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Abstract Inferentialism claims that expressions are meaningful by virtue of
rules governing their use. In particular, logical expressions are autonomous
if given meaning by their introduction-rules, rules specifying the grounds for
assertion of propositions containing them. If the elimination-rules do no more,
and no less, than is justified by the introduction-rules, the rules satisfy what
Prawitz, following Lorenzen, called an inversion principle. This connection
between rules leads to a general form of elimination-rule, and when the rules
have this form, they may be said to exhibit “general-elimination” harmony.
Ge-harmony ensures that the meaning of a logical expression is clearly visible
in its I-rule, and that the I- and E-rules are coherent, in encapsulating the
same meaning. However, it does not ensure that the resulting logical system
is normalizable, nor that it satisfies the conservative extension property, nor
that it is consistent. Thus harmony should not be identified with any of these
notions.
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1 Analytic Validity

What is the basis of our knowledge of logic, and of logical truth? Indeed, why
are logical truths true? The traditional answer is that logical truths are analytic,
that is, they are true solely in virtue of the meaning of the logical words they
contain. What gives the meaning of the logical terms? A natural answer is: the
rules for their use. Hence arise:

Logical inferentialism The meaning of the logical constants is given by the
rules for their use

Autonomy The rules are self-justifying, that is, our knowledge of
the logical truths derives from the logical rules, which
determine the meaning in virtue of which those truths
are true.

Traditionally, semantics has been denotational and representational, con-
sisting in a homomorphic valuation from expressions to some range of objects.1

This approach risks ontological explosion, first in hypostatizing denotations for
empty names, predicates, conjunctions, prepositions and so on (though some of
these may be construed as syncategorematic), then in seeking values for false
propositions in the form of non-actual states of affairs. It is also regressive,
since a criterion is now needed to determine which non-actual states of affairs
are possible, which simply repeats the initial problem. Talk of possible worlds
is an attractive metaphor, but does little useful philosophical work and much
harm.2

Inferentialism, in contrast, is ontologically neutral. Expressions are mean-
ingful if there are rules governing their use, in particular, logical expressions
are given meaning by their introduction-rules, specifying the grounds for asser-
tion of propositions containing them, and elimination-rules drawing inferences
from those assertions. Robert Brandom cites Michael Dummett as saying:

Learning to use a statement of a given form involves . . . learning two
things: the conditions under which one is justified in making the state-
ment; and what constitutes acceptance of it, i.e., the consequences of
accepting it.3

Brandom expresses it in his own words as follows:

What corresponds to an introduction rule for a propositional content is
the set of sufficient conditions for asserting it, and what corresponds to an
elimination rule is the set of necessary consequences of asserting it, that
is, what follows from doing so.

1See, e.g., Meyer and Sylvan [8, p. 354]: “Syntax is homomorphically copied in Semantics.”
2These claims were defended more fully in Read [15].
3Dummet [2, p. 453], cited in Brandom [1, p. 63].
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Gentzen famously defined connectives by specifying introduction
rules, or inferentially sufficient conditions for the employment of the
connective, and elimination rules, or inferentially necessary conse-
quences of the employment of the connective.4

Arthur Prior, when presented with such an account of logic as autonomous
and self-justifying, proposed a notorious example to show that inferentialism
(or as he called it, the “analytical validity”-view) was mistaken. In an ad
hominem objection, he introduced a new connective ‘tonk’ with the rules:

α

α tonk β
tonk-I

α tonk β

β
tonk-E

However, by chaining together an application of tonk-I to one of tonk-E, we
can apparently derive any proposition (β) from any other (α). This is clearly
absurd and disastrous. How can one possibly def ine such an inference into
existence?

Dummett’s response was to impose a requirement of harmony between the
rules. In his first invocation of harmony, Dummett suggested that:

The error . . . lies . . . in the failure to appreciate the interplay between the
different aspects of ‘use’, and the requirement of harmony between them.
Crudely expressed, there are always two aspects of the use of a given form
of sentence: the conditions under which an utterance of that sentence is
appropriate, which include, in the case of an assertoric sentence, what
counts as an acceptable ground for asserting it; and the consequences
of an utterance of it, which comprise both what the speaker commits
himself to by the utterance and the appropriate response on the part of
the hearer, including, in the case of assertion, what he is entitled to infer
from it if he accepts it.5

If the elimination-rules do no more (and no less) than is justified by the
introduction-rules, the rules may be said to be in harmony. Harmony serves
to reveal clearly and explicitly what meaning is conferred by the rules. For if
meaning is constituted by use, rather than denotation, then meaning resides
globally and holistically in the rules. Systemization therefore urges that one
identify a canonical set of rules encapsulating that meaning which the other
rules, the rules justified by that meaning already conferred, should not disrupt
or alter.

