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GENERAL ELEPHANTS OF THREE-FOLD DIVISORIAL
CONTRACTIONS

MASAYUKI KAWAKITA

The theory of minimal models has enriched the study of higher-dimensional alge-
braic geometry; see [10] and [12]. For a variety with mild singularities, this theory
produces another variety which possesses good properties, after finite elementary
transformations called divisorial contractions and flips. Since Mori completed this
program in dimension three in [17], it has become desirable to study three-folds
explicitly. This paper aims to complete the explicit study of three-fold divisorial
contractions whose exceptional divisors contract to Gorenstein points, after the
papers [7] and [8].

Reid pointed out that general elements in the anti-canonical systems of three-
folds have at worst Du Val singularities in appropriate situations involving contrac-
tions of extremal faces. This has become known as the general elephant conjecture.
The papers [19], [21] and [22] support it with affirmative answers for Fano three-
folds with singularities, and this approach has settled the problem of the existence
of three-fold flips in [11] and [17]. Our main theorem is that this conjecture holds
for our divisorial contractions:

Theorem. Let f : (Y ⊃ E)→ (X 3 P ) be a germ of a three-fold divisorial contrac-
tion whose exceptional divisor E contracts to a Gorenstein point P . Then a general
element in the anti-canonical system |−KY | has at worst Du Val singularities.

The statement is analogous to the flipping case, and we can start from a similar
position after taking the intersection C of E and the birational transform of a gen-
eral hyperplane section on X , because the first cohomology of C vanishes. There
is, however, a crucial difference between our curve C and that in the flipping case.
For any flipping curve in a three-fold, the first cohomology of any closed subscheme
supported on this curve always vanishes, but this does not hold for our C. Nev-
ertheless, provided that P is Gorenstein, the numerical information on f obtained
in [7] allows us to analyse the local structure of C ⊂ Y delicately. It encodes the
behaviour of the global sections in |−KY | and leads to our main theorem.

In fact, we prove more than the theorem in this paper. Let S be a surface
on Y defined by a general element in |−KY |, and SX its birational transform on
X . The theorem guarantees that S and SX have only Du Val singularities, and the
induced morphism S → SX factors through the minimal resolution of SX . We prove
the theorem at the same time as providing information on the partial resolution
S → SX ; see Theorem 1.8. In some special cases, to be precise in types O and I in
Theorem 1.4, the birational transform of a general hyperplane section on X gives
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a Du Val section S. On the other hand, in the remaining cases, we can obtain the
strong version of the general elephant conjecture, which asserts that the type of
any Du Val singularity Q ∈ S is the same as that of a general Du Val section of
a germ Q ∈ Y . In most cases this is proved by a direct search for S, but in some
exceptional cases, where −KY is linearly equivalent to the sum of E and a Cartier
divisor L, we obtain the desired S by showing that E has a Du Val singularity of
the required type at any Q ∈ S, and that L moves in a free linear system.

The theorem is applied to classify divisorial contractions. We describe the con-
tractions to cAn points in Theorem 1.13, following on from the smooth and the
cA1 cases treated in [7] and [8]. We expect that as the singularity at P worsens,
there are fewer divisorial contractions over P , because the choice of coordinates
at P is more restricted. However, since the defining equation of X at P becomes
much more complicated, their explicit study is not necessarily simpler. Instead of
complete descriptions in the remaining cDn and cEn cases, we give restrictions on
the possible divisorial contractions by deriving an upper bound on discrepancies
in Corollary 1.15. Now we have sufficient tools to classify divisorial contractions
also in the cDn and cEn cases, once P ∈ X has been given explicitly. What we
should do is basically to compare discrepancies as in [9] or Lemma 6.1, using the
enormous amount of information given by the singular Riemann–Roch technique
and the general elephant theorem concerning the multiplicities along E of surfaces
inside X with special directions. The connectedness lemma of Shokurov can be
applied occasionally as in [3, Theorem 3.10] or [4, Theorem 3.6].

This paper is constructed as follows. In Section 1, we state our theorems pre-
cisely. Section 2 is devoted to preparing basic numerical techniques. After recalling
the results for divisorial contractions to Gorenstein points in [7], we introduce the
fundamental set-up to analyse C ⊂ Y , following [17]. The quite delicate local in-
vestigation of C ⊂ Y is presented in Section 3. Using this, in Section 4 we prove
the main theorem, the existence of Du Val sections. In Section 5, we restrict the
possible divisorial contractions, focusing on the types of singularities on Du Val
sections. This provides an upper-bound on discrepancies in the cDn and cEn cases.
Finally, in Section 6 we give an explicit description of divisorial contractions in the
cAn case.

1. Statements

We work over the complex number field C.
Divisorial contractions play a major role in the minimal model program. This

program was formulated to generalise the theory of minimal models of surfaces to
higher-dimensional varieties. In order to avoid problems caused by the existence of
small contractions, this program has to work in a category of varieties with mild
singularities; see [10] and [12]. Before we define a divisorial contraction, we have
to introduce the class of terminal singularities. Let X be a normal variety. We
say that X has at worst terminal singularities if X is Q-Gorenstein and if every
exceptional divisor has positive coefficient in the discrepancy divisor KY − f∗KX

for a resolution of singularities f : Y → X .
The minimal model program works in the category of Q-factorial normal varieties

with terminal singularities; for such a variety, it produces a good variety after finite
elementary transformations called divisorial contractions and flips. Since the main
theorem is implied by the corresponding theorem in the analytic category, we define
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a divisorial contraction in a general sense. From now on, we work in the analytic
category by relating to the algebraic category via the algebraisation theorems of
Artin in [1] and [2].

Definition 1.1. Let f : Y → X be a proper morphism with connected fibres be-
tween normal varieties with at worst terminal singularities. We say that f is a
divisorial contraction if the exceptional locus of f is a prime divisor and −KY is
f -ample.

Our study of three-fold divisorial contractions relies on the classification of three-
fold terminal singularities, which should be recalled. Let P ∈ X be a three-fold
germ. We say that P is a cDV (compound Du Val) point if a general hyperplane
section has at worst a Du Val singularity at P . The singularity P is said to be cAn,
cDn, cEn (compound An, Dn, En) according to the type of the Du Val singularity
on a general hyperplane section. For convenience, we say that a smooth point on a
surface or a three-fold is A0, respectively cA0. It is a result of Reid that three-fold
Gorenstein terminal singularities are characterised as isolated cDV points:

Theorem 1.2 ([18, Theorem1.1]). Let P ∈ X be a three-fold germ. P is a Goren-
stein terminal singularity if and only if P is an isolated cDV point.

We then consider a three-fold non-Gorenstein terminal singularity P ∈ X . Let r
be the local Gorenstein index of P ∈ X , that is, the smallest positive integer such
that rKX is Cartier at P . Take the index-one cover π : (X] 3 P ]) → (X 3 P ),
which is a cyclic µr-cover. Fix a character generating Hom(µr,C×) = Z/(r) and
define the weight modulo r for any semi-invariant function on X] with respect to
this character.

Theorem 1.3 ([16]). There exists a µr-equivariant identification

P ] ∈ X] ∼= o ∈ (φ = 0) ⊂ C4
x1x2x3x4

,

where x1, x2, x3, x4 and φ are µr-semi-invariant, and φ = x4 if P ] ∈ X] is a smooth
point. The weights of x1, x2, x3, x4 and φ satisfy one of the following:

(i) wt(x1, x2, x3, x4;φ) = (1,−1, b, 0; 0), where b is co-prime to r.
(ii) r = 4 and wt(x1, x2, x3, x4;φ) = (1, 3, 3, 2; 2).

Mori gave more precise description of φ and weights in [16], and the classification
is completed by [13, Theorem 6.4].

According to the above classification, any three-fold terminal singularity P ∈ X
has a small deformation to a basket of terminal quotient singularities Pi. The Pi
are called fictitious singularities in the sense of Reid in [20]. Note that if P is of
type (i) in Theorem 1.3, any local index at Pi equals that at P , and if P is of type
(ii), one of Pi has local index 2 and all the others have local index 4.

We return to the study of three-fold divisorial contractions. Let

f : (Y ⊃ E)→ (X 3 P )

be a germ of a three-fold divisorial contraction whose exceptional divisor E con-
tracts to a point P . There are two ways to study f , namely, one starting from X ,
and the other from Y . By the former approach, Mori classified them in the case
where Y is smooth in [15], and Cutkosky extended this result to the case where Y
is Gorenstein in [5]. On the other hand, by the latter approach, Kawamata proved
that f is a certain weighted blow-up when P is a terminal quotient singularity in
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[9], and Corti proved that f is the blow-up when P is an ordinary double point in
[3, Theorem 3.10].

Now is the time that we state our theorems. We start with a numerical classifi-
cation of f . From now on, we assume that P is a Gorenstein point. As in Section
2, set KY = f∗KX + aE, and let I := {Q : type 1

rQ
(1,−1, avQ)} with vQ ≤ rQ/2

be the basket of fictitious singularities from non-Gorenstein singularities on Y . We
also set J := {(rQ, vQ)}Q∈I and 1 + d(−1) := dimOX/f∗OY (−2E). The following
theorem is the same as [7, Theorem 4.5], except for the statement that d(−1) 6= 0
in type O. This additional statement is due to Theorem 2.7.

Theorem 1.4. f belongs to exactly one of the types in the following table. If f is
of type IV, then f is the usual blow-up along a smooth point P .

type 1 + d(−1) J a
O ≥ 2 1
I 1 {(7, 3)} or {(3, 1), (5, 2)} 2
IIa 2 {(r, 2)} 4/rE3 = 2 or 4
IIb 2 {(r1, 1), (r2, 1)} (r1 + r2)/r1r2E

3 ≥ 2
III 3 {(r, 1)} (1 + r)/rE3 ≥ 2
IV 4 ∅ 2

For convenience, we divide type IIb into two types according to the number of
non-Gorenstein points on Y . We say that f is of type IIb∨ or IIb∨∨ if f is of type
II with one, respectively two non-Gorenstein points on Y .

Remark 1.5. If f is of type IIb∨, then J = {(r, 1), (r, 1)} or {(2, 1), (4, 1)}, and a = 2,
respectively 3. By [16], the unique non-Gorenstein point Q ∈ Y can be described
as one of the following equations φ = 0, using semi-invariant local coordinates
y1, y2, y3, y4 of the index-one cover Q] ∈ Y ] with weights w = wt(y1, y2, y3, y4).

(i) J = {(r, 1), (r, 1)}.
(a) φ = y1y2 + g(yr3, y4) and w = (1,−1, 2, 0). g(0, y4) has order 2. The

general Du Val section of a germ Q ∈ Y is A2r−1.
(b) r = 3, φ = y2

4 + φ3(y1, y2, y3) + φ≥4(y1, y2, y3) and w = (1,−1, 2, 0).
φ3 is y3

1 + y3
2 + y3

3 , y3
1 + y2y

2
3 , or y3

1 + y3
2 , and φ≥4 has order ≥ 4. The

general Du Val section of a germ Q ∈ Y is E6.
(ii) J = {(2, 1), (4, 1)}. φ = y2

1 + y2
2 + g(y2

3 , y4) and w = (1, 3, 3, 2). g(0, y4)
has order 3. The general Du Val section of a germ Q ∈ Y is D5.

The following definition is due to Reid:

Definition 1.6 ([20]). The general elements in the anti-canonical system are called
general elephants.

In [20] Reid proposed the general elephant conjecture. It is that general elephants
of three-folds should have at worst Du Val singularities in appropriate situations in-
volving the contractions of extremal faces. Our main theorem is that this conjecture
holds for our divisorial contractions:

Theorem 1.7. A general elephant of Y has at worst Du Val singularities.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERAL ELEPHANTS OF THREE-FOLD DIVISORIAL CONTRACTIONS 335

Let S be a general elephant of Y , and SX its birational transform on X . By The-
orem 1.7, S and SX have at worst Du Val singularities and the induced morphism
S → SX factors through the minimal resolution of SX . We obtain Theorem 1.7
at the same time as providing the following information on the partial resolution
S → SX . Theorems 1.7 and 1.8 are implied by Theorems 2.7, 4.2 and 4.4 and the
results in Section 5.

Theorem 1.8. (i) Assume that f is of type O or I. Then SX is a general
elephant of X. Moreover, if f is of type I, then P is cE7 or cE8.

(ii) Assume that f is of type II, III or IV. Then possible types of Du Val
singularities on S and SX are as in the following table. The type of any
Du Val singularity Q ∈ S is the same as that of a general elephant of a
germ Q ∈ Y . Moreover, the partial resolution S → SX has irreducible
exceptional locus except in the case IIa when SX is of the alternative type
Dr+1, or in the case IIb∨ in the second line of the table with SX of type
D2r+1.

type of f type of SX type of S
IIa Dr or Dr+1 Ar−1

IIb∨, J = {(r, 1), (r, 1)} D2r or D2r+1 A2r−1

IIb∨, J = {(3, 1), (3, 1)} E7 E6

IIb∨, J = {(2, 1), (4, 1)} E6 D5

IIb∨∨ Ar1+r2−1 Ar1−1 and Ar2−1

III Ar Ar−1

IV smooth smooth

We have examples of type I with J = {(3, 1), (5, 2)} in Example 5.3, but I do not
know whether type I with J = {(7, 3)} happens or not. If f is of type I with
J = {(7, 3)}, then P has to be cE7 by Remark 5.2.

