . In this case, X should be modified to
reflect the merger. A row of collinear segments might comprise one 1-facade with
many submersible vertices in it.

The user of a PLC triangulation algorithm can arbitrarily designate vertices as
being non-submersible, but a vertex can be designated as submersible only if Defini-
tion 12 permits it.

Definition 13 (Fill; Respect; Triangulation of a PLC) Let T be a set of simplices. T

fills X if |T | = |X|, meaning that
⋃

s∈T s = ⋃
f ∈X f .

Let f be a closed facade. Let s be a simplex or convex polyhedron. Then s respects

f if s ∩ f is a union of faces of s.
There is an equivalent definition that is less clear, but easier to use in proofs: s

respects f if, for every face t of s whose relative interior intersects f , t ⊆ f .
If f is an open facade, s is said to respect f if s respects the closure of f .
A simplex (or convex polyhedron) s respects a PLC X if s ⊆ |X| and s respects

every facade in X except perhaps the submersible vertices—after agglomerating the
segments of X into 1-facades as described in Definition 12.

A triangulation T respects a PLC X if every simplex in T respects X.
A triangulation T is a triangulation of a PLC X if T fills and respects X, and T

has no vertex not in X. A triangulation that fills and respects X, but may have vertices
not present in X, is a conforming triangulation or Steiner triangulation of X.

This definition allows a triangulation T of X to submerge vertices in X. However,
submersibility is a nuisance when it is not needed. For some applications, such as
unweighted PLCs and ordinary CDTs (in which vertices are never submerged), it
does no harm to designate every vertex in X as non-submersible. Then Definition 13
implicitly requires that if T is a triangulation of X, then T and X have exactly the
same vertices, because T must respect every vertex in X.

Why must adjoining collinear segments be agglomerated for Definition 13? If a
vertex is submerged, then a triangulation lacking that vertex cannot respect a segment
that terminates at that vertex, but it can respect a 1-facade that passes through the
vertex.
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Fig. 14 A lifted CDT. The
paraboloid is inverted to show
its topography more clearly. The
bold edges are constraining
edges that are not Delaunay.
They map to reflex edges of the
lifted surface

2.4 Weighted CDTs

Before considering the formal definition of CDT, let us try to see intuitively what a
CDT is, in terms of the parabolic lifting map. Suppose T is a CDT of a PLC X. Let
T + = {s+ : s ∈ T } be the simplicial complex, embedded in Ed+1, defined by lifting
T . As Fig. 14 illustrates, the lifted triangulation T + graphs a continuous piecewise
linear function but, in general, is not the underside of a convex polyhedron: each facet
of the CDT that is not constrained Delaunay is mapped to a reflex ridge in the lifted
surface. (A (d − 1)-simplex is called a facet if it exists in the ambient space Ed , and
a ridge if it exists in the ambient space Ed+1.)

However, from any point p in the interior of a d-facade, the portions of the CDT
visible from p appear convex on the lifting map. Only facets included in (d − 1)-
facades can lift to reflex ridges; every other facet is constrained Delaunay.

The next several definitions build toward the definition of a CDT or, more gener-
ally, a weighted CDT, which is a triangulation of a weighted PLC.

Definition 14 (Weighted PLC) A weighted PLC is a PLC in which each vertex is
assigned a real-valued weight.

Sections 3.1 and 3.3 study the relationship between the weighted CDT of a
weighted PLC and the weighted CDTs of its facades. Consider computing a trian-
gulation of a two-dimensional PLC. Some algorithms need to “triangulate” the 1-
facades of the PLC first—in other words, to decide which vertices on the 1-facades
are submerged. The 1-facades may have both submersible and non-submersible ver-
tices. A 1-facade in isolation does not reveal which of its vertices are submersible in
the two-dimensional PLC. Therefore, it is best to think of submersibility as a global
property of a vertex which remains fixed across all contexts, and is determined by the
highest-dimensional PLC that contains the vertex. These observations motivate the
following two policies. First, the internal boundary of a 1-facade may contain both
submersible and non-submersible vertices (whereas the external boundary is a set of
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Fig. 15 In this three-dimensional example the 2-facade f occludes the visibility between p and q . The
point m can see both k and n, but the visibility between k and n is occluded—not by f , but by an edge
of f

non-submersible vertices). Second, non-submersible vertices occlude visibility and
submersible vertices do not. This policy ensures that the weighted CDT of a 1-facade
is consistent with the weighted CDT of any higher-dimensional facade that includes
the 1-facade.

Visibility is occluded by constraining facades.

Definition 15 (Constraining Facade) A constraining facade in a d-dimensional PLC
X is any facade in X that is not a submersible vertex or a d-facade.

Definition 15 omits submersible vertices because they do not occlude visibility or
constrain the triangulation. It omits d-facades because they do not occlude visibility,
and because a simplex or polyhedron that respects all the lower-dimensional facades
automatically respects the d-facades.

Definition 16 (Occlusion; Visibility) Within a PLC X, the visibility between two
points p and q is occluded if pq �⊆ |X|; or if there is a (closed) constraining facade
f ∈ X such that the line segment pq intersects f , and neither p nor q lie on the affine
hull of f . See Fig. 15. The points p and q are visible from each other (equivalently,
can see each other) if pq ⊆ |X| and X places no constraining facade between them.

If no vertex is submersible, a more elegant characterization is that p and q can see
each other if there is an open facade f ∈ X that includes the open line segment pq .
Open facades thus act as conductors of visibility. In this interpretation the d-facades
play an essential role.4

There is a close relationship between visibility and the notion of respecting a PLC.

Theorem 3 If a (closed) simplex or convex polyhedron s respects X, every point in

s can see every other point in s.

Proof Suppose for the sake of contradiction that the visibility between two points
p,q ∈ s is occluded by some facade f . Then pq intersects f at a point m, but f

4An attractive alternative formulation of a weighted PLC extends this characterization to PLCs with sub-
mersible vertices. Express a weighted PLC as two separate sets: a PLC X with no submersible vertices,
and a set V of submersible vertices. In this formulation the open facades of X are both conductors and
occluders of visibility, and there is a more elegant definition of “respect”: a triangulation respects X if
every open simplex of the triangulation is included in an open facade of X.
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contains neither p nor q . Let t be the face of s whose relative interior contains m;
then pq ⊆ t . Because s respects f , and f intersects the relative interior of a face t of
s, it follows that t ⊆ f , contradicting the fact that f contains neither p nor q . �

Simplices in CDTs have the following property.

Definition 17 (Constrained Semiregular) A simplex s is constrained semiregular

within X if

• the vertices of s are in X,
• s respects X, and
• there exists a d-flat hs ⊂ Ed+1 that includes s+, such that no vertex v ∈ X that is

visible from a point in the relative interior of s lifts to a point v+ below hs . The
d-flat hs is a witness to the constrained semiregularity of s.

The third condition is a bit difficult to visualize, because one must simultaneously
picture the vertices in the ambient space Ed where visibility is determined, and in
the ambient space Ed+1 where witness d-flats are defined, as Fig. 13(b) illustrates.
Think of it this way: if some lifted vertex v+ lies below the d-flat that includes a
lifted d-simplex s+, then s is not semiregular, because s+ is not on the underside of
the convex hull of the lifted vertices. However, if some facade occludes the view of v

from inside s, s may be constrained semiregular anyway and appear in the weighted
CDT. The triangle s in Fig. 13(b) is an example: although v+ lies below the witness
hs , v is not visible from the interior of s, so s is constrained semiregular. The shaded
triangle in Fig. 14 is an example in an unweighted CDT (but note that the paraboloid
in the figure is inverted for clarity, so “below” is “above”).

In Fig. 13(b) all three triangles are constrained semiregular, and all the edges are
constrained semiregular except the bold constraining segment.

Definition 18 (Constrained Regular) A simplex s is constrained regular within X if

• the vertices of s are in X,
• s respects X, and
• there exists a d-flat hs ⊂ Ed+1 that includes s+, such that every vertex v ∈ X that

is visible from a point in the relative interior of s, but is not a vertex of s, lifts to a
point v+ above hs .

Of the three triangles in Fig. 13(b), only t is constrained regular. Neither the edge
shared by r and s nor the constraining segment shared by s and t is constrained
regular, but the other edges are.

The following implications hold. Statements in brackets are equivalent to the
statements immediately above them in the unweighted case (i.e. when all the vertex
weights are zero). Locally semiregular and locally regular are defined in Section 3.2
and apply to (d − 1)-simplices only.
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s is regular and respects X −→ s is semiregular and respects X

[s is strongly Delaunay and respects X] [s is Delaunay and respects X]
↓ ↓

s is constrained regular −→ s is constrained semiregular
[s is constrained Delaunay]

↓ ↓
s is locally regular −→ s is locally semiregular

[s is locally Delaunay]
The statements in the right column become equivalent to the corresponding state-

ments in the left column when the following condition holds. (Section 6 discusses a
perturbation technique that enforces it.)

Definition 19 (Genericity) A d-dimensional PLC X is generic if no d + 2 vertices
in X lift to a common non-vertical d-flat (in the ambient space Ed+1).

If X is unweighted (or all the weights are equal), an equivalent statement is that
no d + 2 vertices in X lie on a common hypersphere (in the ambient space Ed ).

Notions like constrained regularity are defined in the context of a specific PLC.
The definition of “CDT” uses the notion that a simplex can be constrained semi-
regular within the context of some facade f of a PLC X, yet not be constrained
semiregular within the context of X itself.

Definition 20 (Facade PLC) Let f be a k-facade in a PLC X (for any value of k). The
facade PLC Yf is a k-dimensional PLC containing f and all the faces of f (taken
from X).

The vertices in a facade PLC often have coordinates from an ambient space Ed

whose dimensionality is higher than that of the facade PLC itself (i.e. d > k). How-
ever, it is the latter dimensionality that defines constraining facades (facades of di-
mension k − 1 or less that are not submersible vertices) and ridge protection (the
protection of facades of dimension k − 2 or less; see Definition 23) within Yf . A
simplex that is regular within Yf might not be regular within X, and a segment that is
grazeable within X might not be grazeable within Yf . Hence, the word within is used
wherever the context is not clear. Occasionally, this article will say that a simplex is
“semiregular within the facade f ” as shorthand for saying it is semiregular within the
facade PLC Yf . Likewise, a “triangulation of f ” is a triangulation of Yf .

At last, a definition of this article’s central object of study.

Definition 21 (Weighted CDT) A weighted constrained Delaunay triangulation of
a weighted PLC X is a simplicial complex that fills X wherein every simplex is
constrained semiregular within the lowest-dimensional facade of X that includes it.

A constrained Delaunay triangulation of an unweighted PLC is a weighted CDT
for which all the vertices in the PLC are implicitly assigned a weight of zero.

Figure 16 gives two examples of weighted CDTs, in one and two dimensions. In
both triangulations, some vertices are submerged, and some collinear segments of the
PLC are agglomerated into single edges of the triangulation. Observe that the lifted
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Fig. 16 T1 and T2 are weighted
CDTs of the one- and
two-dimensional weighted PLCs
X1 and X2. White vertices are
submersible; black vertices are
non-submersible. The number
by each vertex is the height
(xd+1-coordinate) to which it is
lifted

one-dimensional triangulation T +
1 is a sequence of convex hull undersides separated

by non-submersible vertices. Note that d = 1 is the only dimensionality in which a
PLC might have a new CDT if a vertex changes from submersible to non-submersible.
For a higher-dimensional PLC with no dangling 1-facades, such a change might cause
the PLC to have fewer CDTs (if a submerged vertex is proclaimed non-submersible),
but it cannot cause the PLC to have a CDT it did not have before. (This claim is a
consequence of the Delaunay Lemma in Section 3.2.)

In an unweighted CDT X (equivalently, if all the weights are equal), every vertex
is regular and constrained regular, hence no vertex is submerged.