In fact, in Dummett’s writings, there is more than one account of harmony.
He defines “total harmony” as the requirement that when imposing rules for
a new connective, the resulting system be a conservative extension of the old
system.6 That is, if language L′ extends language L by the addition of a new
connective, with new rules extending the system L based on L to a new system

4Brandom [1, p. 62].
5Dummett [2, p. 396; cf. p. 454].
6Dummett [3, p. 250].
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L′ based on L′, anything in the language of L which is provable in L′ should
already have been provable in L.

But Dummett also considers a different account of harmony, “intrinsic
harmony”, namely, that proofs in the new system L′ be normalizable. Nor-
malization is the requirement that maximum formulae be eliminable, where
a maximum formula in a proof is any occurrence of a formula, or sequence
of identical formulae, occurring both as the conclusion of an I-rule and major
premise of an E-rule.7 Proofs are normalizable if any proof can be replaced
by a normal proof of the same conclusion, that is, one in which no maximum
formulae occur. I will show that neither conservativeness nor normalization
are appropriate as grounds of an inferentialist account of meaning which can
respond adequately to Prior’s challenge.

2 General-Elimination Harmony

What was wrong with the analytic validity views which Prior was attacking was
the suggestion that the meaning of an expression was given by the totality of
rules governing its use. As we saw, Brandom equates the I-rule with the set
of sufficient conditions for assertion of a statement containing the expression,
and the E-rule with the set of necessary consequences of that assertion. Prior
took assertion of α to be sufficient for inferring �α tonk β� and assertion
of β as necessary for it. Hence the necessary and sufficient conditions come
apart. If we are to avoid that situation, we need to capture all the meaning
of a term in both types of rule. Rather than the one constituting sufficient
conditions, the other, necessary conditions, as Brandom claims, each in their
totality constitutes both necessary and sufficient conditions.

What we have been considering are two alternative ways of explaining
the meanings of the sentences of a language: in terms of how we establish
them as true; and in terms of what is involved in accepting them as true.
They are alternative in that either is sufficient to determine the meaning
of a sentence uniquely . . . Because either fully determines the meaning
of a sentence . . . there ought . . . to exist a harmony between these two
features of use.8 (Dummett [4, p. 142])

These two features are dubbed by Dummett ‘justification’ and ‘commit-
ment’ respectively:

Justification and commitment ought to be in harmony with one another:
that is why, if meaning is taken as given in terms of either, the theory

7Such a formula (or sequence of formulae) is called by Dummett [3, p. 248] a “local peak”, and by
Gentzen (von Plato [21]) a “hillock” (Hügel).
8That the clauses are necessary as well as sufficient corresponds to the extremal clause in
inductive definitions, as recognised in Schroeder-Heister’s notion of definitional reflection. See,
e.g., Schroeder-Heister [19, p. 35].
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must show how the other can be derived from the meaning as so given.
The condition for such harmony to obtain is twofold: first, that whatever
serves to justify a statement ought also to justify any simpler statement
to which acceptance of the first commits us; and, conversely, that all
commitments consequent upon acceptance of a statement should already
be consequent upon anything offered in complete justification of it.
(Dummett [4, pp. 162–163])

Since Prior says that �α tonk β� can be inferred from α but not from β, �α
tonk β� is equivalent to α, while since he says that β but not α can be inferred
from �α tonk β�, �α tonk β� is equivalent to β. The point is that by specifying
tonk-I as the introduction-rule, Prior is saying not only that (a proof of) α is
sufficient to justify an assertion of �α tonk β�, but, by giving no other I-rule
for ‘tonk’, he is saying that such a proof of α is the only ground for asserting �α
tonk β�. However, the E-rule for ‘tonk’ suggests that the grounds for asserting
�α tonk β� are different, namely, that one might assert �α tonk β� because one
has a proof of β. It is that which makes Prior’s rules for ‘tonk’ incoherent. In
contrast, the rules for, e.g., ‘and’ and ‘or’ are coherent, in that they agree on
what is both necessary and sufficient for the assertion of statements containing
them. It is the basis of this coherence between I- and E-rules which we must
delineate, and which goes under the broad title of ‘harmony’.