The main theorem can be applied to classify divisorial contraction. We classify
them according the type of P . Divisorial contractions to smooth or cA1 points are
completely described in the papers [7] and [8]:

Theorem 1.9 ([7]). Assume that P is smooth. Then f is a weighted blow-up. More
precisely, we can take local coordinates x1, x2, x3 at P and co-prime positive integers
s and t, such that f is the weighted blow-up of X with weights wt(x1, x2, x3) =
(1, s, t). Moreover, any such f is a divisorial contraction.

Remark 1.10. We may assume that s ≤ t. The type of f is IIb∨∨ if s > 1, III if
s = 1 and t > 1, and IV if t = 1.

Theorem 1.11 ([8]). Assume that P is cA1. Then f is a weighted blow-up. More
precisely, under a suitable identification

P ∈ X ∼= o ∈ (x1x2 + x2
3 + xN4 = 0) ⊂ C4

x1x2x3x4
,

f is the weighted blow-up with one of the following weights :
(i) wt(x1, x2, x3, x4) = (s, 2t−s, t, 1), where s, t are co-prime positive integers

such that s ≤ t ≤ N/2.
(ii) N = 3 and wt(x1, x2, x3, x4) = (1, 5, 3, 2).

Moreover, any such f is a divisorial contraction.
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Remark 1.12. In (i), the type of f is IIb∨∨ if s > 1, III if s = 1 and t > 1, and O
if t = 1. In (ii), the type of f is IIa.

In Section 6 of this paper, we describe divisorial contractions to cAn points with
n ≥ 2:

Theorem 1.13. Assume that P is cAn for some n ≥ 2. Then one of the following
holds :

(i) Under a suitable identification

P ∈ X ∼= o ∈ (x1x2 + g(x3, x4) = 0) ⊂ C4
x1x2x3x4

,

f is the weighted blow-up with weights wt(x1, x2, x3, x4) = (r1, r2, a, 1),
where a divides r1 + r2 and is co-prime to r1 and r2, g has weighted order
r1 + r2 with weights wt(x3, x4) = (a, 1), and the monomial x(r1+r2)/a

3 ap-
pears in g with non-zero coefficient. Moreover, any such f is a divisorial
contraction.

(ii) P is a cA2 point isomorphic to

o ∈ (x1x2 + x3
3 + g≥4(x3, x4) = 0) ⊂ C4

x1x2x3x4
,

where g≥4 has total order ≥ 4 in x3, x4, Y has exactly one non-Gorenstein
point Q, isomorphic to o ∈ (y2

1 + y2
2 + y2

3 + y3
4 = 0) in the quotient space

C4
y1y2y3y4

/ 1
4 (1, 3, 3, 2), and KY = f∗KX +3E. Moreover, such an example

exists in Example 6.8.

Remark 1.14. In (i), we may assume that r1 ≤ r2. The type of f is IIb∨∨ if r1 > 1
and a > 1, III if r1 = 1 and a > 1, and O if a = 1. In (ii), the type of f is IIb∨

with J = {(2, 1), (4, 1)}.
We note that Corti obtained the result in the case where P is an ordinary double

point in [3, Theorem 3.10], and that Corti and Mella obtained the result in the case
where P is a cA2 point isomorphic to o ∈ (x1x2 +x3

3 +x3
4 = 0) ⊂ C4 in [4, Theorem

3.6].
On the other hand, in the remaining cDn and cEn cases we derive an upper-

bound on the discrepancy a. The next corollary follows straightforwardly from
Theorem 1.8:

Corollary 1.15. Assume that P is cDn or cEn. Then f is of type O, I, IIa or
IIb∨ in Theorem 1.4, and the discrepancy a ≤ 4.

We have examples of type O, I, IIb∨, where a = 1, 2, 3, in Examples 2.3, 5.3, 5.4
and 5.5. However I do not know whether type IIa happens or not. If a = 4 in the
cDn or cEn case, then r = 5 by Theorem 3.5(iii) and P has to be cD4, cD5 or cD6.

2. Basic numerical results

Let f : (Y ⊃ E)→ (X 3 P ) be a germ of a three-fold divisorial contraction whose
exceptional divisor E contracts to a Gorenstein point P . Remark that f can be
always extended to a morphism between projective varieties by the algebraisation
theorem in [1] and [2].

Set KY = f∗KX+aE, and let r be the global Gorenstein index of Y . Note that a
and r are co-prime by [7, Lemma 4.3]. We take an integer e such that ae ≡ 1 modulo
r. Let I := {Q : type 1

rQ
(1,−1, bQ)} be the basket of fictitious singularities from

non-Gorenstein singularities on Y . Then (OYQ(EQ))Q ∼= (OYQ(eKYQ))Q, where

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERAL ELEPHANTS OF THREE-FOLD DIVISORIAL CONTRACTIONS 337

(YQ, EQ) is the deformed pair at Q from (Y,E). We note that bQ is co-prime to rQ
and that e is also co-prime to rQ since ae ≡ 1 modulo r. Hence vQ := ebQ is co-prime
to rQ. Here ¯ denotes the smallest residue modulo rQ, that is, j := j − b jrQ crQ,
where b c denotes the round-down, that is, bjc := max{k ∈ Z | k ≤ j}. Replacing
bQ with rQ−bQ if necessary, we may assume that vQ ≤ rQ/2. With this description,
r = 1 if I is empty, and otherwise r is the lowest common multiple of {rQ}Q∈I . Set
J := {(rQ, vQ)}Q∈I . We moreover define d(i) := dim f∗OY (iE)/f∗OY ((i − 1)E).
Note that d(i) = 0 for i ≥ 1 and d(0) = 1.

Remark 2.1. If P is a singular point, then a < max{rQ} unless a 6= 1. This is by
an analogue to the proof of [8, Lemma 6.10], because there exists a valuation with
centre P the discrepancy of which with respect to KX is 1 by [14].

We have a rough numerical classification of f by [7, Theorem 4.5], which is the
same as Theorem 1.4 except for the statement that d(−1) 6= 0 in type O. We quote
this classification by the label [7, Theorem 4.5] until the additional statement is
deduced from Theorem 2.7.

Remark 2.2. The possible values of J can be restricted even if f is of type O,
according to the proof of [7, Theorem 4.5]. In fact, J is one of
{(7, 3)}, {(8, 3)}, {(2, 1), (5, 2)}, {(3, 1), (5, 2)}, {(4, 1), (5, 2)}, {(2, 1), (7, 2)},
{(2, 1), (2, 1), (r3, 1)}, {(2, 1), (3, 1), (3, 1)}, {(2, 1), (3, 1), (4, 1)},
{(2, 1), (3, 1), (5, 1)}, {(r, 2)}, {(r1, 1), (r2, 1)}, {(r, 1)} and ∅.
In particular, the number of the fictitious singularities is ≤ 3.

Example 2.3. The weighted blow-up of the cD4 singularity o ∈ (x2
1 + x3

2 + x3
3 +

x6
4 = 0) ⊂ C4 with weights wt(x1, x2, x3, x4) = (3, 2, 2, 1) in [7, Example 4.6] is an

example for which J is {(2, 1), (2, 1), (2, 1)}.
The numerical classification comes from the singular Riemann–Roch formula [20,

Theorem 10.2] and a relative vanishing theorem [10, Theorem 1-2-5] with the exact
sequences

0→ OY ((i− 1)E)→ OY (iE)→ Qi → 0.

The sheaves Qi are S2 by [12, Proposition 5.26], and are reflexive since they are
locally free on the restriction Eo ⊆ E of the Gorenstein locus of Y . Thus, since E
is Cohen–Macaulay, we have

Qi = i∗(OY (iE)⊗OE |Eo),(2.1)

where i is the induced map Eo ↪→ E.
The singular Riemann–Roch formula implies

χ(Qi) =
1
12
{2(3i2 − 3i+ 1)− 3(2i− 1)a+ a2}E3(2.2)

+
1
12
E · c2(Y ) +Ai −Ai−1,

Ai :=
∑
Q∈I

(
−ie

r2
Q − 1
12rQ

+
ie−1∑
j=1

jbQ(rQ − jbQ)
2rQ

)
.

On the other hand a relative vanishing theorem implies

Rjf∗OY (iE) = 0 (i ≤ a, j ≥ 1).(2.3)

We summarise the formulae in [7, Section 4] obtained from the above equalities:
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Proposition 2.4. (i) rE3 ∈ Z>0.
(ii) d(i) = χ(Qi) for i ≤ a.
(iii) If f is of type IIb or III and we set r1 = 1, r2 = r if f is of type III, then

d(−i) = 1 +
⌊ i
r1

⌋
(0 ≤ i < min{r2, a}).

(iv) Set Bi :=
∑
Q∈I

ivQ(rQ − ivQ)
2rQ

. Then

χ(Q−i)− χ(Qi+1) =
(
i+

1
2

)
aE3 +Bi+1 −Bi.

Remark 2.5. The values of d(−i) = χ(Q−i) below are used later:

(i) (type IIa) By direct calculation using (2.2), we obtain d(−1) = 1 and
d(−2) ≥ 2 if a = 2 or (a, r) = (4, 5).

(ii) (types IIb and III) d(−i) = 1 + b ir1 c for 1 ≤ i < min{r2, a} by Proposition
2.4(iii), and d(−a) = 2 + b ar1 c if a < r2 by Lemma 2.6 and the proofs of
[7, Proposition 4.4.3] and the latter part of [7, Theorem 4.5].

Lemma 2.6. Qa+1 = ωE and h0(ωE) = h1(ωE) = 0, h2(ωE) = 1.

Proof. Let Eo on E be the restriction of the Gorenstein locus on Y , and i : Eo ↪→ E
the induced map. ωE = i∗ωEo since ωE is S2. Thus Qa+1 = ωE by Qa+1|Eo = ωEo .
H i(ωE) is the dual of Ext2−i

E (ωE , ωE). Thus h0(ωE) = h1(ωE) = 0 since E is
Cohen–Macaulay, and h2(ωE) = dim Hom(ωE , ωE). The map Hom(ωE , ωE) →
Hom(ωEo , ωEo) is injective since ωE is S2, and dim Hom(ωEo , ωEo) = h0(OEo) = 1.
Hence h2(ωE) = 1 by Hom(ωE , ωE) 6= 0. �

Let P ∈ HX be a general hyperplane section onX , andH its birational transform
on Y . Set f∗HX = H + bE. Then b is the largest integer for which f∗OY (−bE) =
mP . Let Y o be the Gorenstein locus of Y . By the adjunction formula, we have

ωH |Y o∩H = f∗ωHX ⊗OY ((a− b)E)|Y o∩H .

a ≥ b because HX is canonical. Moreover, if a = b, then H is normal and gives a
Du Val section in the anti-canonical system of Y . Combining it with [7, Theorem
4.5], we obtain the following theorem:

Theorem 2.7. If f is of type O or I, then the birational transform H of a general
hyperplane section HX on X gives a Du Val section in the anti-canonical system
of Y .

We investigate the scheme H ∩ E in the remainder of this section. We use the
following commutative diagrams repeatedly:

OY (iE)⊗OY (−E) → OY (iE) → OY (iE)⊗OE → 0
↓ ‖ ↓

0 → OY ((i− 1)E) → OY (iE) → Qi → 0,
↓
0
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0
↑

OY (iE)⊗ IH∩E⊂E → OY (iE)⊗OE → OY (iE)⊗OH∩E → 0
↑ ‖ ‖

OY (iE)⊗OY (−H)⊗OE → OY (iE)⊗OE → OY (iE)⊗OH∩E → 0
↓ ↓ ↓

0→ Qi+b → Qi → Ri → 0,
↓ ↓
0 0

where b is defined as above. Chasing these diagrams, we have the following equalities
by (2.3) and Lemma 2.6:

Lemma 2.8. (i) hj(OY (iE)⊗OE) = 0 for i ≤ a, j ≥ 1, and
h1(OY ((a+ 1)E)⊗OE) = 0, h2(OY ((a+ 1)E)⊗OE) = 1.

(ii) If f is not of type I, then
h1(OY (iE)⊗OH∩E) = 0 for i ≤ a− 1, and h1(OY (aE)⊗OH∩E) = 1.

Remark 2.9. h0(OH∩E) = 1 and h1(OH∩E) = 0 in any case, even if f is of type I
by Theorem 2.7. In particular, H ∩E has no embedded points and (H ∩E)red is a
union of P1.

The main ingredient we study is an irreducible reduced subscheme C ∼= P1 ⊆
H ∩ E. Here we introduce a normal form of Q ∈ C ⊂ Y at each non-Gorenstein
point Q of Y through which C passes, following [17, Lemma 2.7]. Let rQ be the
local index of Q ∈ Y . Take the index-one cover π : (Y ] 3 Q]) → (Y 3 Q) and set
C] := (C ×Y Y ])red. We have an identification in Theorem 1.3:

Q] ∈ Y ] ∼= o ∈ (φ = 0) ⊂ C4
x1x2x3x4

.

Let sQ be the number of the irreducible components of C], and Q† ∈ C† the
normalisation of one of the irreducible components of C]. Let t ∈ OC,Q and tsQ/rQ ∈
OC†,Q† be uniformising parameters of C and C†. Let ai be the minimal number
such that there exists a semi-invariant function with weight wtxi whose image in
OC†,Q† has order ai/rQ with respect to t. Note that

(a1, a2, a3, a4) ∈ sQZ(wt x1,wtx2,wtx3,wtx4) ⊆ (Z/(rQ))4.(2.4)

Then we can take an identification in Theorem 1.3 such that xi|C† = tai/rQ for
i = 1, 2, 3, and x4|C† = ta4/rQ if Q] ∈ Y ] is singular.