Definition 21 gives no reason to believe that the eligible simplices (those that are
constrained semiregular within the lowest-dimensional facades that include them)
can gel together to form a complex. Fortunately, if every facade can be filled with
constrained regular simplices, Corollary 18 in Section 3.3 establishes that the facade
CDTs match each other where they meet. Not every facade can be thus filled (recall
Schönhardt’s polyhedron). The next few definitions describe a class of PLCs that are
guaranteed to have CDTs.

Definition 22 (Grazeable; Grazing Triangle) A facade f is grazeable if there is an
open grazing triangle L = △pqr ⊂ |X| such that

• p can see every point in the open triangle L,
• pq intersects the open version of f (i.e. f with its external and internal boundaries

removed), and
• neither p nor q lie on the affine hull of f .

Every point in an open grazing triangle △pqr is visible from p, but q is not (its
visibility is occluded by f ); so, loosely speaking, there is a line of visibility that
grazes f . If f is a (d − 2)-facade, Definition 22 is equivalent to the 180◦ angle
condition described in Section 1.1, as Fig. 17 shows. Definition 22 extends the idea
to facades of dimension less than d − 2. Note that the proper faces of a grazeable
facade are not necessarily grazeable themselves.

Recall from Section 1.1 that a three-dimensional PLC X is ridge-protected if every
segment in X is strongly Delaunay. The extension of this definition to weighted PLCs
accounts for the possibility that vertices might be submerged: X is ridge-protected
if every 1-facade is a union of regular edges, and every non-submersible vertex is
regular. (Submersible vertices do not need to be regular, because it is okay to let them
be submerged.) The extension of this definition to higher dimensions requires that
all constraining facades of dimension d − 2 or less be “regular,” but the definition of
“regular” applies only to simplices. It suffices if the facades can be broken up into
regular simplices that respect X.
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Fig. 17 Example of a grazeable
segment f . Here p and q cannot
see each other, but p sees every
point in the open triangle L, so
there is a line of visibility that
grazes f

Definition 23 (Ridge Protection) A facade f ∈ X is protected if there exists a trian-
gulation of f whose simplices are regular within X and respect X.

A simpler definition is that f is protected if f is a union of simplices that are
regular within X and respect X. (The equivalence of this definition with the first
follows from the upcoming Theorem 4′ and Corollary 18.)

A weighted PLC X is weakly ridge-protected if every grazeable constraining fa-
cade in X of dimension d − 2 or less is protected.

X is ridge-protected if every constraining facade in X of dimension d − 2 or less
is protected.

How can you tell if a facade f is protected? A weighted Delaunay triangulation
T (unconstrained) of the vertices in X contains every simplex that is regular within
X (by Theorem 19 in Section 3.3). So the answer is to construct T and search it for
a subset of faces that fill f . If T contains such faces, check whether they respect f ’s
faces and are regular. If X is not generic, the trickiest part is distinguishing the regular
simplices in T from the merely semiregular. Dafna Talmor (personal communication)
points out that simplices that are semiregular but not regular dualize to degenerate
faces of the power diagram [2] (the Voronoi diagram if all the weights are zero). This
observation does not offer the most numerically effective way to test them, though,
and this is not the place to describe a better way. However, the simplest approach is to
perturb the vertex weights as described in Section 6 before constructing T . Then all
the simplices in T are regular, and there is no need to test. Theorem 31 in Section 6
shows that the CDT of the perturbed PLC is a CDT of the unperturbed PLC.

Ridge protection implies that T respects all the constraining k-facades in X for k ≤
d −2, but might not respect the (d −1)-facades. Weak ridge protection implies that T

respects the grazeable constraining facades of dimension d−2 or less (and their faces,
whether grazeable or not), but perhaps not the other facades. One of the main results
of this article is that every weakly ridge-protected weighted PLC has a weighted CDT,
so the missing facades can be recovered without any need for additional vertices. See
Section 5 for a proof.

Ridge protection requires non-submersible vertices to be regular. For d = 2, this
is the sole requirement that defines ridge protection. In an unweighted PLC, every
vertex is regular, which is why every unweighted two-dimensional PLC has a CDT.
In the weighted PLC X2 in Fig. 16, the sole grazeable non-submersible vertex is
regular, so X2 is weakly ridge-protected and has a CDT. (The vertex at the center
of X2 is not regular, but it is not grazeable.) Figure 18 depicts two two-dimensional
weighted PLCs that are not weakly ridge-protected, and do not have weighted CDTs.
Both examples include a grazeable non-submersible vertex that is not regular.
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Fig. 18 Two weighted PLCs that do not have weighted CDTs. Imagine that you are viewing the lifted
vertices from directly underneath, and larger vertices are closer to you. The number by each vertex is the
height (xd+1-coordinate) to which it is lifted (i.e. its distance from you)

A recently proposed way to model domains like these ones and Schönhardt’s poly-
hedron is to generalize simplicial complexes to pseudosimplicial complexes com-
posed of nonconvex pseudosimplices. Aichholzer et al. [1] define constrained regular
pseudotriangulations that generalize the two-dimensional constrained regular trian-
gulations defined here, and are defined for every choice of vertex weights. Their
lifted surface is not necessarily continuous, and is not guaranteed to interpolate all
the vertex heights. Aurenhammer and Krasser [3] show that the approach generalizes
to higher-dimensional nonconvex polyhedra, but pseudosimplicial complexes repre-
senting polyhedra in three dimensions or more must sometimes introduce additional
vertices.

Throughout the rest of this article, the terms “PLC” and “CDT” refer to both un-
weighted and weighted PLCs and CDTs, except where otherwise noted.

3 Foundations

This section proves several fundamental properties of CDTs and weighted CDTs.
Among these are the fact that every face of a constrained semiregular simplex is
constrained semiregular within some facade (Section 3.1), the fact that constrained
regular simplices have disjoint relative interiors and form a complex, and the fact that
a generic PLC has at most one CDT (Section 3.3). The Delaunay Lemma offers a
powerful alternative characterization of what a CDT is (Section 3.2). Readers who
seek the minimum background for understanding the CDT construction algorithms
in the sequel articles may safely skip to Section 6.

3.1 Faces of Simplices Inherit Semiregularity and Constrained Semiregularity

CDTs (unweighted and weighted) have properties that allow proofs and algorithms to
work in a top-down fashion: if a domain can be filled with a complex of constrained
semiregular d-simplices, the lower-dimensional faces “work themselves out.”

Let s be a simplex that is constrained semiregular within some PLC X. Let t be a
face of s. If t is not included in a constraining facade in X, then t is also constrained
semiregular. What if t is included in a constraining facade? Then t might not be
constrained semiregular within X, but t is constrained semiregular within the lowest-
dimensional facade that includes t (and is not a submersible vertex). It follows that
the act of filling a d-facade with a complex of constrained semiregular d-simplices
automatically fills all of its proper faces with lower-dimensional CDTs.

First consider unconstrained semiregularity.



Discrete Comput Geom (2008) 39: 580–637 607

Fig. 19 The simplex s is
regular because every lifted
vertex lies above some witness
d-flat hs for s+ , except the
vertices of s+. Let t be any face
of s. Tilting hs using t+ as a
hinge yields a witness d-flat ht

that shows that t is regular too

Theorem 4 Every face of a semiregular simplex is semiregular.

Theorem 4′ Every face of a regular simplex is regular.

Proof Let s be a semiregular simplex, and let t be a face of s as in Fig. 19. Let hs

be a witness to the semiregularity of s. That is, hs is a d-flat that includes s+, and no
vertex in X lifts to a point below hs . Clearly, hs is also a witness to the semiregularity
of t , so Theorem 4 holds.

Suppose s is regular. Then every vertex in X lifts above hs except the vertices
of s. Let ht be a d-flat found by tilting hs by a tiny amount (as illustrated), so that
ht includes t+ but lies below the vertices of s+ not shared by t+. If the tilt is small
enough, the other vertices in X still lift to points above ht . Hence, ht is a witness to
the regularity of t , and Theorem 4′ holds. �

Theorem 5 Let X be a PLC. Let s be a simplex, and let t be a face of s that is not

included in a (closed) constraining facade in X. If s is constrained semiregular, then

t is constrained semiregular.

Theorem 5′ Under the assumptions of Theorem 5, if s is constrained regular, then t

is constrained regular.

Proof Because s is constrained semiregular, s respects X. As t is a face of s, t also
respects X.

Observe that every vertex visible from the relative interior of t is visible from the
relative interior of s. Specifically, suppose a vertex v is visible from a point p in the
relative interior of t . Because p does not lie in a constraining facade in X, Lemma 6
below implies that some point p′ in the relative interior of s sees v.

The rest of the proof is identical to the proof of Theorems 4 and 4′, except that
only vertices visible from the relative interior of t are considered, and every occur-
rence of “semiregular” or “regular” is thus replaced with “constrained semiregular”
or “constrained regular.” �

The following lemma (which is used frequently in this article) tells us a way to
perturb a point p without occluding its visibility from another point q .
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Definition 24 (ǫ-Neighbor) A point p′ is an ǫ-neighbor5 of a point p, with respect to
a point q and a closed PLC X, if p′ ∈ |X|, |pp′| ≤ ǫ, and every (closed) constraining
facade in X that contains p contains either p′ or q .

Lemma 6 Let p and q be two points that can see each other within a PLC X. There

is a positive constant ǫ such that every ǫ-neighbor of p can see q .

Proof Any facade whose affine hull contains q cannot occlude the visibility between
p′ and q . Every facade that contains p contains either p′ or q , and thus cannot occlude
the visibility between p′ and q .

What about the other facades? The line segment pq does not intersect any of
them. There is a finite gap between pq and any facade that does not intersect pq , and
p must move some non-infinitesimal distance to close the gap. A sufficiently small
choice of ǫ ensures that every ǫ-neighbor of p is visible from q . �

Observe that if p lies in a constraining facade f , but p′ and q do not, then p′ is
not an ǫ-neighbor of p, and f might occlude the visibility between p′ and q .

Next, consider the circumstance where a face of a simplex is included in a
constraining facade. The case of a semiregular simplex is considered first (that’s
unconstrained semiregular, albeit in the context of a PLC), followed by the case of a
constrained semiregular simplex.

Theorem 7 Let s be a simplex, and let t be a face of s. Suppose a constraining

k-facade f ∈ X includes t . Let Yf be the k-dimensional facade PLC for f (recall

Definition 20).
If s is semiregular within X, then t is semiregular within Yf .

Theorem 7′ Under the assumptions of Theorem 7, if s is regular within X, then t is

regular within Yf .

Proof For intuition’s sake, consider first the special case where s is a Delaunay tetra-
hedron, illustrated in Fig. 20. No vertex lies inside the circumsphere of s. If a triangu-
lar face t of s lies within a 2-facade f , then t is Delaunay within the two-dimensional
PLC Yf . Why? Because the circumcircle of t is a cross section of the circumsphere
of s, and therefore it encloses no vertex. If s is strongly Delaunay, t is strongly De-
launay.

Figure 21 extends this reasoning to weighted CDTs. Let s be a semiregular sim-
plex. There is a witness d-flat hs that includes s+ such that no lifted vertex lies below
hs . Because the face t of s is included in a k-facade f , hs yields a witness to the fact
that t is semiregular within Yf as follows.