I differ from Dummett in recognising that inharmonious rules can confer
meaning. There are three cases: harmonious rules, which are guaranteed to
confer meaning, and inharmonious rules, some of which confer a coherent
meaning and some do not. For example, the Curry–Fitch–Prawitz rule of ♦I
gives only a sufficient, not a necessary, condition for assertion of �♦α�:

α

♦α
♦I

That is, if α is true, so is ♦α; but the truth of α is not necessary for that of ♦α.
Nonetheless, together with the Curry-Prawitz version of ♦E, the meaning of
‘♦’ is captured, at least in reflexive modal logics.9 But it is unclear quite how
the two rules work together to capture the meaning of ‘♦’, and how they work
coherently in a way that the ‘tonk’-rules do not. Just as assertion of α is not
necessary for inferring �♦α�, so too it is not necessary for inferring �α tonk β�.
Another case arises with a pair of negation rules for intuitionistic logic, as we
will see later (Section 6):

[α]....¬α
¬α

¬α α
β

What is good about harmonious rules is that we can read the meaning off the
rule transparently.

9See Read [16].
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This coherence between the rules is what Gentzen had already realised in
his famous paper of 1934 when he wrote:

The introductions represent, as it were, the ‘definitions’ of the symbols
concerned, and the eliminations are no more, in the final analysis, than
the consequence of these definitions. (Gentzen [6, p. 80])

That is, the meaning of the connectives should be given by the inference
rules for their assertion, the introduction-rules. Then they are “autonomous”
(or “self-justifying”). The introduction-rule not only shows what is (severally)
sufficient for assertion of the conclusion but also shows what is (jointly)
necessary. The elimination-rule must then be justified by the introduction-rule.
As Gentzen put it:

It should be possible to display the E-inferences as unique (eindeutig, i.e.,
“single-valued”) functions of their corresponding I-inferences. (Gentzen
[6, p. 81])

How, then, should the E-rule be related to the I-rule so that it is justified
by it in the way Gentzen intended? The key is given by Prawitz’ “inversion
principle”:

Whatever follows from the direct grounds for asserting a proposition
must follow from the proposition.10

Negri and von Plato, from whom this formulation is cited, present this as a
generalization of Prawitz’ idea. However, Moriconi and Tesconi, in a recent
paper [10], contend that it captures what Prawitz already intended. As Prawitz
acknowledges, it is based on an idea of Paul Lorenzen’s [7], “roughly speaking
. . . that completeness is attained if whenever a �-proposition X satisfies a
certain condition P, and the [introduction]-rule for ‘�’ states that Y ⇒ X, then
P(Y) must also hold.”11 The completeness issue is to ensure that the I-rules
are (jointly) necessary as well as severally sufficient:

Lorenzen considers the problem of how to guarantee that any proposition
having � as its principal operator can only be obtained by means of that
set of rules.12

I propose, therefore, to say that the introduction- and elimination-rules are
in harmony when the E-rules do no more and no less than spell out what
may be inferred from the assertion of the conclusion of the I-rules, given the
grounds for its assertion. Following Dyckhoff and Francez [5], I shall call such
a notion of harmony, “general-elimination harmony”.

10Negri and von Plato [11, p. 6].
11Moriconi and Tesconi [10, p. 105].
12Moriconi and Tesconi [10, p. 104].
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Arguably, this is what Dummett intended when he introduced the notion of
“local” or “intrinsic harmony”. He wrote:

We may thus provisionally identify harmony between the introduction
and elimination rules for a given logical constant with the possibility of
carrying out this procedure, which we have called the levelling of local
peaks.13

He later abandons that provisional identification in favour of “total har-
mony”, namely, conservativeness. His reason is a fear that intrinsic harmony
may be too weak a requirement. Perhaps the E-rule does not permit all that
the I-rule justifies. General-elimination harmony (ge-harmony for short) is
designed to exclude that possibility.