We show how to compute the images of some natural maps of sheaves defined
on a germ Q ∈ C ⊂ Y using the above data a1, a2, a3, a4. For n ∈ Z/(rQ), write
wCQ(n) for the smallest non-negative integer such that (wCQ(n), n) ∈ Z × Z/(rQ) is
contained in the semi-group

Z≥0(a1,wtx1) + Z≥0(a2,wtx2) + Z≥0(a3,wtx3) + Z≥0(a4,wtx4),(2.5)

or Z≥0(a1,wtx1) + Z≥0(a2,wtx2) + Z≥0(a3,wtx3) if Y ] is smooth.

Note that wCQ(0) = 0, and that (rQ, 0) is contained in the above semi-group since
C is smooth. Take a reflexive sheaf L on Y which is isomorphic to the ideal sheaf
defined by x1 = 0 outside Q. We note that L[⊗vQ] ∼= OY (E) and L[⊗bQ] ∼= OY (KY )
on the germ at Q, where L[⊗i] denotes the double dual of L⊗i. Then for any integers
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j1, . . . , jk with
∑

1≤i≤k ji = 0,

Im[L[⊗j1] ⊗ · · · ⊗ L[⊗jk] ⊗OC → OC ] = (mQ⊂C)
∑

1≤i≤k w
C
Q(−ji)/rQ ,(2.6)

where mQ⊂C is the ideal sheaf of Q in C.
We also need to treat the sheaves IC/I(2)

C as in [17, Section 2]. For any C ∼= P1 ⊂
H ∩ E, its ideal sheaf as the subscheme in Y is denoted by IC , and its symbolic
2-power by I(2)

C . Let C(2) ⊂ Y be the closed subscheme defined by I(2)
C . Then

C(2) ⊆ 2H ∩ 2E. H1(O2H∩2E) = 0 unless f is of type O or I, as in Lemma 2.8,
whence H1(OC(2)) = 0. By the exact sequence

0→ IC/I(2)
C → OC(2) → OC → 0,

we obtain that H1(IC/I(2)
C ) = 0 unless f is of type O or I. On the other hand,

consider the natural map∧
2 IC/I(2)

C ⊗OC(KC)→ [OY (KY )]C ,(2.7)

where [L]C denotes the torsion-free part of L⊗OC . This map has cokernel of length
2 + deg[OY (KY )]C − deg

∧2 IC/I(2)
C . Therefore we obtain the next result:

Lemma 2.10. The map (2.7) has cokernel of length ≤ 4 + deg[OY (KY )]C unless
f is of type O or I.

The next lemma is obtained by following [17, Corollary 2.15] almost faithfully.
Remark that (2, 2) ∈ Z × Z/(4) is contained in the semi-group (2.5) when Q is of
exceptional type (ii) in Theorem 1.3 since C is smooth at Q.

Lemma 2.11 ([17, Corollary 2.15]). Let Q ∈ C ⊂ Y be a singular point of Y .
Then the map (2.7) is not surjective at Q.

The following lemma shows how to compute of the length of the cokernel of the
map (2.7) in the simplest case:

Lemma 2.12. Let Q ∈ Y be a terminal quotient singularity C3
x1x2x3

/ 1
r (1,−1, b),

Q ∈ C ⊂ Y a smooth curve, and t a uniformising parameter with (x1, x2, x3)|C =
(tc/r, t1−c/r, 0) for some 0 < c < r. Then the map (2.7) has cokernel of length
min{c, r − c}.
Proof. First we give an explicit description of this map using local coordinates. The
map OY (KY ) ⊗ OC → [OY (KY )]C ∼= OC can be locally given, but not naturally,
by the map

OY (KY )⊗OC → OC ,(2.8)

f(x1, x2, x3)dx1 ∧ dx2 ∧ dx3 7→
f(tc/r, t1−c/r, 0)

tw
C
Q(−b)/r .

On the other hand OC(KC) is generated by d(x1x2). Hence our map has cokernel
of length equal to that of the composition of the map

IC/I(2)
C × IC/I

(2)
C → OY (KY )⊗OC ,

f1 × f2 7→ df1 ∧ df2 ∧ d(x1x2)

and the map (2.8).
It is easy to see IC/I(2)

C is generated by functions of the form g−b(x1, x2) · x3

and gc(x1, x2) · (xr−c1 −xc2) where g−b and gc are semi-invariant functions of weights
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−b, respectively c. Therefore we have only to consider the images of g−bdx3 ∧
d(gc · (xr−c1 − xc2)) ∧ d(x1x2) by the map (2.8). It suffices to consider those for
gc = xc1 and xr−c2 . We have

g−bdx3 ∧ d(gc · (xr−c1 − xc2)) ∧ d(x1x2) =

{
g−b · rxr1dx1 ∧ dx2 ∧ dx3 (gc = xc1),
g−b · rxr2dx1 ∧ dx2 ∧ dx3 (gc = xr−c2 ).

Since we can choose g−b so that g−b(tc/r, t1−c/r) = tw
C
Q(−b)/r, our length is the

minimum of the orders of xr1 and xr2 with (x1, x2) = (tc/r, t1−c/r) with respect to t,
which is min{c, r − c}. �

We need to compute the length in the more complicated case below. Let Q ∈
Y be a terminal quotient singularity C3

x1x2x3
/ 1
r (1,−1, b), Q ∈ C ⊂ Y a smooth

curve, and t a uniformising parameter with (x1, x2, x3)|C = (ta1/r, ta2/r, ta3/r).
We can take an invariant monomial g(x1, x2, x3) so that g(ta1/r, ta2/r, ta3/r) = t.
Then IC/I(2)

C is generated by functions of the form xs11 x
s2
2 x

s3
3 − xt11 x

t2
2 x

t3
3 with

(s1, s2, s3) 6= (t1, t2, t3) such that s1 − s2 + bs3 ≡ t1 − t2 + bt3 ≡ 0 modulo r and
a1s1 + a2s2 + a3s3 = a1t1 + a2t2 + a3t3. Our length is the minimum of the orders
of the images of d(xs11 x

s2
2 x

s3
3 − xt11 xt22 xt33 )∧ d(xs̄11 x

s̄2
2 x

s̄3
3 − xt̄11 xt̄22 xt̄33 )∧ dg under the

map

OY (KY )⊗OC → OC ,

f(x1, x2, x3)dx1 ∧ dx2 ∧ dx3 7→
f(ta1/r, ta2/r, ta3/r)

tw
C
Q(−b)/r ,

where xs11 x
s2
2 x

s3
3 − xt11 xt22 xt33 and xs̄11 x

s̄2
2 x

s̄3
3 − xt̄11 xt̄22 xt̄33 satisfy the conditions men-

tioned above. The order for fixed xs11 x
s2
2 x

s3
3 − xt11 xt22 xt33 and xs̄11 x

s̄2
2 x

s̄3
3 − xt̄11 xt̄22 xt̄33

is +∞ or
1
r
· {(a1s1 + a2s2 + a3s3) + (a1s̄1 + a2s̄2 + a3s̄3) + r − (a1 + a2 + a3 + wCQ(−b))}.

In particular, when we can take g = x1x2, it is +∞ or

1
r
· {(a1s1 + a2s2 + a3s3) + (a1s̄1 + a2s̄2 + a3s̄3)− (a3 + wCQ(−b))}.

3. Local analysis at a non-Gorenstein point

In this section we analyse the structure of C ∼= P1 ⊆ H∩E under the assumption
that f is of type II or III, focusing on the germ at a non-Gorenstein point. We
can see the theorems in this section straightforwardly when P is a smooth point
because of the explicit description [7]. Hence we here impose an extra assumption,
that is, P is a singular point. We have (H ·C) ≤ (H · [H ∩E]) = E3. By Theorem
1.4, Proposition 2.4(i) and Remarks 2.1 and 2.9, the configuration of the 1-cycle
[H ∩ E] =

∑
[Ci] is as follows:

Description 3.1. (i) (type IIa) a = 2 or 4 and Y has one non-Gorenstein
point Q, through which any Ci passes.
(a) a = 2 and H ∩ E ∼= P1 scheme-theoretically.
(b) a = 2 and [H ∩ E] = [P1] + [P1] is reducible or non-reduced.
(c) a = 4 and H ∩ E ∼= P1 scheme-theoretically.
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(ii) (type IIb∨) J = {(r, 1), (r, 1)} or {(2, 1), (4, 1)} and a = 2, respectively 3.
Y has one non-Gorenstein point Q. H ∩E ∼= P1 scheme-theoretically and
passes through Q.

(iii) (type IIb∨∨) a ≤ (r1 + r2)/2 and Y has two non-Gorenstein points Q1

and Q2 of indices r1 and r2. Exactly one of the irreducible components of
(H∩E)red passes through both Q1 and Q2, and all the others pass through
only Q2.

(iv) (type III) a ≤ (1 + r)/2 and Y has one non-Gorenstein point Q, through
which any Ci passes.

Let sC(i) be the integer such that [OY (iE)]C ∼= OP1(sC(i)). The following is
easy to see by Lemmata 2.8 and 3.3 and Remark 2.1:

Lemma 3.2. (i) Assume that C comes from type IIa. Then
(a) sC(1) = · · · = sC(a− 1) = −1.
(b) sC(−i) ≥ −1 for i ≥ 1.
(c) sC(a) = −2 in Description 3.1(ia), (ic), and

sC(a) = −2 or −1 in Description 3.1(ib).
(ii) Assume that C comes from type IIb∨. Then

(a) sC(1) = · · · = sC(a− 1) = −1. sC(a) = −2.
(b) sC(−i) ≥ −1 for i ≥ 1.

(iii) Assume that C comes from type IIb∨∨ with Q1, Q2 ∈ C. Then
(a) sC(1) = · · · = sC(a− 1) = −1.
(b) sC(−i) = −1 for 1 ≤ i ≤ a− 1, r1 - i.
(c) sC(−r1i) = 0 or −1 for 1 ≤ r1i ≤ a− 1.
(d) (sC(a), sC(−a)) = (−2, 0), (−2,−1) or (−1,−1).

(iv) Assume that C comes from type III. Then
(a) sC(1) = · · · = sC(a− 1) = −1.
(b) sC(−1) = · · · = sC(−(a− 1)) = 0.
(c) (sC(a), sC(−a)) = (−2, 1), (−2, 0) or (−1, 0).

Proof. For instance, we consider the case (iv). sC(i) < 0 for i ≥ 1 by the existence of
the natural map OY (iE)⊗r ⊗OC → OY (irE)⊗OC , so sC(1) = · · · = sC(a− 1) =
−1, sC(a) = −2 or −1 by Lemma 2.8. On the other hand, Lemma 3.3 with
L = OY (E) implies that sC(−1) = 0, so sC(−i) ≥ 0 for i ≥ 1 by the existence
of the natural map OY (−E)⊗i ⊗ OC → OY (−iE) ⊗ OC . Hence sC(−1) = · · · =
sC(−(a − 1)) = 0 and (sC(a), sC(−a)) = (−2, 1), (−2, 0) or (−1, 0), because the
map OY (−iE)⊗OY (iE)⊗OC → OC is not surjective for 1 ≤ i < r and a < r by
Remark 2.1. �

Lemma 3.3. Let Q ∈ Y be a terminal quotient singularity C3
x1x2x3

/ 1
r (1,−1, b), and

L a reflexive sheaf on Y which is isomorphic to the ideal sheaf defined by x1 = 0
outside Q. Then the image of the natural map L ⊗ L[−1] → OY is the ideal sheaf
of Q in Y .

Proof. It is enough to show that any invariant monomial 6= 1 of x1, x2, x3 decom-
poses into two semi-invariant monomials with weights 1 and −1, but it is trivial
since b is co-prime to r. �

The following lemma stores more information on sC :
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Lemma 3.4. Assume that f is not of type O or I, and take a curve C ∼= P1 ⊆ H∩E.
Let i be a positive integer, and T , T ′ surfaces on Y defined by general elements in
OY (−iE).

(i) Assume that χ(Q−i) ≥ 2. Then (T ∩ E)red has an irreducible component
which properly intersects (T ′ ∩ E)red.

(ii) Assume that χ(Q−j) = 1 for 1 ≤ j < i and χ(Q−i) ≥ 2. If C = H ∩ E
scheme-theoretically, then (T ∩ E)red properly intersects (T ′ ∩ E)red and
C. Moreover, sC(−j) = −1 for 1 ≤ j < i and sC(−i) ≥ 0.

Proof. (i) By (2.3), we have a surjective map f∗OY (−iE) � H0(Q−i). Write Eo

for the restriction of the Gorenstein locus of Y to E. Take a resolution Ê of E
and let Êo be the pre-image of Eo. Note that H0(Q−i|Eo) = H0(Q−i) by (2.1).
Consider a linear system L on Ê, not necessarily complete, whose restriction to
Êo is H0(Q−i|Eo). h0(Q−i) = χ(Q−i) ≥ 2 means that L moves, and its general
member has an irreducible component which does not appear in the union of the
support of the fixed locus of L and the pre-image of the non-normal locus of E.
The element in H0(Q−i) corresponding to this member gives the desired section T .