Let F be the affine hull of f . Think of F as the affine space in which Yf is defined.
Let F+ = {〈p,α〉 ∈ Ed+1 : p ∈ F,α ∈ R}. F+ is a vertical (k + 1)-flat in Ed+1, as
Fig. 21 shows. Think of F+ as the affine space in which witnesses for Yf are defined.
Then ht = hs ∩ F+ is a witness k-flat within F+ that includes t+. Because no vertex

5It would be more apt to call this an (ǫ, q,X)-neighbor of p, but it would clutter the writing.
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Fig. 20 An unweighted
example where d = 3. If a
tetrahedron s is Delaunay, each
of its faces has an empty
circumcircle, because each
face’s circumcircle is a cross
section of the tetrahedron’s
circumsphere

Fig. 21 A weighted example where d = 2. If a simplex s is semiregular (no lifted vertex lies below hs ),
any face t of s that lies in a facade f is semiregular within f (no lifted vertex lies below ht )

in X lifts to a point below hs , no vertex in Yf lifts to a point below ht , so t is
semiregular within Yf and Theorem 7 holds.

If s is regular, the lifted companion of every vertex in X lies above hs , except the
vertices of s+ (which lie on hs ). Thus the lifted companion of every vertex in Yf lies
above ht , except the vertices of s+. If every vertex of s in Yf is also a vertex of t ,
then ht is a witness to the regularity of t within Yf . Otherwise, ht contains at least
one vertex of s+ that is not a vertex of t+, but that is no obstacle. By tilting slightly
as described in the proof of Theorem 4′, ht becomes a witness to the regularity of t

within Yf . Thus Theorem 7′ holds. �

The next theorem generalizes Theorem 5, and is the constrained analog of Theo-
rem 7.

Theorem 8 Let s be a simplex, and let t be a face of s. Let f be the lowest-

dimensional facade in X that includes t and is not a submersible vertex.
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Fig. 22 (a) Example in which f is a 2-facade inside a three-dimensional PLC. The tetrahedron s (which
is not a facade) intersects f at a triangular face of s. The point p lies in the relative interior of the triangular
face, and p′ lies in the interior of s. Both p and p′ can see v. (b) Here s intersects f at an edge t . Although
v is visible from every point on t , v is not visible from inside s

If s is constrained semiregular within X, then t is constrained semiregular within

Yf .

Theorem 8′ Under the assumptions of Theorem 8, if s is constrained regular within

X, then t is constrained regular within Yf .

Proof Because s is constrained semiregular, s respects X. As t is a face of s, t also
respects X. Moreover, t ⊆ f = |Yf |, so t respects Yf .

Let v be any vertex in Yf that is visible from some point p in the relative interior of
t . The following reasoning shows that v is also visible from some point in the relative
interior of s. See Fig. 22(a). As p can see v, Lemma 6 guarantees that there is an
ǫ > 0 such that every ǫ-neighbor of p can also see v. Because t respects f ’s faces
and f is the lowest-dimensional non-submersible facade that includes t , the relative
interior of t does not intersect any proper face of f , with the possible exception of
submersible vertices. Therefore, every constraining facade that contains p has f for
a face and contains v as well. It follows that every point in |X| within a distance of ǫ

from p is an ǫ-neighbor of p (with respect to v). Because p is on the boundary of s,
v is visible from some point in the relative interior of s.

The rest of the proof is identical to the proof of Theorems 7 and 7′, except that
only vertices that are in Yf and visible from the relative interior of t are considered,
and every occurrence of “semiregular” or “regular” is thus replaced with “constrained
semiregular” or “constrained regular.” �

Figure 22(b) demonstrates why Theorems 8 and 8′ do not apply if f is not the
lowest-dimensional facade (other than a submersible vertex) that includes t . In this
example, an edge t of a tetrahedron s is a constraining segment on the internal bound-
ary of a 2-facade f . Although s is constrained regular within X, t is not constrained
regular within Yf , because the vertex v is visible from every point on t . The 2-facade
g occludes the visibility of v from every point in the interior of s, allowing s to be
constrained regular.

The next two theorems simplify proving that a triangulation is a CDT, by putting
the burden on the highest-dimensional simplices.

Theorem 9 Let X be a d-dimensional PLC with no dangling facades (i.e. each fa-

cade in X is included in a d-facade in X). Let T be a simplicial complex that fills
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X. Suppose every d-simplex in T is constrained semiregular. Then T is a CDT of X.
Furthermore, for every facade f in X except submersible vertices, {t ∈ T : t ⊆ f } is

a CDT of Yf .

Proof By the definition of “constrained semiregular,” every d-simplex in T respects
X; and as T is a simplicial complex with no dangling simplices, every simplex in T

respects X.
Let t be any simplex in T . Let f be the lowest-dimensional facade in X that

includes t . If f is a vertex, then t = f and t is trivially constrained semiregular
within Yf . Otherwise, let s be a d-simplex in T having t for a face. (Some such d-
simplex must exist, because T is a simplicial complex filling a PLC with no dangling
facades.) By assumption, s is constrained semiregular, so t is constrained semiregular
within Yf by Theorem 8.

Therefore, every simplex in T is constrained semiregular within the lowest-dimen-
sional facade that includes it. By definition, T is a CDT of X. Because T fills and
respects X, for every non-submersible facade f ∈ X, the subcomplex {t ∈ T : t ⊆ f }
fills and respects Yf , and thus is a CDT of Yf . �

The next theorem generalizes Theorem 9 to cover PLCs of mixed dimensionality.

Theorem 10 Let X be a PLC (possibly with dangling facades). Let T be a simplicial

complex that fills X. Suppose that for every k ≥ 1, for every k-facade f ∈ X that

is not a face of a higher-dimensional facade, every k-simplex of T included in f is

constrained semiregular within Yf . Then T is a CDT of X. Furthermore, for every

facade f in X except submersible vertices, {t ∈ T : t ⊆ f } is a CDT of Yf .

Proof Identical to the proof of Theorem 9, except that s is a k-simplex in T having
t for a face, where k is the dimensionality of the highest-dimensional facade that
includes t . (By assumption, s is constrained semiregular within the k-facade that
includes s.) �

This section concludes with two corollaries of Theorem 7′.

Corollary 11 If X is ridge-protected, every facade in X is ridge-protected. (That is,
if f ∈ X, then its facade PLC Yf is ridge-protected.)

Proof Ridge protection holds trivially for a PLC of dimension less than two, so let
f be any facade in X of dimension k ≥ 2. Let Yf be f ’s facade PLC. Let d be the
dimensionality of X. Because X is ridge-protected and Yf ⊆ X, every constraining
facade in Yf of dimension d − 2 or less has a triangulation whose simplices respect
X and are regular within X. By Theorem 7′, these simplices are also regular within
Yf . Therefore, every constraining facade in Yf of dimension k − 2 or less has a
triangulation whose simplices respect Yf and are regular within Yf . �

Corollary 12 If X is weakly ridge-protected, every facade in X is weakly ridge-

protected.
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Proof Let f be a facade in X, and let Yf be f ’s facade PLC. It is apparent from
Definition 22 that if a face of f is grazeable within Yf , then the face is grazeable
within X too. The rest of the proof is identical to the proof of Corollary 11, except
that only every grazeable constraining facade in Yf of dimension d − 2 or less has a
triangulation whose simplices respect X (and therefore Yf ) and are regular within X

(and therefore within Yf ). �

3.2 The Delaunay Lemma

A well-known and important property of Delaunay triangulations is that “local opti-
mality” is equivalent to “global optimality,” in the following sense. A facet shared by
two d-simplices s and t is said to be locally Delaunay if the apex of s (not shared
by t) is not inside the circumsphere of t (equivalently, the apex of t is not inside the
circumsphere of s). If a triangulation is Delaunay, every facet of the triangulation is
locally Delaunay. Conversely, if every facet of a triangulation of a point set is locally
Delaunay, then the triangulation is Delaunay (i.e. every simplex is Delaunay). Boris
Delaunay [14] himself was the first to make this observation.

This section shows that this equivalence generalizes to weighted CDTs, with the
change that facets included in constraining facades need not be locally Delaunay (or
locally semiregular). This result is valuable because it provides an inexpensive way
to test whether a triangulation is a weighted CDT: check that it fills and respects
the PLC, check every non-constraining facet for local semiregularity, and check each
submerged vertex to ensure it really should be submerged. (A non-constraining facet

is a facet that is not included in a constraining facade.) The Delaunay Lemma offers
an alternative answer to the question, “What does it mean for a PLC X to have no
CDT?” It means that no triangulation of X fulfills these requirements.

Definition 25 (Locally Regular; Locally Semiregular) Let T be a triangulation, and
let s and t be two d-simplices in T that share a facet f . The facet f is locally regular

within T if the lifted d-simplices s+ and t+ adjoin each other at a dihedral angle,
measured from above, of less than 180◦. In other words, the apex of t+ lies above the
witness d-flat of s, and vice versa, as illustrated in Fig. 13(a).

The facet f is locally semiregular within T if the upper dihedral angle where s+

meets t+ is less than or equal to 180◦. In other words, either f is locally regular, or s

and t have the same witness d-flat.

If a facet f is constrained regular, then f is locally regular, because the spices of
s+ and t+ lie above some witness d-flat of f . If f is constrained semiregular, f is
locally semiregular.

Theorem 13 (Delaunay Lemma) Let X be a (weighted) PLC with no dangling fa-

cades. A triangulation T is a (weighted) CDT of X if and only if T has the following

four properties:

A. T fills X.
B. T respects X.
C. Every facet in T is either locally semiregular or included in a constraining

(d − 1)-facade of X.
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Fig. 23 If s overlaps t from the
viewpoint z, then hs (z) > ht (z)

D. If a vertex v in X is missing from T (submerged), then v is in a d-simplex s of

T such that v+ lies on or above s+.

If X is unweighted, Property D reads, “No vertex is submerged.”
The proof of the Delaunay Lemma relies on a lemma that is worth stating sep-

arately because it is reused in Sections 3.3 and 5.1. The lemma uses the following
definitions.

Definition 26 (Overlaps) Let z be an arbitrary point in Ed . Let s and t be two sim-
plices (each of any dimensionality). Say that s overlaps t from the viewpoint z if some
point of s not shared by t lies between z and t , as Fig. 23 illustrates. In other words,
there exists a point ps ∈ s\t and a point pt ∈ t such that ps ∈ zpt .

Definition 27 (Witness Function) Let h ⊂ Ed+1 be a non-vertical d-flat. The wit-

ness function h(p) is the linear function that maps each point p ∈ Ed to the xd+1-
coordinate such that 〈p,h(p)〉 ∈ h. In other words, if ℓ ⊂ Ed+1 is the vertical line
(parallel to the xd+1-axis) that contains 〈p,0〉, then h(p) is the xd+1-coordinate of
h ∩ ℓ, as Fig. 23 illustrates.

Lemma 14 Let s and t be two simplices, each of any dimensionality. Suppose there

is a non-vertical d-flat hs that includes s+ such that every vertex of t+ lies on or

above hs . Suppose there is a non-vertical d-flat ht that includes t+ such that every

vertex of s+ lies strictly above ht , except the vertices shared by t+. Then the following

statements hold:

• If s and t are not disjoint, then s ∩ t is a face of both s and t .
• Let z be an arbitrary point in Ed . If s overlaps t from the viewpoint z, then hs(z) >

ht (z).

Proof If s is a face of t , both results follow immediately. (In this case, s does not
overlap t from any viewpoint.) Otherwise, s+ has a vertex that t+ lacks. This vertex
lies on hs and above ht , so hs �= ht . The d-flats hs and ht must intersect, because
some vertex of s+ lies above ht and some vertex of t+ lies on or above hs . Let i+ be
the (d − 1)-flat hs ∩ ht . Let i = {p ∈ Ed : hs(p) = ht (p)} be the vertical projection
of i+ into Ed , as illustrated in Fig. 23.
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The hyperplane i cuts Ed into two halfspaces. Every vertex of s lies in the closed
halfspace {p ∈ Ed : hs(p) ≥ ht (p)}. Therefore, so does every point in s. Likewise,
every point in t lies in the closed halfspace {p ∈ Ed : hs(p) ≤ ht (p)}. Any vertex v

of s that lies on i has a lifted companion v+ that lies on ht , so by assumption, v must
be a vertex of t . Therefore, s ∩ t is the convex hull of the vertices of s that lie on i,
which is a face of both s and t . Furthermore, any point of s not shared by t cannot lie
on i.