The idea of ge-harmony is that we may infer from an assertion all and
only what follows from the various grounds for that assertion. Suppose that
the grounds for assertion of δ�α (some formula with main connective δ) are
given schematically as �i, where �i : 1 ≤ i ≤ m is a collection of subproofs or
derivations. We can represent those proofs �i as derivations

πi1 . . . πini

δ�α δI

which I will write for short as πi1, . . . , πini ⇒ δ�α, giving the grounds �i for the
assertion of δ�α. Then the harmonious form of the elimination-rule is

δ�α

(π1 j1)....
γ

. . .
(πmjm)

....
γ

γ δE

discharging the assumptions πiji .
14 That is, given an assertion of δ�α, and

derivation(s) of γ from the various ground(s) for asserting δ�α, we may infer
γ and discharge the assumption of those grounds. Those grounds may be
multiple, for there may be several cases of the introduction-rule, as in ∨I. The
inversion principle requires that, in any application of the E-rule, there be m
minor premises, each deriving γ from some πij, that is, for each i there needs to
be a derivation of γ from πij for some j. In total, there will be

∏m
i=1 ni E-rules,

each with m + 1 premises.
Consider an application of the δI-rule followed by the corresponding δE-

rule (producing a so-called “maximum formula”, δ�α):
....

πi1 . . .

....
πini

δ�α δI

(π1 j1)....
γ

. . .
(πmjm)

....
γ

γ δE

13Dummett [3, p. 250].
14This makes more precise what was suggested in Read [14]. Cf. von Plato [20] and Prawitz [13,
Section IV].
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Then we know from the LH premise that for some i we have a derivation πij

for every j. Hence in the minor premises we must ensure that for every i there
is a derivation of γ from πij for some j. If so, we can “invert” the derivation to
obtain:

....
πiji....
γ

Let us make this idea concrete by considering some examples. Often the
inversion guaranteed by ge-harmony permits the elimination of maximum
formulae; but not always, so ge-harmony is not the same as Dummett’s intrinsic
harmony, that is, it does not always lead to a normal form result.

3 Tonk

Take Prior’s introduction-rule for ‘tonk’:
α

α tonk β
tonk-I

(so m = 1 and n1 = 1). Assuming tonk-I to exhaust the grounds for asserting
�α tonk β�, we obtain the general case of tonk-E:

α tonk β

(α)....
γ

γ tonk-E that is, α tonk β α ⇒ γ
γ tonk-E

If we permute the derivation of γ from α with the application of the rule, we
obtain the simpler

α tonk β
α tonk-out
....
γ

This is, of course, not Prior’s tonk-out rule, and does not lead to inconsistency
and triviality as did his rule.

What justifies this permutation? Tonk-out is a special case of tonk-E, by
letting γ = α:

α tonk β

(α)....
α

α tonk-E that is, α tonk β α ⇒ α
α tonk-E

and discarding the right-hand branch, which is derivable by Reflexivity. Con-
versely, the permuted inference shows that tonk-out is sufficient to derive
everything that tonk-E permitted. Prior’s E-rule, from �α tonk β� to infer β,
would be justified only if we already had a derivation of β from α.
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Then maximum formulae of the form �α tonk β� can be eliminated:

�1
α

α tonk β
tonk-I

(α)
�2
γ

γ tonk-E
reduces to

�1
α
�2
γ

If α is a new maximum formula, sandwiched between �1 and �2, it has lower
degree than �α tonk β�, and so by induction, the derivation normalizes.

4 Conjunction

A similar simplification is possible in the case of ‘and’ (∧). Given that the sole
ground for asserting �α ∧ β� consists of derivations of both α and β:

α β

α ∧ β
∧I

(so m = 1 and n1 = 2) it follows that one may infer from �α ∧ β� whatever one
may infer from the grounds for its assertion, that is, both α and β:

α ∧ β

(α)....
γ

γ ∧E-1 and
α ∧ β

(β)....
γ

γ ∧E-2

That is, if γ follows either from the assumption α or from β, then γ follows
from �α ∧ β�.

Clearly, maximum formulae of the form �α1 ∧ α2� may now be eliminated:

�1
α1

�2
α2

α1 ∧ α2
∧I

(αi)
�3
γ

γ ∧E
reduces to

�i
αi
�3
γ

and the degree of the maximum formula has been reduced.
The generalised ∧E rules yield the usual ∧E rules immediately, given

Reflexivity:

α ∧ β

(α)....
α

α ∧E-1 and
α ∧ β

(β)....
β

β
∧E-2

reduce to

α ∧ β

α
Simp and α ∧ β

β
Simp

given that we can always derive γ from γ , for any γ .
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With the standard rules in place, we can now permute the original
derivations:

α ∧ β

α
Simp

....
γ

α ∧ β

β
Simp

....
γ

Thus the rules of Simplification are justified (they’re a special case); and
they’re sufficient, as the permutation shows.