(ii) By the commutative diagrams in Section 2 and Lemma 2.8(i), we have sur-
jective maps

f∗OY (−jE)� H0(Q−j)� H0(R−j)� H0([OY (−jE)]C) (1 ≤ j ≤ i).
Remark that E is smooth at the generic point of C because C = H ∩ E scheme-
theoretically. h0(Q−j) = χ(Q−j) = 1 for 1 ≤ j < i and a non-zero element in
H0(Q−j) corresponds to, at the generic point of C, the Cartier divisor defined by
jH . Hence the map H0(Q−j) � H0([OY (−jE)]C) is a zero map and we obtain
sC(−j) = −1 by Lemma 2.8(ii). On the other hand, the linear system L constructed
from H0(Q−i) as in the proof of (i) moves. Because h0(Q−j) = 1 for 1 ≤ j < i
and E is smooth at the generic point of C, its general member does not have the
birational transform of C as its component. Thus we have the desired section and
the map H0(Q−i)� H0([OY (−iE)]C) is a non-zero map, whence sC(−i) ≥ 0. �

First we treat type IIa.

Theorem 3.5. Assume that f is of type IIa. Let Q ∈ C ∼= P1 ⊆ H ∩ E be the
non-Gorenstein point with an irreducible component of H ∩ E as in Description
3.1(i). Take a normal form of Q ∈ C ⊂ Y as in Section 2.

(i) The case (ia) in Description 3.1 does not happen.
(ii) In the case (ib) in Description 3.1, we have sC(−2) = 0 and (a1, a2, a3) =

((r+ 1)/2, (r− 1)/2, 2). In particular, we may choose semi-invariant local
coordinates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, 4) of the index-
one cover Q] ∈ Y ] so that (x1, x2, x3)|C† = (t(r+1)/2r, 0, t2/r) when r ≡ 1
modulo 4, and (0, t(r−1)/2r, t2/r) when r ≡ 3 modulo 4.

(iii) In the case (ic) in Description 3.1, we have r = 5, sC(−4) = 0 and
(a1, a2, a3) = (3, 2, 4). In particular, we may choose semi-invariant local
coordinates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, 3) of the index-
one cover Q] ∈ Y ] so that (x1, x2, x3)|C† = (t3/5, t2/5, 0).

Proof. (i). Compute the image of the map

OY (E)⊗r ⊗OY (−rE) ⊗OC → OC
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by (2.6). It is (mQ⊂C)w
C
Q(−2). On the other hand, this image equals that of

[OY (E)]⊗rC ⊗ [OY (−rE)]C → OC ,

whence rsC(1) − r(E · C) = −wCQ(−2). By sC(1) = −1 in Lemma 3.2(i) and
(H · C) = E3 = 2/r in Theorem 1.4, we have wCQ(−2) = r − 2. Hence we can
write (a1, a2, a3) = (1 + rm1, r − 1 + rm2, 4 + rm3) with m1,m2,m3 ∈ Z≥0 by
(2.4). We see that m1 = 0 easily since there exists an invariant monomial of
x1, x2, x3 whose restriction to C is t. Thus (a1, a2, a3) = (1, r−1, 4) and wCQ(−4) =
r − 4. Consider another map OY (2E)⊗r ⊗ OY (−2rE) ⊗ OC → OC . Then we
have rsC(2)− 2r(E · C) = −wCQ(−4), whence sC(2) = −1 by wCQ(−4) = r − 4 and
(H · C) = 2/r. But this contradicts Lemma 3.2(i).

(ii) By the map OY (E)⊗r⊗OY (−rE)⊗OC → OC , we have rsC(1)− r(E ·C) =
−wCQ(−2). Hence wCQ(−2) = r − 1 by Lemma 3.2(i) and (H · C) = E3/2 = 1/r in
Theorem 1.4, and we can write (a1, a2, a3) = ((r + 1)/2 + rm1, (r − 1)/2 + rm2,
2 + rm3) with m1,m2,m3 ∈ Z≥0 by (2.4). Because there exists an invariant mono-
mial of x1, x2, x3 whose restriction to C is t, one of the following holds:

(i) (r, 0) ∈ Z>0(a1, 1)+Z>0(a3, 4) or ∈ Z>0(a2,−1)+Z>0(a3, 4) in Z×Z/(r).
(ii) r = a1 + a2.

If (i) holds, (a1, a2, a3) = ((r + 1)/2, (r − 1)/2, 2) and wCQ(4) = 4. By the map
OY (−2E)⊗r ⊗ OY (2rE) ⊗ OC → OC , we have rsC(−2) + 2r(E · C) = −wCQ(4),
whence sC(−2) = 0. Now we assume (ii). Then (a1, a2, a3) = ((r + 1)/2,
(r − 1)/2, 2 + rm3) with some m3. We have nothing to do if m3 = 0, so we
also assume that m3 > 0 and r ≥ 7. Note that m3 ≤ 2 by 4a1 = 2 + 2r.

Suppose that m3 = 2. We may choose semi-invariant local coordinates x1, x2, x3

with weights wt(x1, x2, x3) = (1,−1, 4) of Q] ∈ Y ] so that (x1, x2, x3)|C† =
(t(r+1)/2r, t(r−1)/2r, 0). We see that wCQ(−4) = 4wCQ(−1) = 2r−2 by r ≥ 7. Consid-
ering the map OY (2E)⊗r⊗OY (−2rE)⊗OC → OC , we obtain rsC(2)−2r(E ·C) =
−wCQ(−4), whence sC(2) = −2. By Lemma 2.10, the map (2.7) has cokernel of
length ≤ 2 at Q. Thus (r − 1)/2 ≤ 2 by Lemma 2.12, which contradicts r ≥ 7.

It remains to exclude the case where (a1, a2, a3) = ((r + 1)/2, (r − 1)/2,
r + 2) with r ≥ 7. But if r = 7, then (a1, a2, a3) = (4, 3, 9) and we may choose
the coordinates so that (x1, x2, x3)|C† = (t4/7, t3/7, 0). Then sC(2) = −2 and it
contradicts Lemmata 2.10 and 2.12. Therefore we may assume that r ≥ 9. By the
map OY (−3E)⊗r⊗OY (3rE)⊗OC → OC , we have rsC(−3)+3r(E ·C) = −wCQ(6),
whence wCQ(6) = 3 or r + 3 by sC(−3) ≥ −1. From (a1, a2, a3) = ((r + 1)/2,
(r− 1)/2, r+ 2) with r ≥ 9, r has to be 9. When r = 9, (a1, a2, a3) = (5, 4, 11) and
wCQ(−4) = 16. By the map OY (2E)⊗r⊗OY (−18E)⊗OC → OC , we have 9sC(2)−
18(E ·C) = −wCQ(−4), whence sC(2) = −2. We consider xs11 x

s2
2 x

s3
3 −xt11 xt22 xt33 with

(s1, s2, s3) 6= (t1, t2, t3) such that s1 − s2 + 4s3 ≡ t1 − t2 + 4t3 ≡ 0 modulo 9 and
5s1 + 4s2 + 11s3 = 5t1 + 4t2 + 11t3. We can easily see that (5s1 + 4s2 + 11s3)/9 ≥ 3
for any such xs11 x

s2
2 x

s3
3 − xt11 xt22 xt33 . Hence by the last paragraph in Section 2, the

map (2.7) has cokernel of length ≥ 3 + 3 − (a3 + wCQ(−4))/9 = 3. It contradicts
Lemma 2.10 and sC(2) = −2.

(iii) Consider the maps OY (iE)⊗r ⊗ OY (−irE) ⊗ OC → OC for i = 1, 2, 3, 4.
Then we have rsC(i)−ir(E ·C) = −wCQ(−2i), whence wCQ(−2i) = r−i for i = 1, 2, 3
and wCQ(−8) = 2r − 4 by Lemma 3.2(ic). We can write (a1, a2, a3) = ((r + 1)/2 +
rm1, (r − 1)/2 + rm2, 4 + rm3) with m1,m2,m3 ∈ Z≥0 by (2.4). If r = 5, then
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a1 = wCQ(−4) = 3 and a2 = wCQ(−6) = 2 and we have the desired description. In
this case, we have wCQ(8) = 4. By the map OY (−4E)⊗r ⊗OY (4rE) ⊗OC → OC ,
we obtain rsC(−4) + 4r(E · C) = −wCQ(8), whence sC(−4) = 0.

We derive a contradiction supposing that r ≥ 7. Since wCQ(−4) = r − 2, we can
decompose r − 2 into (r + 1)/2 + 4c or (r − 1)/2 + 4c for some c > 0. Then r ≡ 5,
respectively 3 (mod 8). Since wCQ(−6) = r − 3, similarly we can decompose r − 3
into (r+1)/2+4c, (r−1)/2+4c or 4c. Then r ≡ 7 (mod 8), r ≡ 5 (mod 8) or r ≡ 3
(mod 4) respectively. Hence r ≡ 3 or 5 (mod 8) with m2 = m3 = 0, and r ≥ 11.
(a1, a2, a3) = ((r + 1)/2, (r − 1)/2, 4), since (r, 0) is contained in the semi-group
(2.5). We consider xs11 x

s2
2 x

s3
3 − xt11 x

t2
2 x

t3
3 with (s1, s2, s3) 6= (t1, t2, t3) such that

s1−s2 +8s3 ≡ t1−t2 +8t3 ≡ 0 modulo r and a1s1 +a2s2 +a3s3 = a1t1 +a2t2 +a3t3.
Then (a1s1 + a2s2 + a3s3)/r = 2 only if each of xs11 x

s2
2 x

s3
3 and xt11 x

t2
2 x

t3
3 is x2

1x
2
2,

x1x
(3r−1)/8
3 with r ≡ 3 (mod 8), or x2x

(3r+1)/8
3 with r ≡ 5 (mod 8), and otherwise

(a1s1 + a2s2 + a3s3)/r ≥ 3. Hence by the last paragraph in Section 2, the map
(2.7) has cokernel of length ≥ 2 + 3− (a3 +wCQ(−8))/r = 3. It contradicts Lemma
2.10 and sC(4) = −2 in Lemma 3.2(i). �

It is easy to see the local structure in type IIb∨.

Theorem 3.6. Assume that f is of type IIb∨. Let Q ∈ C = H ∩ E ∼= P1 be the
non-Gorenstein point as in Description 3.1(ii). Take a normal form of Q ∈ C ⊂ Y
as in Section 2.

(i) If J = {(r, 1), (r, 1)}, then a = 2, sC(−2) = 0 and (a1, a2, a3, a4) = (r +
1, r−1, 2, r). In particular, we may choose semi-invariant local coordinates
x1, x2, x3, x4 with weights wt(x1, x2, x3, x4) = (1,−1, 2, 0) of the index-one
cover Q] ∈ Y ] so that (x1, x2, x3, x4)|C† = (0, 0, t2/r, t).

(ii) If J = {(2, 1), (4, 1)}, then a = 3, sC(−3) = 0 and (a1, a2, a3, a4) =
(5, 3, 3, 2). In particular, we may choose semi-invariant local coordinates
x1, x2, x3, x4 with weights wt(x1, x2, x3, x4) = (1, 3, 3, 2) of the index-one
cover Q] ∈ Y ] so that (x1, x2, x3, x4)|C† = (0, 0, t3/4, t1/2).

Proof. (i) First applying Lemma 3.4(ii) with i = 2 by Remark 2.5(ii), we have
sC(−1) = −1 and sC(−2) ≥ 0. By the map OY (−2E)⊗OY (E)⊗OC → OY (−E)⊗
OC , we have sC(−2) + sC(1) ≤ sC(−1), whence sC(−2) = 0. By the map
OY (−E)⊗r ⊗ OY (rE) ⊗ OC → OC , we have rsC(−1) + r(E · C) = −wCQ(1).
By sC(−1) = −1 and E3 = 1/r, we obtain wCQ(1) = 1 + r. Thus we can write
(a1, a2, a3, a4) = (r+1+rm1, r−1+rm2, 2+rm3, r) with m1,m2,m3 ∈ Z≥0 by (2.4)
and the fact that (r, 0) is contained in the semi-group (2.5). Consider another map
OY (−2E)⊗r⊗OY (2rE)⊗OC → OC . Then we have rsC(−2)+2r(E ·C) = −wCQ(2).
Therefore wCQ(2) = 2 from sC(−2) = 0, whence (a1, a2, a3, a4) = (r + 1, r − 1, 2, r).

(ii) Applying Lemma 3.4(ii) with large i by Remark 2.5(ii), we obtain sC(−1) =
−1. By the map OY (−E)⊗4⊗OY (4E)⊗OC → OC , we have 4sC(−1) + 4(E ·C) =
−wCQ(1). By sC(−1) = −1 and E3 = 1/4, we have wCQ(1) = 5. Hence we can
write (a1, a2, a3, a4) = (5 + 4m1, 3 + 4m2, 3 + 4m3, 2) with m1,m2,m3 ∈ Z≥0.
Consider another map OY (E)⊗4⊗OY (−4E)⊗OC → OC . Then we have 4sC(1)−
4(E ·C) = −wCQ(−1). Thus wCQ(−1) = 3 by Lemma 3.2(ii), whence (a1, a2, a3, a4) =
(5, 3, 3, 2). Furthermore, wCQ(3) = 3. By the map OY (−3E)⊗4⊗OY (12E)⊗OC →
OC , we have 4sC(−3) + 12(E · C) = −wCQ(3), whence sC(−3) = 0. �
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It is hardest to treat types IIb∨∨ and III.

Description 3.7. (i) If f is of type IIb∨∨, there exists the unique irreducible
component C ∼= P1 ⊆ H ∩E through Q1 and Q2. We do not consider any
other components from now on. Take normal forms of Qi ∈ C ⊂ Y for
i = 1, 2 as in Section 2, using local coordinates xi1, xi2, xi3 and numbers
ai1, ai2, ai3 respectively.