If s overlaps t from the viewpoint z, then some point ps ∈ s\t lies between z and
t . The point ps lies in the open halfspace {p ∈ Ed : hs(p) > ht (p)}, so z must lie
there too. �

Lemma 14 is similar to theorems of Edelsbrunner [15] and Edelsbrunner and
Shah [19], which they use to prove the acyclicity of every regular triangulation T :
for any fixed viewpoint z, the overlap relation among regular simplices is a partial
order. The function hs(z) imposes a total order on the simplices in T such that no
simplex overlaps another simplex that appears later in the order. This acyclicity prop-
erty does not extend to CDTs, but it does apply to the regular simplices that comprise
the lower-dimensional facades in a ridge-protected PLC (see Section 5.1).

Proof of the Delaunay Lemma The “only if” implication is straightforward. If T is a
CDT of X, Properties A and B follow by the definition of CDT. Property D follows
because every d-simplex in a CDT is constrained semiregular. Property C follows
because each facet in a CDT is constrained semiregular—unless it is included in
a constraining (d − 1)-facade of X—and every constrained semiregular simplex is
locally semiregular.

Not surprisingly, the “if” implication takes more work to prove. Suppose T is a
triangulation with all four properties. Let s be any d-simplex in T . The following
argument establishes that s is constrained semiregular.

Let v be any vertex in X that is visible from some point p in the interior of s. It
is helpful if the line segment vp does not intersect any simplex in T of dimension
less than d − 1, except at the vertex v. If this is not true, then by Lemma 6 there is a
neighborhood of p from which every point can see v. Choose from this neighborhood
a point p′ such that p′ is in the interior of s and vp′ does not intersect any simplex in
T of dimension less than d − 1, except at v.

T is a simplicial complex that fills X by Property A, so the line segment vp′

intersects the interiors of a contiguous sequence of d-simplices s1, s2, . . . , sk = s,
with v ∈ s1. Let fi denote the facet shared by si and si+1. Because vp′ does not
intersect any lower-dimensional faces of T (except at v), it passes through the relative
interiors of the facets f1, f2, . . . , fk−1. Because v is visible from p′, none of these
facets is included in a constraining facade, so by Property C all of them are locally
semiregular.

Because f1 is locally semiregular, either hs1 = hs2 or f1 is locally regular. In the
latter case, hs1(v) > hs2(v) by Lemma 14; in either case, hs1(v) ≥ hs2(v). The same
reasoning holds for f2, . . . , fk−1, so hs1(v) ≥ hs2(v) ≥ · · · ≥ hsk (v) = hs(v). If v

is a vertex of s1, then the height (xd+1-coordinate) of v+ is hs1(v); otherwise, v is
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submerged, and by Property D the height of v+ is at least hs1(v).6 In either case,
vxd+1 ≥ hs1(v) ≥ hs(v), so v+ cannot lie below the witness d-flat hs . Because this is
true of every vertex v that is visible from the interior of s, and because s respects X

by Property B, s is constrained semiregular.
By assumption, X has no dangling facades, so by Theorem 9, T is a CDT of X. �

If X has dangling facades, T may be cut into subcomplexes of different dimen-
sionalities so that each subcomplex has no dangling simplices. Then the Delaunay
Lemma can be applied to each piece separately, thereby showing the constrained
semiregularity of the whole. In a k-dimensional portion of the triangulation, only the
local semiregularity of the (k − 1)-faces needs to be checked.

To make good on the title of this article, the following definition offers the con-
strained analog of a regular triangulation. A constrained regular triangulation is a
projection of a polyhedron whose ridges are locally convex everywhere except where
the constraining facades permit them to be reflex.

Definition 28 (Constrained Regular Triangulation) A triangulation T is constrained

regular relative to an unweighted PLC X if T fills and respects X, and there exists
an assignment of weights to the vertices in X such that every non-constraining facet
in T is locally regular.7

Every generic CDT (recall Definition 19) is a constrained regular triangulation.
This fact is a consequence of the Delaunay Lemma and the fact that in a generic
CDT, constrained regularity and constrained semiregularity are the same. However,
not every CDT is a constrained regular triangulation. For example, let T be the trian-
gulation illustrated in Fig. 24, which is not regular. If all the vertex heights are zero,
T is a valid weighted Delaunay triangulation and (relative to a compatible PLC) a
valid weighted CDT. However, only the simplices on the boundary of T are regu-
lar; the rest are only semiregular. No assignment of weights can make every edge of
T regular. Nevertheless, if T is a triangulation of a PLC X, and X includes one of
the long internal edges as a constraining segment, then T is constrained regular with
respect to X.

The viewpoint at the center of the triangulation T in Fig. 24 demonstrates that
T does not have the acyclic property established by Edelsbrunner and Shah [19]
for regular triangulations. However, constrained regular triangulations have a limited
acyclicity property. Say that s visibly overlaps t from the viewpoint z if there exists
a point pt in t’s relative interior that is visible from z, and a point ps ∈ s\t such
that ps ∈ zpt . For any viewpoint z, the visible overlap relation among simplices is a
partial order. This fact follows from Lemma 14 by the same inductive step used to
prove the Delaunay Lemma, with the inequalities replaced by the strict inequalities
hsi (z) > hsi+1(z).

6The vertex v might lie in several d-simplices of T (on a shared boundary), and Property D explicitly
applies to only one of them. However, the lifted surface T + is continuous where simplices of T meet, so
Property D holds for all the simplices in T that contain v.
7Obviously, there is always an assignment of weights to the vertices of X missing from T that satisfies
Property D of the Delaunay Lemma. Just make their weights really small.
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Fig. 24 A triangulation that is
not regular. From the viewpoint
at the center, the three outer
triangles form a mutually
overlapping cycle

Linear programming can determine whether a triangulation T that fills and re-
spects X is constrained regular relative to X. The variables of the linear program are
the vertex weights and a variable δ. For each non-constraining facet f in T , write a
linear constraint enforcing the local regularity of f . Specifically, f is a facet of two
d-simplices s and t ; the linear constraint requires that the apex of s+ (not shared by
t+) be a distance of at least δ above t’s witness d-flat. The objective is to maximize δ

subject to the facet constraints. If this linear program has a feasible point with δ > 0,
T is constrained regular relative to X.

3.3 The Omnipresent Complex of Constrained Regular Simplices

A property of every PLC X is that its constrained regular simplices (of all dimen-
sionalities, within all the facades in X) have disjoint relative interiors and form a
simplicial complex, even if X has no CDT. Another property is that if X does have
a CDT—perhaps several CDTs—then every constrained regular simplex appears in
every CDT of X. This property implies that if X is generic, it has at most one CDT.

These properties do not hold for semiregular simplices. If some selection of d + 2
or more vertices of a PLC lift to a common non-vertical d-flat, the PLC might have
more than one CDT, and its semiregular simplices might have intersecting interiors.

Because the CDT of a generic PLC contains every constrained regular simplex
and no other simplex, CDT construction algorithms can work in a bottom-up fashion,
from low dimensionalities to high: if an algorithm obtains the CDT of each constrain-
ing facade in a generic PLC X (perhaps by calling itself recursively), it can construct
the constrained regular d-simplices with confidence that they will match the facade
triangulations. For a nongeneric PLC, however, the CDTs of different constraining
facades might be incompatible with each other, causing a CDT construction algo-
rithm to fail to find a CDT of the whole PLC even when one exists. Section 6 offers
a perturbation method that enforces genericity, so that CDT construction algorithms
may avoid this fate.

The proofs rely on the following lemma, which is also used heavily in Section 5.

Lemma 15 Let P and C be closed, convex polyhedra (not necessarily of the same

dimensionality) with P ⊆ C. Let m be a point in the relative interior of P . Let Cm be

the face of C whose relative interior contains m. Then P ⊆ Cm.

Proof If Cm = C the result follows immediately. Otherwise, by Definition 3, there is
a hyperplane h such that Cm = C ∩ h and h does not intersect the relative interior of
C, which implies that C\Cm lies entirely on one side of h. Clearly, m ∈ h. Suppose
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Fig. 25 If P ⊆ C but P �⊆ Cm,
then m is on the boundary of P

Fig. 26 A constrained
semiregular simplex s and a
constrained regular simplex t

can intersect only at a shared
face

for the sake of contradicting the lemma that P �⊆ Cm, as illustrated in Fig. 25. Then
P contains a point q in C\Cm. Thus q is on the same side of h as C, and no point in
P is on the other side of h. Because P is convex, P includes the line segment qm,
but any extension of the line segment qm past m lies outside P . Therefore, m is on
the boundary of P . This contradicts the assumption that m is in the relative interior
of P , so P ⊆ Cm.

�

The following theorem, which generalizes half of Lemma 14, shows that a con-
strained semiregular simplex and a constrained regular simplex can intersect only at
a shared face.

Theorem 16 Let s and t be simplices. Suppose that s is constrained semiregular

within f and t is constrained regular within f ′, where f and f ′ are facades in a

PLC X (possibly with f = f ′), and neither f nor f ′ is a submersible vertex. If s and

t are not disjoint, then s ∩ t is a face of both s and t .

Proof Suppose s and t are not disjoint. Let p be a point in the relative interior of s ∩ t ,
as illustrated in Fig. 26. Let g be the lowest-dimensional facade in X that contains p

and is not a submersible vertex. (Either p is in the relative interior of g, or p coincides
with an isolated submersible vertex of g’s internal boundary. Note that g might be of
any dimension from zero to d .) Because p ∈ f and p ∈ f ′, g is a face (not necessarily
a proper face) of both f and f ′.

Each of s and t has one face whose relative interior contains p. Call these faces
ŝ and t̂ , respectively. Because s and t respect X, so do ŝ and t̂ . It follows that every
facade that contains p (and is not a submersible vertex) includes ŝ and t̂ . Three such
facades are f , f ′, and g.

By Theorem 8, ŝ is constrained semiregular within g. By Theorem 8′, t̂ is con-
strained regular within g. By Lemma 14 (applied within the facade PLC Yg), ŝ ∩ t̂

is a face of both ŝ and t̂ . However, p is in the relative interiors of both ŝ and t̂ , and
p ∈ ŝ ∩ t̂ , so ŝ = ŝ ∩ t̂ = t̂ .
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Because ŝ = t̂ is a face of both s and t , t̂ ⊆ s ∩ t . By Lemma 15 (substituting p for
m, t for C, t̂ for Cm, and s ∩ t for P ), s ∩ t ⊆ t̂ . Therefore, ŝ = t̂ = s ∩ t , verifying
that s ∩ t is a face of both s and t . �

Corollary 17 The constrained regular simplices of a PLC have disjoint relative in-

teriors.

Corollary 18 Let X be a PLC. Let T be the set that contains every simplex that is

constrained regular within X or within a constraining facade in X. T is a simplicial

complex.

Proof By Theorem 8′, every face of every simplex in T is constrained regular within
some facade that is not a submersible vertex. Therefore, T contains every face of
every simplex in T . By Theorem 16, the intersection of any two simplices in T is
either empty or a shared face of the two simplices. Hence T is a simplicial complex. �

A consequence of Corollary 18 is that if a PLC does not have a CDT, one or more
of its facades has a gap that is not covered by constrained regular simplices. The
next theorem shows that if a PLC has several CDTs, they share the same constrained
regular simplices, and differ only by the simplices that are constrained semiregular
but not constrained regular.

Theorem 19 Every CDT of a PLC X contains every simplex that is constrained

regular within X or within a constraining facade in X.

Proof Let t be any simplex that is constrained regular within some facade f in X,
where f is not a submersible vertex. (If a simplex is constrained regular within X,
it is constrained regular within some d-facade in X.) Let p be a point in the relative
interior of t .