We can also show that the generalised ∧-E rules are equivalent to a more
common generalised rule:15

α ∧ β

(α) (β)
︸ ︷︷ ︸

....
γ

γ ∧E

First, ∧E-1 and ∧E-2 are special cases of ∧E, where β (respectively, α) is
not discharged—effectively, an application of Weakening to the assumptions.
Conversely, by chaining applications of ∧E-1 and ∧E-2, we can validate ∧E:

α ∧ β
α ∧ β

α β
︸ ︷︷ ︸

....
γ

γ ∧E-1(α)

γ ∧E-2(β)

However, this equivalence depends on Contraction in the assumptions, since
the assumption �α ∧ β� is here used twice. Thus the equivalence between ∧E
and ∧E-1 and ∧E-2 depends on applying Weakening and Contraction to the
assumptions.

5 Disjunction

The introduction-rules for ‘∨’ are given by Addition:

α

α ∨ β
∨I

and β

α ∨ β
∨I

(so m = 2 and n1 = n2 = 1). According to ge-harmony, the harmonious E-rule
will be the familiar:

α ∨ β

(α)
...
γ

(β)
...
γ

γ ∨E

15See, e.g., Schroeder-Heister [18, p. 1294].
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or in the new notation:

α ∨ β α ⇒ γ β ⇒ γ
γ ∨E

Is it possible to simplify this rule, as we did for ∧E, and permute the deriva-
tions as before? It is, but only by introducing another structural operation
similar to that we did for ‘∧’. However, whereas that operation combined
assumptions, the new one must combine conclusions. That is, we enter the
domain of multiple-conclusion logic. So let γ = α, β:

α ∨ β α ⇒ α, β β ⇒ α, β

α, β
∨E

The two minor premises now follow by Refl and Wk (on the right):

α ∨ β
α ⇒ α

α ⇒ α, β
Wk

β ⇒ β

β ⇒ α, β
Wk

α, β
∨E

and so we get the simplified ∨-out rule:

α ∨ β

α, β
∨-out

Since, in the original form of ∨E, we can derive γ both from α and from β, the
permuted derivation becomes:

α ∨ β

α, β
∨-out

....
γ, γ
γ Contr

ending in a Contraction. Note that Wk and Contr here apply to the conclusion,
whereas in Section 4, they applied to the assumptions.

6 Negation

There are two ways to introduce negation. Let us concentrate on intuitionistic
negation.16 One approach relies on a suitable theory of absurdity (⊥):

(α)....⊥
¬α

¬I which we can represent as α ⇒ ⊥
¬α

¬I

16How to extend these ideas to classical negation was detailed in Read [14].
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The E-rule follows as before by considerations of harmony:

¬α

(α ⇒ ⊥)....
γ

γ ¬E that is, ¬α (α ⇒ ⊥) ⇒ γ
γ ¬E

What does �(α ⇒ ⊥) ⇒ γ � mean? It says that if we have a derivation of ⊥
from α, we can obtain a derivation of γ . More generally, �(α ⇒ β) ⇒ γ �
means that we have a derivation of γ on the assumption that we have a
derivation of β from α. So if we have a derivation of α, we may assume we
are able to derive β, from which we derive γ . That is,

�1
δ�α �′

(α ⇒ β) ⇒ γ

γ
δE =

�1
δ�α

(α ⇒ β)

�′
γ

γ
δE =

�1
δ�α

�2
α....
β
�3
γ

γ
δE

whence

�1
δ�α

�2
α

(β)
�3
γ

γ
δE

We then permute the derivation of γ from β with the application of δE, to
obtain:

�1
δ�α

�2
α

β
δ-out

�3
γ

In the case of ¬E, β = ⊥, so the ¬E rule simplifies to the familiar:

¬α α
⊥ ¬-out

¬I is not, in Dummett’s terminology , “pure”, in containing another connec-
tive, ⊥.17 However, as Dummett argues, this is permissible provided it is not
circular. First, introduce ⊥. Then ‘¬’ can be introduced subsequently, using the
theory of ⊥. This is acceptable provided it does not introduce cycles.