(ii) If f is of type III, we take any irreducible component C ∼= P1 ⊆ H ∩ E
and a normal form of Q ∈ C ⊂ Y as in Section 2.

Lemma 3.8. Assume that sC(−a) = 0 in Description 3.7(i), or sC(−a) = 1
in Description 3.7(ii). Then C = H ∩ E scheme-theoretically and sC(a) = −2.
Moreover, for any non-Gorenstein point Q ∈ Y with Q ∈ C ∼= P1 = H ∩ E
in Description 3.7, we may choose semi-invariant local coordinates x1, x2, x3 with
weights wt(x1, x2, x3) = (1,−1, a) of the index-one cover Q] ∈ Y ] so that

Q] ∈ C] ⊂ Y ] ∼= o ∈ (x3-axis) ⊂ C3
x1x2x3

.

Proof. By the map OY (−aE)⊗r ⊗OY (arE) ⊗OC → OC , we have

rsC(−a) + ar(E · C) =

{
−rwCQ1

(a)/r1 − rwCQ2
(a)/r2 (Description 3.7(i)),

−wCQ(a) (Description 3.7(ii)).

Therefore by Theorem 1.4,

wCQ1
(a)

r1
+
wCQ2

(a)
r2

= a(H · C) ≤ 1
r1

+
1
r2

(Description 3.7(i)),

wCQ(a)
r

= a(H · C)− 1 ≤ 1
r

(Description 3.7(ii)).

Hence C = H ∩ E by Remark 2.9, and wCQ(a) = 1 for any Q ∈ C in Description
3.7. Therefore we have the desired description. sC(a) = −2 follows from Lemma
3.2. �
Lemma 3.9. Assume that f is of type IIb∨∨ or III. Consider any non-Gorenstein
point Q ∈ Y with Q ∈ C ∼= P1 ⊆ H ∩ E given in Description 3.7. Then one of the
following holds :

(i) One of (a1, 1) and (a2,−1) is generated by the other and (a3, a) in Z ×
Z/(rQ). We may choose semi-invariant local coordinates x1, x2, x3 with
weight wt(x1, x2, x3) = (1,−1, a) of the index-one cover Q] ∈ Y ] so that
(x1, x2, x3)|C† = (0, tcQ/rQ , t1−acQ/rQ) or (tcQ/rQ , 0, tacQ/rQ) for some 0 <
cQ < rQ.

(ii) f is of type III, a = 2, r ≥ 5, sQ(2) = −2, and (a1, a2, a3) = (2, r−2, 4) or
(r − 2, 2, 2r − 4). In particular, we may choose semi-invariant local coor-
dinates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, 2) of the index-one
cover Q] ∈ Y ] so that (x1, x2, x3)|C† = (t2/r , t1−2/r, 0) or (t1−2/r, t2/r, 0).
(H · C) equals 2/r, respectively 1− 2/r.

Proof. Recall that there exists an invariant monomial in x1, x2, x3 whose restriction
to C is t. Thus one of the following holds:

(i) One of a1, a2, a3 is 1.
(ii) (rQ, 0) ∈ Z>0(a1, 1) + Z>0(a3, a), or ∈ Z>0(a2,−1) + Z>0(a3, a) in Z ×

Z/(rQ).
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(iii) rQ = a1 + a2.
If (i) or (ii) happens, one of (a1, 1) and (a2,−1) is generated by the other and
(a3, a). Thus, from now on we may assume that only (iii) of the above holds. By
permutation of xi, we may also assume that rQ ≥ 5. Then wCQ(i) + wCQ(−i) 6= rQ
for i = 2, 3, whence the image of the map [OY (−iE)]C ⊗ [OY (iE)]C → OC at Q
is properly contained in mQ⊂C for i = 2, 3 by (2.6). By Lemma 3.2, one of the
following occurs:

(i) a = 2, sC(2) = −2, and sC(−2) = −1 in Description 3.7(i) or sC(−2) = 0
in Description 3.7(ii).

(ii) Q = Q2, a = 3, r1 = 2, sC(3) = −2, and sC(−2) = sC(−3) = −1 in
Description 3.7(i).

Consider the case (i). wCQ(1)+wCQ(−1) = rQ and wCQ(2)+wCQ(−2) = 2rQ, whence
wCQ(2) = 2wCQ(1) and wCQ(−2) = 2wCQ(−1). We have (a1, a2, a3) = (c, rQ − c, 2c) by
setting wCQ(1) = c. Thus we may choose semi-invariant local coordinates x1, x2, x3

with weights wt(x1, x2, x3) = (1,−1, 2) of the index-one cover Q] ∈ Y ] so that
(x1, x2, x3)|C† = (tc/rQ , t1−c/rQ , 0). By sC(2) = −2 and Lemmata 2.10 and 2.11,
the map (2.7) has cokernel of length ≤ 1 in Description 3.7(i) and≤ 2 in Description
3.7(ii) at Q. Hence we have the result by Lemma 2.12 except the value of (H · C).
This value can be calculated from the equality rsC(−1) + r(E · C) = −wCQ(1)
obtained from the map OY (−E)⊗r ⊗OY (rE) ⊗OC → OC .

Consider the case (ii). wCQ(3) + wCQ(−3) = 2rQ. By sC(3) = −2 and Lemmata
2.10 and 2.11, the map (2.7) has cokernel of length ≤ 1 at Q. On the other hand,
consider xs11 x

s2
2 x

s3
3 −xt11 xt22 xt33 with (s1, s2, s3) 6= (t1, t2, t3) such that s1−s2 +3s3 ≡

t1 − t2 + 3t3 ≡ 0 modulo rQ and a1s1 + a2s2 + a3s3 = a1t1 + a2t2 + a3t3. Then
(a1s1 +a2s2 +a3s3)/rQ ≥ 2 for any such xs11 x

s2
2 x

s3
3 −xt11 xt22 xt33 , because x1x2 is the

only invariant monomial whose restriction to C† is t. Hence by the last paragraph
in Section 2, the map (2.7) has cokernel of length ≥ 2 + 2− (a3 +wCQ(−3))/rQ = 2,
which is a contradiction. �

We need more accurate description developing Lemma 3.9.

Lemma 3.10. Consider the case in Lemma 3.9(i).
(i) If f is of type IIb∨∨ in Description 3.7(i), we may choose the coordinates

so that the restriction to C† at one of Q1 and Q2 is of the form (0, tci/ri ,
t1−aci/ri) and that at the other is of the form (tci/ri , 0, taci/ri).

(ii) If f is of type III in Description 3.7(ii), we may choose the coordinates so
that the restriction to C† at Q is of the form (tc/r, 0, tac/r).

Proof. (i) If both of them are of the form (0, tci/ri , t1−aci/ri), the image of the
map OY (−aE) ⊗ OY (E) ⊗ OY ((a − 1)E) ⊗ OC → OC is m{Q1,Q2}⊂C , whence
sC(−a) + sC(1) + sC(a − 1) = −2. Thus sC(−a) = 0 by Lemma 3.2(iii), and the
statement follows from Lemma 3.8. On the other hand, if both are of the form
(tci/ri , 0, taci/ri), the image of the map OY (−aE) ⊗ OY (−E) ⊗ OY ((a + 1)E) ⊗
OC → OC is m{Q1,Q2}⊂C , whence sC(−a) + sC(−1) + sC(a + 1) = −2. Thus
sC(−a) = 0 by sC(a+ 1) ≤ −1 and Lemma 3.2(iii), and the statement follows from
Lemma 3.8.

(ii) If the restriction is of the form (0, tc/r, t1−ac/r), the image of the map
OY (−aE) ⊗ OY (E) ⊗ OY ((a − 1)E) ⊗ OC → OC is mQ⊂C , whence sC(−a) +
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sC(1) + sC(a − 1) = −1. Thus sC(−a) = 1 by Lemma 3.2(iv), and the statement
follows from Lemma 3.8. �

Lemma 3.11. (i) Assume that f is of type IIb∨∨ with sC(−a) = −1 in De-
scription 3.7(i). Then a < r1 < r2, a11 = wCQ1

(1) = 1, a22 = wCQ2
(−1) =

1, and (H · C) = 1/r1 − 1/r2. In particular, for each i we may choose
semi-invariant local coordinates xi1, xi2, xi3 with weights wt(xi1, xi2, xi3) =
(1,−1, a) of the index-one cover Qi] ∈ Y ] so that

Qi
] ∈ C] ⊂ Y ] ∼= o ∈ (xii-axis) ⊂ C3

xi1xi2xi3 .

(ii) Assume that f is of type III with sC(−a) = 0 in Description 3.7(ii), and
that Q ∈ C has the local description in Lemma 3.9(i). Then a1 = wCQ1

(1) =
1 and (H · C) = 1/r. In particular, we may choose semi-invariant local
coordinates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, a) of the index-
one cover Q] ∈ Y ] so that

Q] ∈ C] ⊂ Y ] ∼= o ∈ (x1-axis) ⊂ C3
x1x2x3

.

Proof. (i) First of all, by Lemma 3.10(i) we can choose (A,B) = (1, 2) or (2, 1)
so that the description at QA is of the form (tcA/rA , 0, tacA/rA) and that at QB is
of the form (0, tcB/rB , t1−acB/rB ). From the map OY (−E)⊗rArB ⊗ OY (rArBE) ⊗
OC → OC , we have rArBsC(−1) + rArB(E · C) = −rBwCQA(1) − rAwCQB (1). By
wCQA(1) = cA, wCQB (1) = rB − cB and sC(−1) = −1 in Lemma 3.2(iii), we obtain

1 + (H · C) =
cA
rA

+
rB − cB
rB

.(3.1)

On the other hand, from the map OY (−aE)⊗rArB ⊗OY (arArBE)⊗OC → OC we
have rArBsC(−a) + arArB(E · C) = −rBwCQA(a)− rAwCQB (a). By wCQA(a) = acA,
wCQB (a) = rB − acB and sC(−a) = −1, we obtain

1 + a(H · C) =
acA
rA

+
rB − acB

rB
.(3.2)

From the equalities (3.1) and (3.2), one of the inequalities cA < acA and cB > acB
holds. However, cB > acB cannot occur since (rB , 0) is contained in the semi-group
(2.5) for QB. Hence cA < acA.

We claim that cA = 1. Suppose that cA ≥ 2, and take the smallest integer m for
which cAm ≥ rA. wCQA(m) ≡ cAm − rA modulo rA and cAm − rA < aA1 < aA3.
Thus the map OY (−mE)⊗OY (mE) ⊗OC → OC at QA is properly contained in
mQA⊂C . In our situation the image of the map OY (aE)⊗OY (−aE)⊗OC → OC
is m{Q1,Q2}⊂C . Considering also Lemma 3.2(iii), we have one of the following:

(i) m > a.
(ii) r1 | m and m < a.

When (i) occurs, acA = acA. Then cA = 1 since (rA, 0) is contained in the semi-
group (2.5) for QA. When (ii) occurs, unless m = 2, the map OY (−(m − 1)E) ⊗
OY ((m − 1)E) ⊗OC → OC at QA is also properly contained in mQA⊂C , which is
a contradiction. The case where m = 2 in (ii) remains. In this case, r1 = 2 and
c1 = 1. Then we have sC(−a) = 0 as in the proof of Lemma 3.10, which contradicts
the assumption sC(−a) = −1.
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Now we have (A,B) = (1, 2) and r1 < r2 by substituting cA = 1 in (3.1). We
have

(H · C) =
1
r1
− c2
r2
,(3.3)

a(H · C) =
a

r1
− ac2

r2
.(3.4)

In particular ba/r1c = bac2/r2c. We claim that c2 = 1; then a < r1 by Remark 2.1
and (H ·C) = 1/r1−1/r2 by (3.3). This claim follows as in the proof of c1 = 1, once
we obtain c2 < r2 − ac2. But this inequality comes from the following equalities
obtained by (3.3) and respectively (3.4):

1− (H · C) =
r1 − 1
r1

+
c2
r2
,

1 + a(H · C) =
a

r1
+
r2 − ac2

r2
.

(ii) By Lemmata 3.9 and 3.10(ii), the description atQ is of the form (tc/r, 0, tac/r).
From the map OY (−E)⊗r ⊗OY (rE) ⊗OC → OC , we have rsC(−1) + r(E · C) =
−wCQ(1). By wCQ(1) = c and sC(−1) = 0 in Lemma 3.2(iv), we obtain (H ·C) = c/r.
On the other hand, from the map OY (−aE)⊗r ⊗OY (arE) ⊗OC → OC , we have
rsC(−a) + ar(E · C) = −wCQ(a). By wCQ(a) = ac and sC(−a) = 0, we have
a(H · C) = ac/r. Hence ac = ac and the statement follows since (r, 0) is contained
in the semi-group (2.5). �

The next lemma is an easy consequence by numerical argument.

Lemma 3.12. Assume that f is of type IIb∨∨. Then (H ∩ E)red is irreducible.

Proof. We may assume that sC(−a) = −1 by Lemma 3.8. Write [H∩E] = u[C]+[F ]
cycle-theoretically, where the support of [F ] does not pass throughQ1 in Description
3.1(iii). Then we can write (H · [H ∩ E]) = u(H · C) + v/r2. By (H · [H ∩ E]) =
E3 = a−1(1/r1 +1/r2) in Theorem 1.4 and (H ·C) = 1/r1−1/r2 in Lemma 3.11(i),
we obtain

au− 1
r1

=
au+ 1− av

r2
.