Let T be a CDT of X. Because T fills X, T contains a simplex s that contains p

and is not a submersible vertex. By the definition of CDT, s is constrained semiregular
within the lowest-dimensional facade that includes it.

By Theorem 16, s ∩ t is a face of both s and t . However, s ∩ t contains p, which
is in the relative interior of t , so s ∩ t = t . Therefore, t is a face of s, and t ∈ T . This
conclusion holds for every CDT T of X and every constrained regular simplex t . �

Corollary 20 A generic PLC has at most one CDT.

Proof By Theorem 19, every CDT of a PLC X contains every simplex that is con-
strained regular within a facade in X, except perhaps within a submersible vertex. By
the definition of CDT, no CDT of X contains a simplex that is not constrained semi-
regular within a facade in X. If X is generic, constrained regularity and constrained
semiregularity are equivalent. Therefore, two CDTs of X can differ from each other
only in the choice of submersible vertices. However, a CDT fills X, so the choice
of submersible vertices is uniquely determined by the higher-dimensional simplices.
Therefore, X has at most one CDT. �
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This corollary and Corollary 18 together imply that if a PLC is generic and has a
CDT, a CDT construction algorithm can triangulate each facade of the PLC, starting
with the 1-facades and working up to the d-facades, and rest assured that the facade
triangulations of different dimensions all match.

4 Interpolation Criteria Optimized by CDTs

Among all triangulations of a fixed two-dimensional vertex set, the Delaunay trian-
gulation is optimal by a variety of criteria—maximizing the smallest angle in the
triangulation [28], minimizing the largest circumcircle among the triangles [4], and
minimizing a property called the roughness of the triangulation [35, 37]. A two-
dimensional CDT shares these same optimality properties, if it is compared with
every other constrained triangulation of the same PSLG [4, 29].

Delaunay triangulations in higher dimensions also have optimality properties that
generalize to CDTs and offer some of the reasons why higher-dimensional CDTs
are such worthy objects of study. Rippa [38] investigates the use of two-dimensional
triangulations for piecewise linear interpolation of a bivariate function of the form
Ax2 + By2 + Cx + Dy + E, and concludes that if A = B , the Delaunay triangu-
lation minimizes the interpolation error measured in the Lq -norm for every q ≥ 1
(compared with all other triangulations of the same vertices). Melissaratos [31] gen-
eralizes Rippa’s result to higher dimensions. D’Azevedo and Simpson [13] show
that a two-dimensional Delaunay triangulation minimizes the radius of the largest
min-containment circle of its simplices, and Rajan [36] generalizes this result to
Delaunay triangulations and min-containment spheres of any dimensionality. The
min-containment sphere of a simplex is the smallest hypersphere that encloses the
simplex. If the center of the circumsphere of a simplex lies in the simplex, then the
min-containment sphere is the circumsphere. Otherwise, the min-containment sphere
is the min-containment sphere of some face of the simplex.

Rajan’s result and a theorem of Waldron [51] together imply a second optimality
result related to multivariate piecewise linear interpolation. Suppose you must choose
a triangulation to interpolate an unknown function (not necessarily convex), and you
wish to minimize the largest pointwise error in the domain. After you choose the
triangulation, an adversary will choose the worst possible smooth function for your
triangulation to interpolate, subject to a fixed upper bound on the absolute curva-
ture (i.e. second directional derivative) of the function anywhere in the domain. The
Delaunay triangulation is your optimal choice.

This section shows that Melissaratos’ and Rajan’s results generalize to CDTs
(when CDTs exist). Melissaratos’ result also generalizes to any monotonic norm and,
with help from weighted CDTs, to any convex function. Rajan’s result is particu-
lar to unweighted CDTs—the paraboloid is the right choice of heights to minimize
the largest min-containment sphere. The proofs given here are similar to Fortune’s
presentation for unconstrained Delaunay triangulations [21], and are substantially
simpler than Melissaratos’ and Rajan’s.

Consider multivariate piecewise linear interpolation on a weighted CDT. Let X be
a PLC, and let f (p) be a convex scalar function defined over the triangulation domain
|X|. Assign each vertex v ∈ X the weight |v|2 − f (v), so that the xd+1-coordinate
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of v+ is f (v). Let T be a weighted CDT of X, if one exists. The triangulation T

and the vertex heights f (v) define a piecewise linear surface T + = {s+ : s ∈ T }. By
analogy to witness functions (Definition 27), think of T + as a continuous piecewise
linear function T +(p), which maps each point p ∈ |X| to a real value. Because f is
convex, every vertex in X is semiregular, so T + interpolates the lifted companion of
every vertex in X, even if some vertices in X are missing from T .

Let e(p) = T +(p) − f (p) be the error in the interpolated function T + as an ap-
proximation of the true function f . At each vertex v in X, e(v) = 0. Because f is
convex, the error satisfies e(p) ≥ 0 for all p ∈ |X|.

Consider the unconstrained case first. T is the weighted Delaunay triangulation
of the vertices in X, so T + is the underside of the convex hull of the lifted vertices.
The intuition (formalized in Theorem 21 below) is that for any point p ∈ |X|, there is
no way to triangulate the lifted vertices that yields a lesser value of T +(p) than the
underside of the convex hull. Melissaratos’ result follows immediately: T minimizes
‖e‖Lq for every Lebesgue norm Lq .

The constrained case is only a little more complicated.

Theorem 21 Let f (p) be a function defined over the domain |X| of a PLC X. Assign

each vertex v ∈ X the height f (v)—i.e. the weight |v|2 − f (v). If X has a weighted

CDT, then at every point p ∈ |X|, every weighted CDT T of X minimizes T +(p)

among all triangulations of X.

Proof Let T be a weighted CDT of X. Suppose for the sake of contradiction that
there is a triangulation S of X and a point p such that S+(p) < T +(p). Let s be the
simplex in S whose relative interior contains p. Let t be a simplex in T that contains
p and is not a submersible vertex. Let f be the lowest-dimensional facade in X that
includes t . Because t is not a submersible vertex, f is not one either, so s respects
f . Because p is in both f and the relative interior of s, s ⊆ f . Because s respects X

and p ∈ s, the vertices of s are visible from p by Theorem 3.
Define the point ps = 〈p,S+(p)〉 ∈ Ed+1. Thus ps ∈ s+ ∈ S+, and p is the pro-

jected companion of ps . Because S+(p) < T +(p), ps lies below t+. For every wit-
ness d-flat ht that includes t+, at least one vertex of s+ lies below ht , because s+

is a simplex that contains ps . Therefore, t is not constrained semiregular within f .
However, by assumption, T is a weighted CDT of X, so t is constrained semiregu-
lar within f . By contradiction, there is not a triangulation S and a point p such that
S+(p) < T +(p). �

Corollary 22 Let f (p) be a convex function defined over the domain |X| of a PLC

X. Assign each vertex v ∈ X the height f (v). If X has a weighted CDT, then at

every point p ∈ |X|, every weighted CDT T of X minimizes the interpolation error

|T +(p) − f (p)| among all triangulations of X.

Because the weighted CDT minimizes the error e(p) at every point, the weighted
CDT minimizes e in every norm that is monotonic in e, including the Lebesgue
norms. With the right choice of weights, this result holds for any convex function.
Rippa also investigates the special case of interpolating f (p) = Ax2 + By2 + Cx +
Dy + E where A �= B . For a function of this form, an anisotropic triangulation (with
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Fig. 27 (a) Within s, the error
e(p) is maximized at the point
nearest the circumcenter of s.
(b) Top view of s, its
circumcircle, and its
min-containment circle

long, thin triangles) is optimal. Rippa suggests handling such functions by affinely
mapping the vertices in Ed to a “stretched” space over which f (p) is isotropic, find-
ing the Delaunay triangulation of the mapped vertices, and mapping the triangula-
tion back to the original space. Corollary 22 suggests an alternative: use weights to
achieve the same effect as Rippa’s mapping. This approach obtains exactly the same
results when f (p) is parabolic, but it is more flexible as it can adapt to other convex
functions as well.

Corollary 22 plays a part in showing that Rajan’s result generalizes to CDTs.

Theorem 23 If X has an unweighted CDT, then every unweighted CDT of X min-

imizes the largest min-containment sphere, compared with all other triangulations

of X.

Proof Recall that e(p) = T +(p) − f (p). As X is unweighted, f (p) = |p|2.
Over any single d-simplex s, there is an explicit expression for e(p). Recall from

the proof of Lemma 1 that the witness d-flat hs that includes s+ has the witness func-
tion hs(p) = 2Ocirc · p − |Ocirc|2 + r2

circ, where Ocirc and rcirc are the circumcenter
and circumradius of s, and p ∈ Ed varies freely. (The circumcenter and circumradius

of s are the center and radius of s’s circumsphere.) Hence, for all p ∈ s,

e(p) = hs(p) − f (p)

= 2Ocirc · p − |Ocirc|2 + r2
circ − |p|2

= r2
circ − |Ocircp|2.

Figure 27(a) illustrates the functions hs(p) and f (p) over a triangle s. The error
e(p) is the vertical distance between the two functions. At which point p in s is e(p)

largest? At the point nearest the circumcenter, because |Ocircp|2 is smallest there.
(The error is maximized at the circumcenter if the circumcenter is in s; Fig. 27 gives
an example where it is not.) Let Omc and rmc be the center and radius of the min-
containment sphere of s, respectively. Lemma 24 below shows that the point in s

nearest Ocirc is Omc, and r2
mc = e(Omc).

It follows that the square of the min-containment radius of s is maxp∈s e(p), and
thus the largest min-containment sphere of the entire triangulation has a squared ra-
dius of maxp∈|T | e(p). By Corollary 22, the unweighted CDT T minimizes this quan-
tity among all triangulations of X. �

Lemma 24 Let Ocirc and rcirc be the circumcenter and circumradius of a d-simplex

s. Let Omc and rmc be the center and radius of the min-containment sphere of s. For
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p ∈ s, define the function e(p) = r2
circ − |Ocircp|2. Let q be the point in s nearest

Ocirc. Then Omc = q and r2
mc = e(q).

Proof Let t be the face of s whose relative interior contains q . The face t is not a
vertex, because the vertices of s are s’s furthest points from Ocirc. Because q is the
point in t nearest Ocirc, and because q is in the relative interior of t , the line segment
Ocircq is orthogonal to t . (This is true even if t = s, in which case Ocirc −q = 0.) This
fact, plus the fact that Ocirc is equidistant from all the vertices of t , implies that q is
equidistant from all the vertices of t (as Fig. 27 demonstrates). Let r be the distance
between q and any vertex of t . Because q ∈ t , there is no containing sphere of t (or s)
with radius less than r , because there is no direction q can move without increasing
its distance from one of the vertices of t . Therefore, q and r are the center and radius
of the min-containment sphere of t .

By the following reasoning, s has the same min-containment sphere as t . If q =
Ocirc, this conclusion is immediate. Otherwise, let h be the hyperplane through q

orthogonal to Ocircq . Observe that h includes t . No point in s is on the same side of h

as Ocirc: if there were such a point w, there would be a point in s (between w and q)
closer to Ocirc than q , contradicting the fact that q is closest. Observe that h cuts the
circumsphere into two pieces, and that the smaller piece encloses s and is enclosed
by the min-containment sphere of t . Therefore, q and r are the center and radius of
the min-containment sphere of s.

Let v be any vertex of t . Pythagoras’ Law on △Ocircqv (see Fig. 27) yields r2
circ =

r2 + |Ocircq|2, and therefore r2 = e(q). �

For an algebraic proof of Lemma 24 (based on quadratic program duality), see
Lemma 3 of Rajan [36].