17Dummett [3, p. 257]: “A rule may be called ‘pure’ if only one logical constant figures in it.”
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Alternatively, one can treat negation as primitive. An appropriate form of
the I-rule for ‘¬’ was given by Gentzen.18 It is a form of reductio ad absurdum:

(α)....¬β

(α)....
β

¬α
R which we can represent as α ⇒ ¬β α ⇒ β

¬α
R

One might be tempted to reject such are rule on the ground that it is not
sheer.19 However, we will find that it permits normalization. Ge-harmony gives
two harmonious E-rules (m = 1 and n1 = 2):

¬α

(α ⇒ ¬β)....
γ

γ
and ¬α

(α ⇒ β)....
γ

γ

These simplify, as in the case of ¬E, to

¬α α
¬β

and ¬α α
β

The first is a special case of the second, so the harmonious E-rule is:20

¬α α
β

V

If we now consider a maximum formula of the form ¬α sandwiched between
R and V , we can apply the obvious conversion:

(α)
�1
¬β

(α)
�2
β

¬α
R �3

α
γ V

converts to

�3
α
�1¬β

�3
α
�2
β

γ V

However, the conversion does not necessarily reduce the degree of the max-
imum formula. �1 concludes in an occurrence of �¬β�, major premise of an
application of V , and so may itself be a maximum formula, possibly of degree
greater than that of �¬α�. Nonetheless, in this case, the maximum formula can
eventually be removed, since the “rank” of the derivation of �¬α� has been
reduced.21

18Gentzen introduces this in an early version of his Ph.D. thesis contained in an unpublished MS
held at the University of Zurich (Hs 974:271), p. 9. An edition of this MS is in preparation by
Christian Thiel and Jan von Plato. Cf. von Plato [21].
19Dummett [3, p. 257]: “We may call a rule ‘sheer’ if either it is an introduction rule for a logical
constant that does not figure in any of the premisses or in a discharged hypothesis, or it is an
elimination rule for one that does not figure in the conclusion or in a discharged hypothesis.”
20This rule is given by Gentzen in the manuscript cited in footnote 18.
21Gentzen shows how to do this in the Zurich MS.
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Finally, consider the rules for intuitionistic negation mentioned in Section 2
above:22

α ⇒ ¬α

¬α
¬I′ ¬α α

β
V

If we apply ge-harmony to ¬I′, we obtain:

¬α

α ⇒ ¬α....
β

β

which reduces as above to

¬α α

¬α....
β

β

But this does not reduce to, or warrant, V . That is, ¬I′ does not seem to justify
V in the way that harmony requires. Nonetheless, ¬I′ and V are sufficient for
an intuitionistic account of negation, since we can derive R from ¬I′ and V :

(α)....¬β

(α)....
β

¬α
V

¬α
¬I′

The obvious conclusion is that ¬I′ does not give the full meaning of ‘¬’, just as
the Curry–Fitch–Prawitz ♦I-rule does not give the full meaning of ‘♦’, as noted
in Section 2. The meaning conferred on ‘¬’ by ¬I′ does not suffice to justify
V , yet in conjunction with V , ¬I′ does give a complete intuitionistic account of
‘¬’. ¬I′ says what is sufficient for assertion of �¬α� but not what is necessary.
¬I′ requires supplementation by V , as shown in the derivation of R using ¬I′
and V together.

7 Inconsistency

GE-harmony does not prevent one introducing inconsistent connectives with
harmonious rules. Dummett and others claim that harmony should ensure
consistency. Not so: the I-rule can itself be inconsistent (but not necessarily in-
coherent). ‘tonk’ was indeed incoherent, but that was an incoherence between

22The rules are given in, e.g., Dummett [3, p. 291]. Note that, although ¬I′ is pure, it is not sheer,
nor does it (or R) satisfy Dummett’s complexity condition [3, p. 258]: “the minimal demand we
should make on an introduction rule intended to be self-justifying is that its form be such as to
guarentee that, in any application of it, the conclusion will be of higher logical complexity that any
of the premisses and than any discharged hypothesis.”
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Prior’s I- and E-rules. Coherence and consistency are different. Coherent rules
can be inconsistent, in allowing one to derive contradiction. Consistent rules
can be incoherent, when the meaning given by one rule (e.g., tonk-I, or Curry-
Prawitz ♦I) does not cohere with that given by another (Prior’s tonk-E, or
Curry-Prawitz ♦E).