Since a ≥ 2 and r1 < r2 by Lemma 3.11(i), we have v = 0. �

We can take suitable surfaces by Lemma 3.4(i):

Description 3.13. (i) Assume that f is of type IIb∨∨. Then by Lemma
3.4(i) and Remark 2.5(ii), there exist surfaces S and S0 on Y defined by
elements in OY (−aE) for which (S ∩ E)red 6⊆ (H ∩ E)red ∪ (S0 ∩ E)red.
Let D be an irreducible reduced curve in S ∩E which intersects H and S0

properly. We can see that D ∼= P1 as in Lemma 2.8.
(ii) Assume that f is of type III. Then by Lemma 3.4(i) and Remark 2.5(ii),

we can take H and C ∼= P1 ⊆ H ∩ E so that C properly intersects the
birational transform H0 of a general hyperplane section on P ∈ X .

Lemma 3.14. Assume that f is of type IIb∨∨ with sC(−a) = −1, and take C ⊆
H ∩ E and D ⊆ S ∩ E as in Descriptions 3.7(i) and 3.13(i). Then we can write
[S∩E] = x[C]+[D] cycle-theoretically for some positive integer x, and D intersects
C exactly at one of Q1 and Q2. Let Qi with i = 1 or 2 be the one which D passes
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through. Then (H ·D) = 1/ri, and we may choose semi-invariant local coordinates
x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, a) of the index-one cover Qi] ∈ Y ]
so that

Qi
] ∈ D] ⊂ Y ] ∼= o ∈ (x1-axis) ⊂ C3

x1x2x3
.

Proof. Write [S ∩E] = x[C] + [D′] cycle-theoretically. We can write 1/r1 + 1/r2 =
(H · [S ∩ E]) = x(H · C) + y/r1 + z/r2. If y = z = 1, then [S ∩ E] = [D′] and
(S · C) ≥ 1/r1 + 1/r2 since S passes through Q1 and Q2. On the other hand,
(S · C) ≤ (S · [H ∩ E]) = 1/r1 + 1/r2 by Theorem 1.4. Hence C = H ∩ E and
sC(−a) ≥ 0 by Lemma 3.4(ii) with i = a, with Remark 2.5(ii) and Lemma 3.11(i).
It contradicts sC(−a) = −1.

Hence y = 0 or (y, z) = (1, 0). By (H · [S ∩ E]) = 1/r1 + 1/r2 and (H · C) =
1/r1 − 1/r2 in Lemma 3.11(i), we obtain

x− 1 + y

r1
=
x+ 1− z

r2
.

Because y = 0 or (y, z) = (1, 0), and r1 < r2 in Lemma 3.11(i), we have (y, z) =
(1, 0) or (0, 1). Therefore, provided r1 - r2, D′ = D and D intersects C only at Q1 or
Q2; then (H ·D) = 1/r1, respectively 1/r2. However, if r1 | r2 and (H ·D′) = 1/r1,
then setting (r1, r2) = (r, sr), by Lemma 3.12 we can write

au
(1
r
− 1
sr

)
=

1
r

+
1
sr
,

where [H ∩E] = u[C] for some u ≥ 2. By this equality and s > 1 in Lemma 3.11(i),
we have (s, au) = (2, 3) or (3, 2). But this contradicts a ≥ 2 and u ≥ 2.

Let Qi with i = 1 or 2 be the one which D passes through. From the map
OY (−E)⊗ri ⊗OY (riE)⊗OD → OD, we obtain risD(−1) + ri(E ·D) = −wDQi(1).
Hence wDQi (1) ≡ 1 modulo ri. Therefore wDQi(1) = 1, since (ri, 0) is contained in
the semi-group (2.5) for Qi ∈ D. Thus the desired description follows. �

The next theorem gives complete description in types IIb∨∨ and III:

Theorem 3.15. Assume that f is of type IIb∨∨ and III. Then there exist a surface
H and a curve C ⊆ H ∩ E in Description 3.7 which satisfy the assumption in
Lemma 3.8.

Proof. We first treat type IIb∨∨. Suppose that C does not satisfy the assumption
in Lemma 3.8, that is, suppose that sC(−a) = −1 by Lemma 3.2(iii). Then by
Description 3.13(i) and Lemma 3.14, there exist S and Qi ∈ D ∼= P1 for which
we may choose semi-invariant local coordinates x1, x2, x3 so that (x1, x2, x3)|D† =
(t1/ri , 0, 0). D intersects H properly.

Let H] be the pre-image of H on the index-one cover Q]i ∈ Y ]. Write h(x1) +
g1x2 + g2x3 for the defining function of H] at Q]i , where h(x1) is a semi-invariant
formal series of weight 1 and g1, g2 are semi-invariant formal series in x1, x2, x3.
The order of the function for H]|D† with respect to t equals (H · D) = 1/ri by
Lemma 3.14. It means that h(t1/ri) has order 1/ri with respect to t, whence
the monomial x1 appears in h with non-zero coefficient. Thus we may choose the
coordinates x1, x2, x3 so that H] is given by x1 = 0. If Qi = Q1, for the coordinates
x11, x12, x13 in Lemma 3.11(i) we can write x1 = cx11 +g(x11, x12, x13), where c 6= 0
and g is a semi-invariant formal series of weight 1 in which the monomial x11 does
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not appear. Thus x1|C† 6= 0 by (x11, x12, x13)|C† = (t1/r1 , 0, 0), which contradicts
C ⊂ H .

Therefore Qi = Q2. We consider a general S0 in Description 3.13(i). S0 ∩ E
also has a component D0

∼= P1 which has the same properties as D ⊂ S ∩ E
has, and we can choose new coordinates x1

′, x2
′, x3

′ and t′ for Q2 ∈ D0 ⊂ Y

so that (x1
′, x2

′, x3
′)|D†0 = (t′1/r2 , 0, 0). Since (S · D0) = a(H · D0) = a/r2 <

1 by Lemma 3.14 and Remark 2.1, S intersects D0 only at Q2. Let S] be the
pre-image of S on Y ], and g(x1, x2, x3) = h(x1

′, x2
′, x3

′) the defining function of
S] at Q]2. h(t′1/r2 , 0, 0), the function for S]|D†0 , has order (S · D0) = a/r2 with
respect to t, whence we can write h = (c′ + h1(x1

′)x′1
r2)x′1

a + h2(x1
′, x2

′, x3
′)x2

′ +
h3(x1

′, x2
′, x3

′)x3
′, where c′ 6= 0 and h1, h2, h3 are semi-invariant with weights

0, a + 1, 0. Thus we can write g = cxa1 + · · · for some c 6= 0, and we see that
g(t1/r2 , 0, 0) = 0 holds only if h3 is a unit, by considering weights and a < r1 < r2

in Description 3.13(i). Of course g(t1/r2 , 0, 0) = 0 by D ⊂ S, whence h3 is a unit
and S] is smooth at Q]2.

Hence we may choose the coordinates x21, x22, x23 in Lemma 3.11(i) so that
x21 = x1, which is the function for H], and so that x23 is the function for S]. In
particular the scheme S ∩H is irreducible and reduced at the generic point of C.
Write [H ∩ E] = u[C] by Lemma 3.12 and [S ∩ E] = x[C] + [D] by Lemma 3.14.
Then we have

ua
( 1
r1
− 1
r2

)
=

1
r1

+
1
r2
,

x
( 1
r1
− 1
r2

)
+

1
r2

=
1
r1

+
1
r2
.

Thus (ua− x)(r2 − r1) = r1 and we can write r1 = nr, r2 = (n+ 1)r. Note that

ua = 2n+ 1,(3.5)

x = n+ 1.(3.6)

On the other hand, let π : Ê → E be the normalisation of E and set Ĉ :=
(C ×E Ê)red. The coefficients of [C] in the 1-cycles [S ∩ E] and [aH ∩ E] are de-
termined by the lengths of the schemes π∗S ∩ Ĉ and π∗(aH) ∩ Ĉ at all the generic
points of Ĉ. From this point of view, we see that (S ∩ E) ∩ (aH ∩ E) contains the
1-cycle x[C] because of the general choice of S. Here (S ∩E)∩ (aH ∩E) ⊆ S ∩aH ,
and S ∩H is irreducible and reduced at the generic point of C. Hence x ≤ a, but
it contradicts (3.5), (3.6) and u ≥ 2.

Now we treat type III. We start with H , Q ∈ C and H0 in Description 3.13(ii).
Suppose that C does not satisfy the assumption in Lemma 3.8, that is, suppose
that sC(−a) = 0. Then by Lemmata 3.9 and 3.11(ii), we may choose coordinates
x1, x2, x3 so that (x1, x2, x3)|C† = (t1/r, 0, 0), (t2/r, t1−2/r, 0) or (t1−2/r, t2/r, 0).
Note that (H0 · E) = 1/r, 2/r, 1 − 2/r respectively in these cases. Thus H0 in-
tersects C only at Q. Let H]

0 be the pre-image of H0 on the index-one cover
Q] ∈ Y ], and g(x1, x2, x3) the defining function of H]

0 at Q]. Then g is semi-
invariant of weight 1 and g(t1/r, 0, 0), g(t2/r, t1−2/r, 0) and g(t1−2/r, t2/r, 0) have
order 1/r, 2/r, 1 − 2/r with respect to t. As in the former argument, we can
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see that the monomial x1 appears in the function for H]
0 with non-zero coef-

ficient in each of the cases. Hence we may choose semi-invariant local coordi-
nates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, a) of Q] ∈ Y ] so that H0

is given by x1 = 0. We take Q ∈ C0
∼= P1 ⊂ H0 ∩ E. If sC0(−a) 6= 1,

then sC0(−a) = 0 and we may choose new coordinates x1
′, x2

′, x3
′ and t′ so that

(x1
′, x2

′, x3
′)|C†0 = (t′1/r, 0, 0), (t′2/r, t′1−2/r

, 0) or (t′1−2/r
, t′

2/r
, 0). On the other

hand, we can write x1 = cx1
′+g(x1

′, x2
′, x3

′), where c 6= 0 and g is a semi-invariant
formal series of weight 1 in which the monomial x′1 does not appear. Thus x1|C†0 6= 0,
which contradicts C0 ⊂ H0. �

4. Existence of Du Val sections

In this section we prove Theorem 1.7, the general elephant theorem. It was
proved when f is of type O or I in Theorem 2.7, and is trivial in type IV. Thus
we keep the assumption that f is of type II or III. First we restate the results in
Section 3:

Description 4.1. (i) (type IIa; Theorem 3.5)
(a) a = 2 and [H∩E] = [P1]+[P1]; sC(−2) = 0 and (H ·C) = 1/r; Q ∈ C

is locally expressed by semi-invariant local coordinates x1, x2, x3 with
weights wt(x1, x2, x3) = (1,−1, 4) of the index-one cover Q] ∈ Y ]

as (x1, x2, x3)|C† = (t(r+1)/2r, 0, t2/r) when r ≡ 1 modulo 4, and
(0, t(r−1)/2r, t2/r) when r ≡ 3 modulo 4.

(b) r = 5, a = 4 and H ∩E = P1; sC(−4) = 0 and (H ·C) = 1/r; Q ∈ C
is locally expressed by semi-invariant local coordinates x1, x2, x3 with
weights wt(x1, x2, x3) = (1,−1, 3) of the index-one cover Q] ∈ Y ] as
(x1, x2, x3)|C† = (t3/5, t2/5, 0).

(ii) (type IIb∨; Theorem 3.6)
(a) J = {(r, 1), (r, 1)}, a = 2 and H ∩ E = P1; sC(−2) = 0 and

(H · C) = 1/r; Q ∈ C is locally expressed by semi-invariant local co-
ordinates x1, x2, x3, x4 with weights wt(x1, x2, x3, x4) = (1,−1, 2, 0)
of the index-one cover Q] ∈ Y ] as (x1, x2, x3, x4)|C† = (0, 0, t2/r, t).

(b) J = {(2, 1), (4, 1)}, a = 3 and H ∩E = P1; sC(−3) = 0 and (H ·C) =
1/4; Q ∈ C is locally expressed by semi-invariant local coordinates
x1, x2, x3, x4 with weights wt(x1, x2, x3, x4) = (1, 3, 3, 2) of the index-
one cover Q] ∈ Y ] as (x1, x2, x3, x4)|C† = (0, 0, t3/4, t1/2).

(iii) (type IIb∨∨; Theorem 3.15) H ∩E = P1; sC(−a) = 0 and (H ·C) = (r1 +
r2)/ar1r2; Qi ∈ C is locally expressed by semi-invariant local coordinates
xi1, xi2, xi3 with weights wt(xi1, xi2, xi3) = (1,−1, a) of the index-one cover
Q]i ∈ Y ] as (xi1, xi2, xi3)|C† = (0, 0, t1/ri).

(iv) (type III; Theorem 3.15) We can choose H so that H∩E = P1; sC(−a) = 1
and (H · C) = (r + 1)/ar; Q ∈ C is locally expressed by semi-invariant
local coordinates x1, x2, x3 with weights wt(x1, x2, x3) = (1,−1, a) of the
index-one cover Q] ∈ Y ] as (x1, x2, x3)|C† = (0, 0, t1/r).