The optimality of the CDT for controlling the largest min-containment radius
dovetails nicely with an error bound for piecewise linear interpolation derived by
Waldron [51]. Let Cc be the space of scalar functions defined over |X| that have C1

continuity and whose absolute curvature nowhere exceeds c. In other words, for every
f ∈ Cc, every point p ∈ |X|, and every unit direction vector d, the magnitude of the
second directional derivative f ′′

d (p) is at most c. This is a common starting point for
analyses of piecewise linear interpolation error. In contrast with Corollary 22, Cc is
not restricted to convex functions.

Let f be a function in Cc . Let s ⊆ |X| be a simplex (of any dimensionality) with
min-containment radius rmc. Let hs be a linear function that interpolates f at the
vertices of s. Waldron shows that for all p ∈ s, the absolute error |e(p)| = |hs(p) −
f (p)| is at most cr2

mc/2. Furthermore, this bound is sharp: for every simplex s with
min-containment radius rmc, there is a function f ∈ Cc and a point p ∈ s such that
|e(p)| = cr2

mc/2. (That function is f (p) = c|p|2/2, as illustrated in Fig. 27.)

Theorem 25 Every unweighted CDT T of X (if any exist) minimizes

max
f ∈Cc

max
p∈|X|

|T +(p) − f (p)|,

the worst-case pointwise interpolation error, among all triangulations of X.
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Proof For any triangulation T , maxf ∈Cc
maxp∈|X| |T +(p)−f (p)| = cr2

max/2, where
rmax is the largest min-containment radius among all simplices in T . The result fol-
lows immediately from Theorem 23. �

One of the reasons why CDTs are important is because, in the senses of Corol-
lary 22 and Theorem 25, the CDT is an optimal piecewise linear interpolating surface.
Of course, e(p) is not the only criterion for the merit of a triangulation used for inter-
polation. Many applications need the interpolant to approximate the gradient—that is,
not only must T +(p) approximate f (p), but ∇T +(p) must approximate ∇f (p) well
too. For the goal of approximating ∇f (p) in three or more dimensions, the weighted
CDT is sometimes far from optimal even for simple functions like the paraboloid
f (p) = |p|2. Still, the CDT is a good starting point for mesh improvement algo-
rithms [6, 7, 10, 11, 16, 30, 46, 48] that create a triangulation that is appropriate for
approximating both f (p) and ∇f (p).

5 Proof of the CDT Theorem for Generic PLCs

Theorem 26 Let X be a generic, weakly ridge-protected, d-dimensional PLC

(weighted or not). X has a CDT (a weighted CDT if X is weighted).

This section is devoted to the proof of Theorem 26, the generic version of the CDT

Theorem. A lot of ink must be split for it, and readers who are not feeling athletic
are invited to skip to Section 6, where the genericity requirement is removed from
Theorem 26.

Half the work is already done: Corollary 18 states that the constrained regular
simplices form a simplicial complex, and Theorem 10 states that if this complex fills
X, it is a CDT of X. The most difficult part of the proof is to show that if X is generic
and weakly ridge-protected, the complex fills X. The forthcoming Theorem 30 shows
that every point in a weakly ridge-protected PLC lies in some constrained semiregular
simplex. Unfortunately, several long proofs are needed to build up to that result.

5.1 Visibility Lemmata

One potential difficulty for the CDT Theorem is illustrated in Fig. 28. Imagine that
you are standing at a point p in the interior of a three-dimensional domain, scanning

Fig. 28 Spherical projection of
the halfspace above your
vantage point
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the halfspace “above” p for a visible vertex. Looking up into the sky, you see the
three illustrated 2-facades, each of which occludes the apical vertex of another. The
remaining vertices of these facades are below the horizon (in the halfspace below
you). No vertex in the halfspace is visible from your vantage point, so there is no
constrained semiregular simplex that contains p.

To prove the existence of a CDT, one must show that this possibility is precluded
if X is weakly ridge-protected. Fortunately, Lemma 14 does exactly that. By the
definition of “weakly ridge-protected,” every grazeable constraining facade in X of
dimension d − 2 or less is a union of regular simplices. In Fig. 28 observe that the
inner edges of the three facades form a cycle of overlapping edges. These edges are
grazeable. However, Lemma 14 implies that the overlap relation among regular sim-
plices (from a fixed viewpoint) constitutes a partial order. The regular edges bounding
the 2-facades cannot form a cycle. This fact is the key to proving two lemmata for
weakly ridge-protected PLCs.

For each regular simplex s, let hs be a witness to the regularity of s. Every lifted
vertex lies above hs , except the vertices of s+. Recall from Definition 27 the witness
function hs(p), a linear function that maps each point p ∈ Ed to the xd+1-coordinate
such that 〈p,hs(p)〉 ∈ hs . If s is not d-dimensional, it has infinitely many witness
d-flats; choose one arbitrarily so that hs(p) is consistently defined.

Lemma 27 Let X be a weakly ridge-protected, d-dimensional PLC. Let p be a point

in the interior of |X|. Let H be an open d-dimensional halfspace whose closure

contains p. At least one vertex of X is in H and visible from p.

Proof Suppose for the sake of contradiction that no vertex of X is in H and visible
from p. Let A be the set containing every simplex e that has the following properties:

• e respects X and is regular within X, and
• there is a point m in e’s relative interior such that m ∈ H and m is visible from p.

A is empty—suppose for the sake of contradiction that it is not. Because no vertex
of X is in H and visible from p, A contains no vertex. Let e be the simplex in A

that maximizes he(p). Let m be a point in e’s relative interior that is in H and visible
from p. Because e is a simplex that intersects H , at least one vertex v of e is in H ,
as Fig. 29(a) shows. (The other vertices of e might lie below the horizon, outside H .)

By assumption, v is not visible from p, although m is. Let n be the point nearest
m on the line segment mv that is not visible from p. In other words, n is the first
occluded point encountered on a “walk” from m to v.8 The line segment pn must
intersect some occluding facade of X at some point m′. If several facades occlude the

8How do we know that there is a first occluded point on the walk from m to v, rather than a last visible
point? On the walk, there is at least one transition from points p can see to points p cannot see. Let n be
the point where the first such transition occurs. Is n visible from p? There are two ways that a transition
might occur. One possibility is an interposing facade that occludes the visibility of n, as in Fig. 29(a). The
second possibility is that n lies on a facade f and is visible from p, but the points following n on the walk
are occluded by f . To exclude this possibility, observe that e is convex, m is in e’s relative interior, v ∈ e,
n ∈ mv, and n �= v. Therefore, n must lie in e’s relative interior. Because e respects X, every facade that
contains n includes e, and therefore f cannot occlude the visibility of any point in e from anywhere. These
details are dreary, but the proof depends on them.
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Fig. 29 The supposition that no vertex in H is visible from p leads to a contradiction

view of n from p, consider only the facade that intersects pn closest to p, so that m′

is visible from p.
Let f be the face of that facade whose relative interior contains m′. (In Fig. 29, f

is the edge e′.) Because n is the first occluded point on the walk from m to v, f must
have dimension d − 2 or less (i.e. m′ cannot lie in the relative interior of a (d − 1)-
facade). Because no vertex is in H and visible from p, f is not a vertex. The grazing
triangle △pnm demonstrates that f is grazeable. As X is weakly ridge-protected,
f has a triangulation whose simplices respect X and are regular within X. Let e′

be the simplex in that triangulation whose relative interior contains m′. Because n

lies in H and p lies in its closure, m′ lies in H , so e′ ∈ A (by the definition of A).
Because n ∈ e, e′ overlaps e from the viewpoint p, and therefore he′(p) > he(p) by
Lemma 14.

However, this contradicts the assumption that e maximizes he(p) among all mem-
bers of A. It follows that A is empty.

Because p is in the interior of |X|, at least one facade in X intersects H . Let g be
the lowest-dimensional facade in X whose relative interior contains a point y that is
in H and visible from p. By assumption, g is not a vertex.

Because g intersects H , at least one vertex of g is in H . Imagine shooting a ray
from y toward that vertex. Let z be the first point on the boundary of g struck by the
ray, as illustrated in Fig. 29(b). As g might not be convex, z might not be the vertex,
but z is in H . Because g is the lowest-dimensional facade whose relative interior
contains a point in H visible from p, and z lies in the relative interior of a proper
face of g, z is not visible from p. Let n be the first occluded point encountered on
a “walk” from y to z. By a repetition of the reasoning above, some simplex in A is
interposed between p and n, but A is empty, so this is a contradiction.

It follows that some vertex of X is in H and visible from p. �

A second lemma reveals a more subtle (and barely comprehensible) property of
visibility in PLCs.

Lemma 28 Let X be a weakly ridge-protected, d-dimensional PLC. Let h ⊂ Ed+1

be a non-vertical d-flat. Let Vh = {v ∈ X : v is a vertex and v+ is on or below h},
and let Ch = conv(Vh). (See Fig. 30. Note that Vh and Ch are sets of points in Ed ,
not Ed+1.)
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Fig. 30 Because m is between
q and r , h(m) > he(m)

Let p be a point in Ch. Suppose that no vertex in X visible from p lifts to a point

below h.
Let f ∈ X be a grazeable constraining facade of dimension d −2 or less. Suppose

that some point mf ∈ f ∩ Ch is visible from p.
Then f includes the face of Ch whose relative interior contains mf . (This face

may be Ch itself.)

Proof Because X is weakly ridge-protected, f has a triangulation whose simplices
respect X and are regular within X. Let t be the simplex in this triangulation whose
relative interior contains mf .

Let A be the set containing every simplex e that has the following properties:

• e respects X and is regular within X, and
• there is a point m in e’s relative interior such that

— m is visible from p,
— m ∈ Ch, and
— e does not include the face of Ch whose relative interior contains m.

If A is empty, then t �∈ A, so t includes the face of Ch whose relative interior contains
mf , and the lemma holds. Suppose for the sake of contradiction that A contains at
least one simplex.

Let e be the simplex in A that maximizes he(p). As e ∈ A, there is a point m in the
relative interior of e such that m ∈ Ch and m is visible from p. Because e is regular,
there is a witness d-flat he ⊂ Ed+1 that includes e+, as illustrated in Fig. 30. Each
vertex of e lifts to a point on he. Every other vertex in X lifts to a point above he .

For each vertex v ∈ Vh, v+ lies on or below h, and on or above he , so h(v) ≥ he(v).
If v is in Vh but not in e, then v+ lies strictly above he , so h(v) > he(v).

Because Ch is the convex hull of Vh, and h and he are linear functions, it follows
that for each point q ∈ Ch, h(q) ≥ he(q), and if q is not in e, then h(q) > he(q).

Let Cm be the face of Ch whose relative interior contains m. By assumption, e

does not include Cm, so some point q ∈ Cm is not in e. Because m is in the relative
interior of Cm, there is a point r ∈ Cm such that m is between q and r . (See Fig. 30.)
Thus h(q) > he(q) and h(r) ≥ he(r), so by the linearity of h and he , h(m) > he(m).

Because e is a simplex that contains m, there must be at least one vertex w of e

for which h(w) > he(w). Because w+ lies on he, w+ lies below h, so w ∈ Vh (by
the definition of Vh). By assumption, no vertex visible from p lifts to a point below
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Fig. 31 Because m is visible
from p and w is not, some
simplex e′ must overlap e

h, so w is not visible from p. However, recall that m ∈ e is visible from p. Can m be
visible from p if w is not?

Let n be the point nearest m on the line segment mw that cannot see p, as illus-
trated in Fig. 31. The line segment pn must intersect some facade in X at some point
m′. If there are several facades occluding the view of n from p, consider only the
facade that intersects pn closest to p, so that m′ is visible from p.