Theorem 4.2. Let S be a general elephant of Y .
(i) If f is of type II, then S intersects H∩E at and only at the non-Gorenstein

points of Y .
(ii) If f is of type III, then S intersects H ∩ E at and only at a general point

of C and the non-Gorenstein point of Y .
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Proof. (i) Take any C ∼= P1 ⊆ H∩E. By (2.3), Lemma 4.3 and the commutative di-
agrams in Section 2, we obtain a surjective map f∗OY (−aE)� H0([OY (−aE)]C).
Recalling that sC(−a) = 0 in Description 4.1, we have H0([OY (−aE)]C) = C.
Hence we find a general elephant S which properly intersects H ∩ E. Of course
S passes through any non-Gorenstein point of Y . On the other hand, because
(S · [H ∩ E]) = aE3 ≤ 1 in any case by Description 4.1, we see that S does not
intersect H ∩ E at any other point.

(ii) It suffices to consider [OY (−aE) ⊗ mQ′⊂Y ]C instead of [OY (−aE)]C since
sC(−a) = 1 in Description 4.1. �

Lemma 4.3. Assume that f is of type IIa with a = 2. Write [H ∩E] = [C] + [C′]
cycle-theoretically. Then there exists a natural exact sequence

0→ OC′(−1)→ OH∩E → OC → 0.

Proof. Let I be the kernel of the natural map OH∩E � OC . I is supported on
C′ ∼= P1. By H0(OH∩E) = C in Remark 2.9, we have H0(I) = 0. By H1(OH∩E) =
0 in Lemma 2.8(ii), we have H1(I) = 0. Hence I ∼= OP1(−1). �

It is the time to prove Theorem 1.7, the main theorem.

Theorem 4.4. Assume that f is of type II or III. Then a general elephant S of
Y has at worst Du Val singularities. Moreover, the type of any Du Val singularity
Q ∈ S is the same as that of a general elephant of a germ Q ∈ Y .

Proof. By [7] it suffices to consider the case where P is a singular point. By Theorem
4.2 and the theorem of Bertini, it is enough to show that S has a Du Val singularity
at each non-Gorenstein point Q ∈ Y the type of which is the same as that of a
general elephant of a germ Q ∈ Y .

First we treat type IIa in Description 4.1(i). Let Q ∈ C = H ∩ E be the non-
Gorenstein point and a curve which are investigated.

Consider the case a = 2. It is enough to show that the monomial x3 appears
in the defining function h(x1, x2, x3) of S in Theorem 4.2 with non-zero coefficient.
Since S intersects C only at Q by Theorem 4.2, h(t(r+1)/2r, 0, t2/r) when r ≡ 1
modulo 4, and h(0, t(r−1)/2r, t2/r) when r ≡ 3 modulo 4, have order (S · C) = 2/r
with respect to t. Hence the monomial x3 appears in h with non-zero coefficient.

Consider the case a = 4. Then −KY is linearly equivalent to E + 5H . Thus it
is enough to show that

(i) E has a Du Val singularity of type A4 at Q, and
(ii) |5H | is free at Q.

We first see (i). By [14] we can consider a birational morphism g : Z → Y such
that Z has a g-exceptional divisor F the discrepancy of which with respect to KX

is 1. Write

KZ = g∗KY + bF + (others),

g∗E = EZ +mF + (others),

where EZ is the birational transform of E. Then KZ = g∗(f∗KX + 4E) + bF +
(others) = g∗f∗KX + 4EZ + (b + 4m)F + (others), whence b = m = 1/5 since
5b, 5m ∈ Z. Thus the defining function of E in x1, x2, x3 in Description 4.1(i) has a
non-zero linear term. Considering the weight, we see that the monomial x3 appears
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in the function for E with non-zero coefficient. Hence we may take x3 so that E is
given by x3 = 0. This implies (i).

It is easy to see (ii). From (2.3) and the commutative diagrams in Section 2,
we obtain a surjective map f∗OY (−5E)� H0([OY (−5E)]C) = H0(OP1(1)), which
shows (ii).

Secondly we treat type IIb∨ in Description 4.1(ii). Let Q ∈ C = H ∩ E be the
non-Gorenstein point and a curve which are investigated. Q ∈ Y is described as
in Remark 1.5. Consider a general elephant T on a germ Q ∈ Y , for which the
function in y1, y2, y3, y4 has a non-zero linear term. Then by Remark 1.5, we have
the following:

(i) If J = {(r, 1), (r, 1)} and r ≥ 5, the linear term of the function for T is y3.
Any such T gives a Du Val singularity of type A2r−1, which is the type of
a general elephant of a germ Q ∈ Y .

(ii) In any other case, the linear term of the function for T is a linear combi-
nation of y2 or y3. Any T which has a general linear term gives a Du Val
singularity of type A5, E6 or D5 according to (ia), (ib), (ii) in Remark 1.5
respectively, which is the type of a general elephant of a germ Q ∈ Y .

Thus if J = {(r, 1), (r, 1)} and r ≥ 5, it is enough to show the following:

Claim 4.4.1. The function for S in Theorem 4.2 in y1, y2, y3, y4 has a non-zero linear
term.

In any other case, −KY is linearly equivalent to E + rH . Thus it is enough to
show, adding to Claim 4.4.1,

Claim 4.4.2. (i) The function for E in y1, y2, y3, y4 has a non-zero linear term
which is linearly independent to that in the function for S.

(ii) |rH | is free at Q.

However, in Claim 4.4.2, the existence of a non-zero linear term in the function for
E and Claim 4.4.2(ii) follow as in the proof of type IIa with a = 4. In particular,
in Claim 4.4.2 we may choose coordinates x1, x2, x3, x4 in Description 4.1(ii) so
that E is given by x2 = 0. Hence Claims 4.4.1 and 4.4.2 follow if we prove that
the monomial x3 appears in the defining function h(x1, x2, x3, x4) of S in Theorem
4.2 with non-zero coefficient. Because S intersects C only at Q by Theorem 4.2,
h(0, 0, t2/r, t) and h(0, 0, t3/4, t1/2) have order (S · C) = aE3 = 2/r, respectively
3/4 with respect to t, according to J = {(r, 1), (r, 1)}, respectively {(2, 1), (4, 1)}.
Hence the monomial x3 appears in h with non-zero coefficient.

Finally we treat types IIb∨∨ and III in Description 4.1(iii), (iv). Let Q ∈ C =
H∩E be a non-Gorenstein point and a curve which are investigated. It is enough to
show that x3 appears in the defining equation h(x1, x2, x3) of S in Theorem 4.2 with
non-zero coefficient. We can see this similarly, remarking that the local intersection
number of S and C at Q is 1/rQ by Description 4.1(iii), (iv) and Theorem 4.2. �

5. Possible types of singularities

In this section we restrict the types of a general elephant S of Y and its birational
transform SX on X , and deduce Theorem 1.8. First we recall the dual graphs for
minimal resolutions of Du Val singularities. ◦ denotes an exceptional curve and
• the birational transform of a general hyperplane section, and each exceptional
curves Fi is marked with its coefficient in the fundamental cycle.
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(i) (type An)

• − F1◦
1
− · · · − Fn◦

1
− •

(ii) (type Dn)

• Fn◦
1

p p
F1◦
1
− F2◦

2
− · · · −

Fn−2◦
2

−
Fn−1◦

1

(iii) (type E6)

•
p
F1◦
2

p
F2◦
1
− F3◦

2
− F4◦

3
− F5◦

2
− F6◦

1

(iv) (type E7)
F7◦
2

p
• − F1◦

2
− F2◦

3
− F3◦

4
− F4◦

3
− F5◦

2
− F6◦

1

(v) (type E8)
F8◦
3

p
• − F1◦

2
− F2◦

3
− F3◦

4
− F4◦

5
− F5◦

6
− F6◦

4
− F7◦

2

Take a general elephant S of Y , and write SX for its birational transform on X .
A general hyperplane section P ∈ HX on X gives also a general hyperplane section
P ∈ DX := HX |SX on SX . Let fS : S → SX be the induced map. Since S and SX
have at worst Du Val singularities by Theorem 1.7, fS factors through the minimal
resolution of SX . Let Z be the birational transform on S of the fundamental cycle.
Then f∗HX = H + bE as in Section 2 and f∗DX = D+Z = H |S + bE|S, where D
is the birational transform on S of DX . Note that bE|S ≤ Z. We also have

l := (H |S · bE|S) = b2aE3.(5.1)

Assume that f is of type I. In this case, a = b = 2 and either J = {(7, 3)} with
E3 = 1/7 or J = {(3, 1), (5, 2)} with E3 = 1/15 holds by Theorems 1.4 and 2.7 and
Proposition 2.4.

Lemma 5.1. Assume that f is of type I. Take a general elephant S of Y .
(i) If J = {(7, 3)}, the dual graph for the partial resolution S → SX is

∗ − ◦
2

or ◦
2
− ∗ −◦

2
,

where the attached numbers are the coefficients in 2E|S, and ∗ means that
a Du Val singularity of type A6 or worse appears there.
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(ii) If J = {(3, 1), (5, 2)}, the dual graph for the partial resolution S → SX is

∗ − ◦
2
− ? or ∗ − ◦

4
−?,

where the attached number is the coefficient in 2E|S, and ∗ and ? mean
that a Du Val singularity of type A2, respectively A4, or worse appears
there.

Proof. (i) Since (−E · [S ∩E]) = 2E3 = 2/7, it is enough to show the existence of S
such that S ∩ E defines a reduced 1-cycle. We can calculate χ(Q−2) = 2 by (2.2).
Thus we have the desired S as in the proof of Lemma 3.4(i).

(ii) Since (−E · [S ∩ E]) = 2E3 = 2/15, it is enough to show the existence of
S such that S ∩ E defines an irreducible but possibly non-reduced 1-cycle. By
(−E · [S ∩ E]) < 1/5, each irreducible component of (S ∩ E)red passes through
all the non-Gorenstein points of Y . Hence (S ∩ E)red = P1 by h1(OS∩E) = 0 in
Remark 2.9. �

We restrict the dual graph for the partial resolution S, considering 2E|S ≤ Z
and Lemma 5.1. The following table shows all the possibilities up to permutation
in terms of Fi:

J = {(7, 3)} J = {(3, 1), (5, 2)}
SX Z 2ES l SX Z 2ES l
Dn 2Fm + · · · 2Fm + · · · 4/m Dn 2Fm 2Fm 4/m
E7 2F1 + · · · 2F1 + · · · 2 E7 3F4 2F4 8/15

2F5 2F5 1 E8 4F3 2F3 1/3
2F7 2F7 8/7 4F3 4/3

E8 2F1 + · · · 2F1 + · · · 2 5F4 2F4 1/5
3F2 2F2 2/3 4F4 4/5
3F2 + 2F7 2F2 + 2F7 1 6F5 2F5 2/15
4F3 2F3 1/3 4F5 8/15
4F3 + 2F7 2F3 + 2F7 4/3
4F6 2F6 2/7
2F7 2F7 1
2F7 + 3F8 2F7 + 2F8 8/7
3F8 2F8 1/2

l = 8E3 by (5.1). This value is 8/7 when J = {(7, 3)} and 8/15 when J =
{(3, 1), (5, 2)}. Therefore Theorem 1.8(i) is deduced.

Remark 5.2. In fact, P is cE7 when J = {(7, 3)}. By the above list, it suffices to
exclude the case where P ∈ SX is E8 and Z = 2F7 + 3F8. In this case, S ∩ E
defines the 1-cycle F7 + F8 on S. Thus (E · F7) and (E · F8) must be −1/7.
On the other hand, using the dual graph for the minimal resolution, we obtain
(E|S ·F7) = (F7 + F8 · F7)S = −3/7 and (E|S ·F8) = (F7 + F8 · F8)S = 1/7. It is a
contradiction.

Example 5.3. There exist examples of type I. The weighted blow-up of o ∈ (x2
1 +

x3
2 +x2x

3
3 +x7

4 = 0) ⊂ C4 with weights wt(x1, x2, x3, x4) = (7, 5, 3, 2) is an example
of type I whose P is cE7. The weighted blow-up of o ∈ (x2

1 +x3
2 +x5

3 +x7
4 = 0) ⊂ C4

with weights wt(x1, x2, x3, x4) = (7, 5, 3, 2) is an example of type I whose P is cE8.
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When f is of type II or III, by Theorems 4.2 and 4.4 and Remark 1.5, we obtain
the possible dual graphs for the partial resolution S → SX as follows:

(i) (type IIa or IIb∨) The dual graph is

• − ∗


−◦

1
...
−◦

1

where • denotes H |S = D, the attached numbers are the coefficients in
E|S = Z, and ∗ means that a Du Val singularity of type
(a) Ar−1 if f is of type IIa,
(b) A2r−1 if f is of type IIb∨ with J = {(r, 1), (r, 1)}, r ≥ 5,
(c) A5 or E6 if f is of type IIb∨ with J = {(3, 1), (3, 1)},
(d) D5 if f is of type IIb∨ with J = {(2, 1), (4, 1)},
appears there respectively. The number of the exceptional curves ◦ is ≤ 4
in type IIa and ≤ a in type IIb∨. This bound comes from the value of
(H · [S ∩E]) = aE3.

(ii) (type IIb∨∨ or III) Set r1 = 1, r2 = r if f is of type III. P ∈ SX is An
because H |S intersects E|S at two points. The dual graph is

• − ∗ − ◦
1
− ?− • or • − ∗ − ◦

1
− ◦

1
− ?−•,

where • denotes H |S = D, the attached numbers are the coefficients in
E|S = Z, and ∗ and ? mean that a Du Val singularity of type Ar1−1,
respectively Ar2−1, appears there. Since all the components of (S ∩ E)red

are numerically proportional, the number of the exceptional curves ◦ is
≤ 2.