Let g be the face of that facade whose relative interior contains m′. (In Fig. 31,
g is the edge e′.) Because n is the first occluded point on the walk from m to w,
g must have dimension d − 2 or less (i.e. m′ cannot lie in the relative interior of a
(d − 1)-facade). The grazing triangle △pnm demonstrates that g is grazeable. As X

is weakly ridge-protected, g has a triangulation whose simplices respect X and are
regular within X. Let e′ be the simplex in that triangulation whose relative interior
contains m′. Observe that n ∈ Ch because n lies between m and w, which are both
in Ch. Moreover, m′ ∈ Ch because m′ lies between n and p. Let Cm′ be the face of
Ch whose relative interior contains m′. By Lemma 15 (substituting Ch for C, Cm′ for
Cm, and pn for P ), pn ⊆ Cm′ . Because g occludes the visibility between p and n, e′

contains neither p nor n. It follows that Cm′ �⊆ e′.
By the definition of A, e′ ∈ A. Because e′ overlaps e from the viewpoint p,

he′(p) > he(p) by Lemma 14. However, this contradicts the assumption that e max-
imizes he(p) among all members of A. It follows that A is empty, and the lemma
holds. �

5.2 Ridge-Protected PLCs Are Filled

This section completes the proof of Theorem 26. Most of the effort is spent proving
that if a PLC is weakly ridge-protected, every point in the triangulation domain lies
in some constrained semiregular simplex. The proof is made easier by considering
a subset of the triangulation domain first—a set of points from which visibility is
particularly well behaved.

For a d-dimensional PLC X, let N be the set containing every point in the interior
of |X| that is not cohyperplanar with any d affinely independent vertices in X. No
point in N lies on any constraining facade, nor on any k-simplex whose vertices are in
X for k < d , nor on their affine hulls. The closure of N is the union of the d-facades
in X.
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Fig. 32 From left to right: a PLC X wherein the vertices visible from p (the set W ) are colored black,
and the vertices not visible from p are colored white. The weighted Delaunay triangulation of W , and the
simplex s therein that contains p. Ch is the convex hull of the vertices whose lifted companions lie on or
below the witness d-flat for s. Z is the closure of the set of points visible from p. Z ∩ Ch is convex and
respects X

Lemma 29 Let X be a weakly ridge-protected, d-dimensional PLC. Define N as

above, and let p be a point in N . Some constrained semiregular d-simplex contains p.

Proof Let W be the set of all vertices in X visible from p—the black vertices in
Fig. 32(a). The following reasoning establishes that p is in conv(W). Suppose for the
sake of contradiction that it is not. Then there is an open halfspace H such that p lies
on the boundary of H and W ∩ H = ∅.9 However, by Lemma 27, some vertex of X

is in H and visible from p. This vertex is in W ∩ H , a contradiction.
Let s be the d-simplex that contains p in a weighted Delaunay triangulation of W

(Fig. 32(b)). Because p ∈ conv(W), some such simplex must exist. The rest of this
proof shows that s is constrained semiregular within X, so the lemma holds.

Let hs be the unique witness to the semiregularity of s within W . No vertex in W

lifts to a point below hs , so no vertex in X visible from p lifts to a point below hs . Let
Vh = {v ∈ X : v is a vertex and v+ lies on or below hs}. Let Ch be the convex hull of
Vh (Fig. 32(c)). Observe that the vertices of s are in Vh, so s ⊆ Ch and p ∈ Ch.

Let Z be the closure of the set of all points that p can see in the triangulation
domain |X| (Fig. 32(d)). Because p ∈ N , p lies in the interior of |X|, which implies
that Z is d-dimensional with p in its interior. The vertices of s are in Z.

Because Z is the closure of points visible from p, the shadows cast by constraining
facades of dimension d −2 or less have no effect on Z. Z is a star-shaped polyhedron
(not generally convex) with two types of facets: portions of (d − 1)-facades, and
shadow facets that are cohyperplanar with p because they are boundaries of shadows
cast by occluding (d − 1)-facades.

The rest of this proof is a sequence of claims and their justifications.

Claim No constraining (d − 1)-facade in X intersects the interior of Z. Because
p ∈ N , p is not cohyperplanar with any (d − 1)-facade, so every (d − 1)-facade casts

9This claim is intuitive, but its formal proof is tricky. It is the well-known Farkas Lemma; see Ziegler [54]
for a proof.
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a shadow (occludes visibility from p) and no (d − 1)-facade intersects the interior
of Z.

Claim Z ∩ Ch is a star-shaped d-polyhedron. Because p ∈ N ∩ Ch, p is in the
interior of Ch. Because Z and Ch are both closed star-shaped d-polyhedra with p in
their kernels and in their interiors, so is Z ∩ Ch.

Claim No constraining facade in X intersects the interior of Z∩Ch. Suppose for the
sake of contradiction that a constraining facade f intersects the interior of Z ∩ Ch.
Let m be a point in the intersection of f ’s relative interior and the interior of Z ∩ Ch.
Assume without loss of generality that m is visible from p—if it is not, then m’s
visibility is occluded by some other constraining facade that intersects the interior of
Z ∩ Ch closer to p (because Z ∩ Ch is star-shaped with p in its kernel), so f and m

can be replaced by the occluding facade and the closer intersection point.
Because no constraining (d − 1)-facade intersects the interior of Z, f must have

dimension d −2 or less. To show that f is grazeable, choose an open grazing triangle
L that does not intersect any constraining facade, such that one boundary edge of L

contains m. Does such a triangle always exist? If L has m on its boundary and is
sufficiently small, the only constraining facades that can intersect L are those that
contain m. These facades intersect the interior of Z, so they have dimension d − 2 or
less. Almost every plane (2-flat) through m intersects these facades only at the point
m. (Here, “almost every” is used in the analytic sense: for any (d − 2)-facade g that
contains m, the set of planes through m that intersect g\{m} has measure zero in the
space of planes through m.) Therefore, almost every sufficiently small open triangle
with m on its boundary intersects no constraining facade, so f has a grazing triangle.

By Lemma 28, f ⊇ Ch. This contradicts the fact that Ch is d-dimensional and f

is at most (d − 2)-dimensional, so no constraining facade intersects the interior of
Z ∩ Ch.

Claim Z ∩ Ch is convex. See Fig. 32(e). Suppose for the sake of contradiction that
Z∩Ch is not convex. Then there exist two points q and r in the interior of Z∩Ch such
that qr �⊆ Z∩Ch. Because Z∩Ch is star-shaped with p in its kernel, Z∩Ch includes
both pq and pr , so the three points p, q , and r cannot be collinear. Continuously
move q and r toward p until △pqr ⊂ Z ∩ Ch, but qr still intersects the boundary of
Z ∩ Ch, as illustrated in Fig. 33. Let m be the point nearest q on qr that lies on the
boundary of Z ∩Ch. (That point is neither q nor r , which are in the interior.) Loosely
speaking, Z ∩ Ch is locally reflex at m. Because Ch is convex with q and r in its
interior, m also lies in the interior of Ch, so m must lie on the boundary of Z.

Because the open triangle L = △pqr is included in the interior of Z ∩ Ch, which
intersects no constraining facade, L is a grazing triangle for m, and m is visible
from p. Because m lies on the boundary of Z, but the open line segment pm does
not intersect Z’s boundary, m lies on at least one facet of Z that is not a shadow
facet. Therefore, m lies on some (d −1)-facade g, as illustrated. Because g intersects
neither the open triangle L nor the open line segment qm, m must lie on the boundary
of g.

Let ĝ be the face of g whose relative interior contains m. Because m is on g’s
boundary, ĝ has dimension d − 2 or less. L demonstrates that ĝ is grazeable. By
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Fig. 33 If Z ∩ Ch is not
convex, its boundary
incorporates a grazeable
facade ĝ

Fig. 34 The circumstance
depicted here, where a facade f

intersects the interior of a face P

of Z ∩ Ch but does not include
P in its entirety, cannot happen
in a weakly ridge-protected PLC

Lemma 28, ĝ ⊇ Ch. This contradicts the fact that Ch is d-dimensional and ĝ is at
most (d − 2)-dimensional, so Z ∩ Ch is convex.

Claim Z ∩ Ch has no shadow facets. This claim follows because shadow facets are
cohyperplanar with p, but Z ∩ Ch is a convex d-polyhedron with p in its interior.

Claim Z ∩ Ch respects X. Suppose for the sake of contradiction that some facade
f ∈ X (that is not a submersible vertex) intersects the relative interior of a face P of
Z ∩ Ch, but f does not include P . Let y be a point in the intersection of f with the
relative interior of P , as illustrated in Fig. 34.

Because f is closed and does not include P , there is a point z in the relative
interior of P that is not in f . Let m be the point nearest z in f ∩ yz, as illustrated.
Because y and z are in the relative interior of P , so is m. Let y′ be a point in P such
that m is between y′ and z. (The choice y′ = y will do if y �= m; but if y = m, choose
y′ just past m on the ray �zm.) Let f̂ be the face of f (possibly f itself) whose relative
interior contains m. This choice guarantees that y′ and z do not lie on the affine hull
of f̂ , and f̂ cannot have dimension d .

The facade f̂ cannot have dimension d − 1, either. If it did, then it would intersect
the interior of Z ∩ Ch, because m is in the relative interiors of both f̂ and y′z, y′z
is on the boundary of Z ∩ Ch, and y′z does not lie on the same hyperplane as f̂ .
However, no (d − 1)-facade intersects the interior of Z. Therefore, f̂ has dimension
d − 2 or less. To show that f̂ is grazeable, choose an open grazing triangle L such
that L is included in the interior of Z ∩ Ch, and y′z is an edge of (the closure of)
L. No constraining facade intersects the interior of Z ∩ Ch, so L is indeed a grazing
triangle.

Let Cm be the face of Ch whose relative interior contains m. By Lemma 28,
f̂ ⊇ Cm. Recall that m lies in the relative interior of P , which is a face of Z ∩ Ch,
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which implies that P ⊆ Ch. By Lemma 15, P ⊆ Cm. Thus z ∈ P ⊆ Cm ⊆ f̂ ⊆ f ,
contradicting the fact that z is not in f . The claim that Z ∩ Ch respects X follows.

Claim s ⊆ Z∩Ch. This claim follows because both Z and Ch contain all the vertices
of s, and Z ∩ Ch is convex.

Claim s respects X. Let t be any face of s, and let m be any point in the relative
interior of t . Suppose some facade f ∈ X (that is not a submersible vertex) contains
m. As m ∈ t ⊆ s ⊆ Z ∩ Ch, let Cm be the face of Z ∩ Ch whose relative interior
contains m. Because t and Z ∩ Ch are convex with t ⊆ Z ∩ Ch, it follows from
Lemma 15 (substituting t for P and Z ∩ Ch for C) that t ⊆ Cm.

Recall that Z ∩ Ch respects f : if f intersects the relative interior of a face of
Z ∩ Ch, then f includes the whole face. Because f intersects the relative interior
of Cm (at m), f includes Cm, which implies that t ⊆ f . This relationship holds for
any face t of s, any point m, and any facade f ∈ X that satisfy the assumptions, so s

respects X.

Claim Every point in Z ∩ Ch can see every other point in Z ∩ Ch, but no point in

the interior of Z ∩ Ch can see any vertex of Vh not in Z ∩ Ch. The first half of this
claim follows from Theorem 3 because Z ∩Ch respects X. For the second half of the
claim, let q be a point in the interior of Z ∩ Ch, and let v be a vertex in Vh that is not
in Z ∩ Ch. Some facet F of Z ∩ Ch lies between q and v. Because v is in Ch (which
is convex) and q is in its interior, F is not on the boundary of Ch. Thus F must lie
on the boundary of Z. Because Z ∩ Ch has no shadow facets, F must be included in
some (d − 1)-facade in X, which occludes the visibility of v from q . Therefore, no
point in the interior of Z ∩ Ch can see any vertex of Vh not in Z ∩ Ch.

Claim s is constrained semiregular. Because p ∈ Z ∩ Ch, p sees every vertex in
Z ∩ Ch. By construction, no vertex visible from p has a lifted companion below the
witness hs ; therefore, no vertex in Z ∩ Ch has one. By the definition of Vh, every
vertex in X whose lifted companion is below hs is in Vh. By the previous claim, no
point in the interior of s ⊆ Z ∩Ch can see any vertex of Vh not in Z ∩Ch. Therefore,
no point in the interior of s can see any vertex whose lifted companion is below hs .
Moreover, s respects X, so s is constrained semiregular. �

Theorem 30 Let X be a weakly ridge-protected, d-dimensional PLC. Let p be a

point in a d-facade in X. Some constrained semiregular d-simplex contains p.

Proof If p ∈ N , the result follows from Lemma 29. What about points not in N?
Every point in N lies in some closed constrained semiregular d-simplex, and the
closure of N is the union of all the d-facades in X. It follows that every point in
every d-facade in X lies in some constrained semiregular d-simplex. �

Theorem 30 provides the machinery to prove Theorem 26: if X is a generic,
weakly ridge-protected, d-dimensional PLC, then X has a CDT.

Proof of Theorem 26 Let T be the set that contains every simplex that is constrained
semiregular within X or within a constraining facade in X. Because X is generic,
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every constrained semiregular simplex is constrained regular, and Corollary 18 guar-
antees that T is a simplicial complex.

Let p be any point in the triangulation domain |X|. Let f be the highest-
dimensional facade in X that contains p, and let k be the dimensionality of f . If
k = d , Theorem 30 states that there exists a constrained semiregular d-simplex that
contains p. By the definition of T , this d-simplex is in T .

If k < d , f is a dangling facade. Let Yf be the k-dimensional facade PLC for
f . By Corollary 12, Yf is weakly ridge-protected. Therefore Theorem 30 applies,
with Yf substituted for X and k substituted for d . In this case the theorem states that
some k-simplex exists that contains p and is constrained semiregular within Yf . This
k-simplex is in T .

Because such a simplex exists for every point p ∈ |X|, T fills X. By Theorem 10,
T is a CDT of X. �

Theorem 26 requires X to be generic only to ensure that Corollary 18 applies. If
X is nongeneric, T may contain constrained semiregular simplices whose interiors
overlap. Theorem 30, however, holds even for nongeneric X.

6 Nongeneric PLCs, Weight Perturbations, and the CDT Theorem

It is well known that the Delaunay triangulation is not unique when d + 2 or more
vertices lie on a common empty hypersphere. Every affinely independent subset of
these cospherical vertices yields a Delaunay simplex. Some of the Delaunay sim-
plices have mutually overlapping relative interiors, so some Delaunay simplices must
be omitted to form a proper triangulation. Different choices yield different Delaunay
triangulations. Likewise, a weighted Delaunay triangulation is not unique when the
underside of the convex hull of the lifted vertices has a facet that is not a simplex.

The story is a bit more complicated for CDTs and weighted CDTs. The triangula-
tion domain of a PLC might have a polyhedral gap (not necessarily convex) that is not
covered by constrained regular simplices. Sometimes this happens simply because
the PLC has no CDT, but sometimes the gap can be triangulated with constrained
semiregular simplices. A gap might have several such triangulations, yielding multi-
ple CDTs of one PLC. If a gap is shaped like Schönhardt’s polyhedron, it cannot be
triangulated at all.

A generic PLC has at most one weighted CDT (by Corollary 20), consisting of
every constrained regular simplex (by Theorem 19), so it is pleasingly unambiguous.
A nongeneric PLC raises the question of whether there exists a set of constrained
semiregular simplices that fill the gaps and complete the triangulation. Because there
may be several choices of constrained semiregular simplex to cover any point in a
gap, determining whether a CDT exists is like solving a jigsaw puzzle with extra,
useless pieces included.

Surprisingly, the problem of determining whether a three-dimensional nongeneric
PLC has a CDT is NP-complete [24], even for an unweighted PLC. By contrast, it
is always possible to determine whether a generic PLC has a CDT in polynomial
time—by attempting to construct it. (See the second article in this series for further
discussion.)
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This section removes the genericity requirement from the CDT Theorem by per-
turbing the vertex weights so that no d + 2 vertices lift to a common non-vertical
d-flat. The vertex coordinates are not perturbed. If the perturbed PLC has a CDT, the
latter is also a CDT of the original, unperturbed PLC. The method works even for
unweighted PLCs, by temporarily assigning each vertex a tiny weight. This idea first
appears in the work of Edelsbrunner and Mücke [17, Section 5.4].

The weight perturbation method serves a practical function as well as a theoretical
one. The third article in this series describes an easy way to implement the pertur-
bations to ensure the correctness of algorithms for constructing and updating CDTs.
There is a catch, though. Will a PLC that has a CDT still have a CDT after it is
perturbed? Not necessarily. Perturbations cannot circumvent the NP-hardness result.

The perturbations are symbolic—the magnitudes of the perturbations are not ex-
plicitly specified. Following Edelsbrunner and Mücke, the ith vertex weight could be
perturbed by ǫ2i

for a sufficiently small ǫ, but the proofs are simpler if the perturba-
tions are implicitly chosen by the following procedure instead.

Let X be a d-dimensional PLC. Let V be the set of vertices in X. Consider all the
(d +1)-simplices, including degenerate ones, that can be defined by taking subsets of
d + 2 lifted vertices from V +. Call these the orientation simplices. Assume that the
vertices of each orientation simplex are listed in some canonical order. The signed
volume of an orientation simplex 〈v+

0 , v+
1 , . . . , v+

d+1〉 is 1/(d + 1)! times the deter-
minant of the matrix with column vectors v+

1 − v+
0 , v+

2 − v+
0 , . . . , v+

d+1 − v+
0 . Each

signed volume varies linearly with the vertex weights. Every question about whether
a lifted vertex lies above a witness d-flat for a d-simplex is a question about the sign
of the volume of an orientation simplex. A volume of zero indicates cohyperplanarity.

Perturb the weights of the vertices in V one at a time, in some arbitrary order,
each by a tiny negative or positive amount (different for each vertex). To perturb
the weight of a vertex v, choose the magnitude of the perturbation to be sufficiently
small that no orientation simplex’s signed volume changes from positive to nonpos-
itive, or from negative to nonnegative. Some signed volumes may change from zero
to nonzero—that is the goal of the perturbations. Once a signed volume becomes
nonzero, subsequent perturbations are not permitted to change its sign. The idea is
to move vertices off of witnesses, but never to move a vertex from above a witness
to below, nor vice versa. For each vertex in turn, it is always possible to choose a
nonzero perturbation small enough to satisfy these restrictions. Perturb every vertex
once.

Theorem 31 Let X be a PLC. Let X′ be a weighted PLC defined by perturbing every

vertex weight in X as described above. (If X is unweighted, assign each vertex a

weight of zero before perturbing it.) The following statements hold:

A. If a simplex s is regular within X, it is regular within X′.
B. If a simplex s is constrained regular within a facade in X, it is constrained

regular within the same facade in X′.
C. If a simplex s is regular within X′, it is semiregular within X.
D. If a simplex s is constrained regular within a facade in X′, it is constrained

semiregular within the same facade in X.
E. X′ is generic and has at most one CDT.
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F. If X is ridge-protected, so is X′.
G. If X is weakly ridge-protected, so is X′.
H. If X′ has a CDT, the CDT of X′ is a CDT of X.
I. If X is generic, X and X′ have the same CDT (or lack thereof).

Proof A lifted vertex lies above, on, or below the witness for a d-simplex accord-
ing to whether the signed volume of some orientation simplex is positive, zero, or
negative. Similarly, the regularity of any lower-dimensional simplex depends on the
volumes of certain orientation simplices all having the right sign. Because a perturba-
tion never changes the volume of any orientation simplex from positive to nonpositive
or from negative to nonnegative, Statements A, B, C, and D hold by induction on the
sequence of perturbations.

Perturbing the height of a vertex v moves v+ off of any non-vertical d-flat that it
lay on before the perturbation. No perturbation, of v or any other vertex, can move
v+ onto a witness d-flat that v+ did not lie on before the perturbation, because that
would imply that the volume of some orientation simplex changes from nonzero to
zero. Therefore, v+ does not lie on any witness immediately after it is perturbed,
except the witnesses that by definition pass through v+; and subsequent perturbations
preserve this claim. By induction on the sequence of vertex perturbations, the claim
holds for every vertex in X′, and X′ is generic. By Corollary 20, X′ has at most one
CDT.

Statements F and G follow from Statement A. Statement H follows from State-
ment D and the genericity of X′.

If X is generic, then constrained regularity and constrained semiregularity are
equivalent. Thus, Statement B implies that any CDT of X is a CDT of X′, just as
Statement H says that any CDT of X′ is a CDT of X. Either X and X′ both have the
same CDT, or both have no CDT. �

A CDT of X′ is a CDT of X, but if X is nongeneric, different perturbations of X

(i.e. perturbing the vertices in a different order, or using different mixtures of positive
and negative perturbations) may yield different CDTs of X, or no CDT at all. Never-
theless, any choice of perturbation faithful to the procedure described above suffices
to excise the genericity requirement from Theorem 26.

Theorem 32 (CDT Theorem) Let X be a weakly ridge-protected, d-dimensional

PLC (weighted or not). X has a CDT (a weighted CDT if X is weighted).

Proof Let X′ be the perturbed weighted PLC defined in Theorem 31. By the theorem,
X′ is generic and weakly ridge-protected, so by Theorem 26, X′ has a CDT T . By
Theorem 31, T is a CDT of X. �

7 Conclusions

In their article on two-dimensional conforming Delaunay triangulations, Edelsbrun-
ner and Tan [20] write:
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A seemingly difficult open problem is the generalization of our polynomial
bound to three dimensions. The somewhat easier version of the generalized
problem considers a graph whose vertices are embedded as points in R

3, and
edges are represented by straight line segments connecting embedded vertices.
More relevant, however, is the problem for the crossing-free embedding of a
complex consisting of vertices, edges, and triangles.

Three-dimensional CDTs shift the emphasis back to the former of these two prob-
lems. An algorithm that could create a Steiner CDT by inserting only a polynomial
number of additional vertices would be an exciting development.

Some applications of finite element methods use meshes that have open slits,
which are infinitesimally thin fissures across which information does not flow. The
ideas in this article seem to extend in a straightforward way to topological PLCs
wherein open slits are modeled by topological holes in the domain. Unfortunately, it
is difficult to describe these PLCs in simple geometric terms, because of the need to
distinguish topologically distinct points that have the same coordinates. For example,
an internal (d − 1)-facade can be converted into an open slit by making a topolog-
ically distinct copy of the facade that coincides with the original. Both the original
and the copy adjoin the exterior domain (the infinitesimally thin hole), but they adjoin
each other only along their external boundaries. The internal vertices in the original
facade are topologically distinct from the internal vertices in the copy (and may or
may not coincide), thereby supporting the interpolation of discontinuous functions as
illustrated in Fig. 1(b). The open question is how to formulate these topological PLCs
rigorously, and how to extend the results in this article to them.

Several other questions deserve investigation. Is there a simply stated and tested
condition that is both sufficient and necessary for a generic PLC to have a CDT? The
NP-hardness result suggests that there is no such condition for nongeneric PLCs. Is
there a less conservative definition of “constrained Delaunay” (perhaps giving more
power to constraining facades of dimension less than d − 1) that admits useful, well-
defined triangulations over a larger class of PLCs? Is there a better approach to assur-
ing the existence of a CDT than to make a PLC weakly ridge-protected? Finally, when
do curved manifold complexes (e.g. the stratifications mentioned in Section 2.1) have
CDTs?

Acknowledgements I thank Dafna Talmor and Herbert Edelsbrunner for helpful discussions. In partic-
ular, Dafna pointed out the duality between degenerate faces of the Voronoi diagram and simplices that are
Delaunay but not strongly Delaunay.
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