The following table shows all the possibilities of the partial resolution S → SX
up to permutation in terms of Fi:

type of f SX Z l
IIa Dr Fr 4/r

Dr+1 Fr + Fr+1 4/r
F1 + Fr+1 1 + 1/r

Dr+2 F1 + Fr+1 + Fr+2 1 + 1/r
IIb∨, J = {(r, 1), (r, 1)} D2r F2r 2/r

D2r+1 F2r + F2r+1 2/r
F1 + F2r+1 1 + 1/2r

IIb∨, J = {(3, 1), (3, 1)} E7 F6 2/3
IIb∨, J = {(2, 1), (4, 1)} D6 F1 1

E6 F2 3/4
IIb∨∨ Ar1+r2−1 Fr1 1/r1 + 1/r2

Ar1+r2 Fr1 + Fr1+1 1/r1 + 1/r2

III Ar Fr 1 + 1/r
Ar+1 Fr + Fr+1 1 + 1/r

We have l = aE3 by (5.1). Combining it with Theorem 1.4, [7] and [8], we obtain
Theorem 1.8(ii) except the case where SX is Ar1+r2 in type IIb∨∨ or Ar+1 in type
III. The remaining case is excluded by Theorem 1.13, proved in Section 6.
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Example 5.4. Let f be the weighted blow-up of o ∈ (x2
1+x2

2x3+x2r
3 +xr4 = 0) ⊂ C4

with weights wt(x1, x2, x3, x4) = (r, r, 1, 2), where r ≥ 3 is an odd integer. P is
cDr+1 and f is of type IIb∨ with J = {(r, 1), (r, 1)}. The exceptional locus of the
partial resolution S → SX is reducible.

Example 5.5. Let f be the weighted blow-up of o ∈ (x2
1 +x2

2x3 +x3
3+x3

4 = 0) ⊂ C4

with weights wt(x1, x2, x3, x4) = (3, 1, 4, 2). P is cD4 and f is of type IIb∨ with
J = {(2, 1), (4, 1)}.

6. Divisorial contractions to cAn points

We start with a general method to determine f :

Lemma 6.1. Let f : (Y ⊃ E) → (X 3 P ) be a germ of a three-fold divisorial
contraction to a Gorenstein point P , and set KY = f∗KX + aE; X is identified
with a hypersurface in X̄ := C4

x1x2x3x4
:

P ∈ X ∼= o ∈ (φ = 0) ⊂ X̄ = C4
x1x2x3x4

.

Write mi for the multiplicity of div xi along E, that is, the largest integer such
that xi ∈ f∗OY (−miE). We assume that m1,m2,m3,m4 have no common fac-
tors. Let d be the weighted order of φ with respect to weights wt(x1, x2, x3, x4) =
(m1,m2,m3,m4), and decompose φ as

φ = φd(x1, x2, x3, x4) + φ>d(x1, x2, x3, x4),

where φd is the weighted homogeneous part of weight d and φ>d the part of weight
> d. Set c := m1 + m2 + m3 + m4 − 1 − d. Let ḡ : (Z̄ ⊃ F̄ ) → (X̄ 3 P ) be
the weighted blow-up of X̄ with weights wt(x1, x2, x3, x4) = (m1,m2,m3,m4), F̄ its
exceptional divisor, and D̄i the birational transform on Z̄ of the hyperplane xi = 0
in X̄. Let Z be the birational transform of X on Z̄, and g : Z → X the induced
morphism. Assume that

(i) F̄ ∩ Z defines an irreducible reduced 2-cycle F on Z, and F 6⊆ SingZ,
(ii) dim(Sing Z̄ ∩ Z) ≤ 1,
(iii) SingZ ⊆

⋃
1≤i≤4 D̄i, and

(iv) F 6⊆
⋃

1≤i≤4 D̄i.

Then c ≤ a, and the equality holds if and only if f ∼= g over X.

Proof. Z is R1 from (i), and is Cohen–Macaulay since Z ⊂ Z̄ is locally a cyclic
quotient of a hypersurface in C4. Thus Z is normal. By (ii) we can use the
adjunction formula and have KZ = (KZ̄ +Z)|Z = g∗KX + cF . Note that −F is f -
ample and Q-Cartier. Consider the centre on Z of the valuation corresponding to E.
The multiplicity of div xi along E equals to that along F . Thus, by

⋂
1≤i≤4 D̄i = ∅

and (iv), this centre is not contained in
⋃

1≤i≤4 D̄i, whence it intersects the smooth
locus of Z by (iii). Thus the discrepancy a of E with respect to KX is ≥ c, that of
F , and the equality holds if and only if f ∼= g over X by [7, Lemma 3.4]. �

Let f : (Y ⊃ E)→ (X 3 P ) be a germ of a divisorial contraction to a cAn point
P for some n ≥ 2. X is identified with a hypersurface φ = 0 in C4

x1x2x3x4
as follows:

P ∈ X ∼= o ∈ (φ = x1x2 + g(x3, x4) = 0) ⊂ C4
x1x2x3x4

,(6.1)
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where g has total order n+ 1 in x3, x4. From Theorems 1.4 and 1.8(i), f is of type
O, II or III. Our goal in this section is to prove Theorem 1.13, the classification of
these contractions.

Write mi for the multiplicity of div xi along E. By coordinate change in which
x4 7→ x4 + xi for i = 1, 2 or 3 if necessary, we may assume that m4 = 1. By
coordinate change x3 7→ x3 + h(x4) if necessary, we may also assume that x3 +
h(x4) 6∈ f∗OY (−(m3 + 1)E) for any h. Decompose φ as

φ = φ≤m1+m2(x1, x2, x3, x4) + φ>m1+m2(x1, x2, x3, x4),

where φ≤m1+m2 is the part of weight ≤ m1 +m2 and φ>m1+m2 is the part of weight
> m1 + m2 with respect to weights wt(x1, x2, x3, x4) = (m1,m2,m3, 1). We focus
on φ≤m1+m2 = x1x2 + h(x3, x4). Remark that h 6= 0. The homogeneous part h0

in h of the minimal weight d0 with respect to weights wt(x3, x4) = (m3, 1) always

decomposes into a product of x
d0−m3b d0

m3
c

4 and b d0
m3
c linear combinations of x3 and

xm3
4 . Hence h0 6∈ f∗OY (−(d0 + 1)E) because of the assumption x3 + h(x4) 6∈
f∗OY (−(m3 + 1)E) for any h. Therefore, d0 must be m1 + m2. We can see that
this choice of coordinates satisfies the assumptions in Lemma 6.1, whence

a ≥ m1 +m2 +m3 + 1− 1− (m1 +m2) = m3(6.2)

and the equality holds if and only if f ∼= g in Lemma 6.1 over X .
In particular, we have the following in type O:

Lemma 6.2. If f is of type O, then f is the weighted blow-up of X with weights
wt(x1, x2, x3, x4) = (i, n+ 1− i, 1, 1) for some 1 ≤ i ≤ n in (6.1).

Lemma 6.3. f is not of type IIa with a = 4.

Proof. If f is of type IIa with a = 4, then J = {(5, 2)} from Theorem 3.5, whence
Y has exactly one non-Gorenstein point and it is a quotient singularity of type
1
5 (1,−1, 3). Consider a birational morphism h : Z → Y such that Z has an h-
exceptional divisor F the discrepancy of which with respect to KX is 1. We can
choose n different F , as valuations, corresponding to the exceptional divisors of
the weighted blow-ups of X with weights wt(x1, x2, x3, x4) = (i, n+ 1 − i, 1, 1) for
1 ≤ i ≤ n in (6.1). Write

KZ = h∗KY + bF + (others),

h∗E = EZ +mF + (others),

where EZ is the birational transform of E. Then KZ = h∗(f∗KX + 4E) + bF +
(others) = h∗f∗KX + 4EZ + (b + 4m)F + (others), whence b = m = 1/5 since
5b, 5m ∈ Z. Hence F is determined uniquely because Y has a quotient singularity
of index 5 as the unique non-Gorenstein point. It contradicts that we can choose
n ≥ 2 different F . �

The case where f is of type IIa with a = 2, type IIb or III remains. We can see
the next lemma by following [8, Claim 6.13] faithfully:

Lemma 6.4. Let f : (Y ⊃ E) → (X 3 P ) be a germ of a three-fold divisorial
contraction to a singular Gorenstein point P , and set KY = f∗KX + aE. Assume
that f is of type IIb or III, and set r1 = 1 if f is of type III. P ∈ X is identified as

P ∈ X ∼= o ∈ (φ = 0) ⊂ C4
x1x2x3x4

.

Assume that the multiplicity of div x4 along E is 1. Then
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(i) for 1 ≤ j ≤ min{r1, a},
f∗OY (−jE) = (x1j , x2j , x3j , x

i
4)OX

for some xij = xi + pij(x4) (i = 1, 2, 3), where

pij ∈
j−1⊕
k=1

Cxk4 ⊂ C[x4].

(ii) Assume that r1 < a.
(a) The linear map

3⊕
i=1

Cxir1 → f∗OY (−r1E)/(f∗OY (−(r1 + 1)E) + (xr14 )OX)

has kernel of dimension 2.
(b) We assume that x3r1 6∈ f∗OY (−(r1 + 1)E) + (xr14 )OX . In this situa-

tion, for r1 < j ≤ a,

f∗OY (−jE) = (x1j , x2j)OX +
∑

(k,l)∈
⋃
s≥j Js

(xk3r1x
l
4)OX

for some xij = xi + pij(x3r1 , x4) (i = 1, 2), where

pij ∈
⊕

(k,l)∈
⋃

1≤s<j Js

Cxk3r1x
l
4 ⊂ C[x3r1 , x4],

Js := {(k, l) ∈ Z2
≥0 | r1k + l = s}.

Remark 6.5. A similar result holds even if f is of type IIa with a = 2 by d(−1) =
χ(Q−1) = 1 in Remark 2.5(i). Assume that f is of type IIa with a = 2 and the
multiplicity of div x4 along E is 1. Then x1, x2, x3 ∈ f∗OY (−2E) + (x2

4)OX .

Assume that f is either of type IIa with a = 2 or of type IIb∨ with J =
{(r, 1), (r, 1)}. Then m3 ≥ a by Lemma 6.4 and Remark 6.5. Assume that f is
either of type IIb∨∨ or of type III, and set r1 = 1, r2 = r if f is of type III. We start
with an identification (6.1). Write mi for the multiplicity of div xi along E; m4 = 1
is assumed by coordinate change. Because a general element in f∗OY (−aE) gives
a Du Val singularity P ∈ SX at worst of type Ar1+r2 by the results in Section 5,
this element must be of the form cx3 + · · · with c 6= 0 by Lemma 6.4. Hence by
coordinate change such that x3 7→ x3 + h(x1, x4) or x3 + h(x2, x4) if necessary, we
may assume that x3 ∈ f∗OY (−aE) by Lemma 6.4. Therefore m3 ≥ a. Hence we
have the following proposition by (6.2):

Lemma 6.6. Assume that f is of type IIb or III. Unless f is of type IIb∨ with
J = {(2, 1), (4, 1)}, f is the weighted blow-up of X with weights wt(x1, x2, x3, x4) =
(m1,m2, a, 1) with respect to the coordinates in (6.1).

Finally we consider the exceptional case where f is of type IIb∨ with J =
{(2, 1), (4, 1)}.
Lemma 6.7. If f is of type IIb∨ with J = {(2, 1), (4, 1)}, then

(i) P is a cA2 point isomorphic to o ∈ (x1x2 + x3
3 + g≥4(x3, x4) = 0) ⊂

C4
x1x2x3x4

, where g≥4 has total order ≥ 4 in x3, x4.
(ii) Y has exactly one non-Gorenstein point Q, and it is isomorphic to o ∈

(y2
1 + y2

2 + y2
3 + y3

4 = 0) in the quotient space C4
y1y2y3y4

/ 1
4 (1, 3, 3, 2).
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(iii) KY = f∗KX + 3E.

Proof. By Remark 1.5, we have (iii) and Y has exactly one non-Gorenstein point
Q. The germ Q ∈ Y is described as in Remark 1.5(ii). Because Y has Gorenstein
index 4 and a = 3, for any valuation v with discrepancy 1 with respect to KX ,
the centre of v on Y is Q and v has discrepancy 1/4 with respect to KY , as in the
proof of Lemma 6.3. Since there are n such valuations as mentioned in the proof of
Lemma 6.3, Q ∈ Y must have an isomorphism in (ii) by [6, Theorem 7.4] and the
description in Remark 1.5(ii). In this case, there exist exactly two valuations with
centre Q the discrepancy of which with respect to KY is 1/4 by [6, Theorem 7.4].
Thus P has to be cA2.

We take an isomorphism P ∈ X ∼= o ∈ (x1x2+g3(x3, x4)+g≥4(x3, x4) = 0) ⊂ C4,
where g3 is the part of order 3 and g≥4 that of order ≥ 4. To see (i) we have to
show that g3 is cubic, but this comes from the result in Section 5 that there exists
a hyperplane section of P ∈ X which is E6 at P . �

Example 6.8. There exists an example of Lemma 6.7. The weighted blow-up of
o ∈ (x2

1 + x2
2 + x3

3 + x1x
2
4 = 0) ⊂ C4 with weights wt(x1, x2, x3, x4) = (4, 3, 2, 1) is

such an example.

We have Lemmata 6.2, 6.3, 6.6 and 6.7. We can easily check the sufficient
condition for f to be a divisorial contraction. Therefore Theorem 1.13 is deduced.
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