For example, suppose one introduces a zero-place connective ‘•’ with the
rule:

(•)....⊥
• •I which we can represent as • ⇒ ⊥

• •I

where once again, α ⇒ β abbreviates a derivation of β from α. That is, from
a derivation of absurdity (⊥) from •, one can infer •. The inversion principle
shows that the harmonious elimination-rule reads:

•

(• ⇒ ⊥)....
γ

γ •E

•E says that one may infer from • anything (viz γ ) that one may infer from
supposing that one can infer ⊥ from •, which is what •I says justifies assertion
of •. As before, the minor premise resolves into a derivation of • and a
derivation of γ from ⊥. Permuting the latter with the application of •E reduces
the inference to:

• •
⊥ •-out
....
γ

Note that •E strictly requires two copies of its premise.
Once again, •I is not “pure”, in containing reference to another connective,

‘⊥’. First, introduce ‘⊥’. Then ‘¬’ and ‘•’ can be introduced subsequently, using
the theory of ‘⊥’. However, •I is not “sheer” either, since ‘•’ occurs in the
ground for its own assertion. Again, this does not introduce cycles. But it rules
out normalization, since in this case the inversion principle does not reduce
complexity. A maximum formula of the form • is not reduced in degree by the
inversion procedure.

One might object that •I is not (in Dummett’s terminology, again) “direct”,
being “oblique” in that ‘•’ occurs in a hypothesis discharged by the rules as in
the classical reductio rule:

(¬α)....
α
α CR

Indeed, •I does not meet the complexity condition (see footnote 22) any
more than do R, ¬I′ and CR. Peter Milne [9] rejoices in such oblique rules.
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Reflection on Milne’s rules, and on R, ¬I′ and CR shows that Dummett’s
complexity demand is, in his own phrase, “exorbitant”.

By ge-harmony, ‘•’ satisfies the inversion principle.

�1• ⇒ ⊥• •I �2•
⊥ •-out

=

(•)
�1⊥• •I �2•

⊥ •-out
converts to

�2•
�1⊥

replacing each discharged leaf of the form • in �1 by �2. However, as we
noted, the inversion does not reduce the degree of the maximum formula. �2
concludes in an occurrence of •, of the same degree as the original maximum
formula.

In fact, the •-rules produce a non-conservative extension:

•1 •1

⊥ •E

• •I(1)

•2 •2

⊥ •E

• •I(2)

⊥ •E

or spelling the applications of Contraction out explicitly:
• ⇒ • • ⇒ •

•, • ⇒ ⊥ •E

• ⇒ ⊥ Contr

⇒ • •I

• ⇒ • • ⇒ •
•, • ⇒ ⊥ •E

• ⇒ ⊥ Contr

⇒ • •I

⇒ ⊥ •E

This proof is not normalizable: the maximum wffs of the form • cannot be
removed. So if ge-harmony is the right account of harmony, harmony does
not guarantee, and is not the same as, either normalization or conservative
extension.

Note that • is equivalent to its own negation:

•1 •2

⊥ •-out

¬• ¬I(1)

¬•3 •4

⊥ ¬E

• •I(4)

• ↔ ¬• ↔ I(2,3)

• is equivalent to ¬•, since the derivation of ⊥ from • is both enough to
assert • (by •I) and to deny it (by ¬I). Taking •I as the sole introduction-rule
for •, entailing absurdity is both necessary and sufficient for the assertion of
•. Harmony cannot prevent inconsistency. But it helps to locate, identify and
understand that inconsistency. Thus • is inconsistent. It is a proof-conditional
Liar sentence.23

However, •I is not inherently contradictory or inconsistent. Recall the
observation that the I-rule(s) give not only sufficient but also necessary

23Cf. Schroeder-Heister [19, p. 36], where • is denoted by ‘a’, and introduced by the definition
a ⇐ ¬a.
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grounds for assertion. If •I, as given, is the only I-rule for •, then indeed, •
is inconsistent. But suppose we supplement •I with a second I-rule for •. For
clarity, let us write the new connective as ◦:

◦ ⇒ ⊥
◦ ◦I1

and ◦ ⇒ �
◦ ◦I2

where � = ¬⊥. Then entailing absurdity is no longer necessary for assertion
of ◦. It’s sufficient, but not necessary. Another possible gound for asserting ◦ is
entailing �. Now apply ge-harmony to ◦I1 and ◦I2 (so m = 2 and n1 = n2 = 1).
We obtain a single ◦E-rule:

◦

(◦ ⇒ ⊥)....
γ

(◦ ⇒ �)....
γ

γ ◦E

which the considerations of Section 6 convert to:

◦ ◦

(⊥)....
γ ◦

(�)....
γ

γ

Applying Contraction yields:

◦

(⊥)....
γ

(�)....
γ

γ

If we assume that ⊥ 
 α for all α, and 
 �, this simplifies to:

◦ γ
γ

On reflection, that is unsurprising. The rules for ◦ give it the meaning that
either it is true or false (in contrast to those for •, which make it mean that
it is both true and false), that is, that of a tautology. So ◦ is equivalent to �.
◦ is perfectly benign, where • is perfectly malignant. The fault with • is that
entailing contradiction is not only sufficient for its assertion, but also necessary.
That is not true of ◦.

Restall [17, p. 203] proposes the following sequent-rules for set-abstraction:

X ⇒ φ(a), Y
X ⇒ a ∈ {x : φ(x)}, Y

∈ R
X, φ(a) ⇒ Y

X, a ∈ {x : φ(x)} ⇒ Y
∈ L
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Let r be the term {x : x /∈ x}. Then we have the two proofs:24

r /∈ r ⇒ r /∈ r
r ∈ r ⇒ r /∈ r

∈ L

⇒ r /∈ r, r /∈ r ¬R

⇒ r /∈ r
Contr-R

r /∈ r ⇒ r /∈ r
r /∈ r ⇒ r ∈ r

∈ R

r /∈ r, r /∈ r ⇒ ¬L

r /∈ r ⇒ Contr-L

Then • is essentially just r ∈ r. We can see this by formulating ∈R and ∈L in
natural deduction format:25

φ(a)

a ∈ {x : φ(x)} ∈ I
a ∈ {x : φ(x)} φ(a) ⇒ γ

γ ∈ E

Accordingly, Restall’s proofs become:

r ∈ r1
r ∈ r1 r /∈ r2

r /∈ r
∈ E(2)

⊥ ¬E

r /∈ r
¬I(1)+Contr

r /∈ r1
r /∈ r1

r ∈ r ∈ I

⊥ ¬E

¬r /∈ r
¬I(1)+Contr

in other words:

•1
•1 ¬•2

¬• •E(2)

⊥ ¬E

¬• ¬I(1)+Contr

¬•1
¬•1

• •I

⊥ ¬E

¬¬• ¬I(1)+Contr

It should now be clear that • is inconsistent, but not incoherent. The rules for
‘•’ are harmonious, in that the (self-contradictory) meaning given to ‘•’ by •I
is matched exactly by the consequences which can be drawn by •E. •I and
•E satisfy the inversion principle. Nonetheless, the inversion procedure is not
guaranteed to reduce the complexity of the proof, and maximum formulae of
the form • are not always removed. Hence there is no normalization result.
Harmony does not guarantee normalization (or conservative extension), and
the three notions should not be equated.

‘•’ is not the only such counterexample to the supposed connection between
harmony and normalization, though the natural examples do form a family.
Just as • is a kind of proof-conditional Liar (or Russell) paradox, there is also a
proof-conditional Curry paradox. Take an arbitrary formula, α, and introduce
�α by the following I-rule:

(�α )....
α

�α �α I

Ge-harmony yields as E-rule in the usual way:

�α �α
α �α E

24Correcting the proofs in Restall [17, p. 203]. Cf. Prawitz [12, Appendix B, p. 95].
25See also Prawitz [12, p. 94].



General-Elimination Harmony and the Meaningof the Logical Constants

�α satisfies the inversion principle:

(�α )
�1
α

�α �α I �2
�α

α �α E
converts to

�2
�α
�1
α

Nevertheless, as with ‘•’, the maximum formula �α has not been removed or
reduced in degree, and normalization is prevented. Indeed, using ‘�α ’ one can,
in familiar Curry fashion, obtain a proof of α:

�α 1 �α 1

α
�α E

�α �α I(1)

�α 2 �α 2

α
�α E

�α �α I(2)

α �α E

Clearly, ‘•’ functions like ‘�α ’, replacing ‘α’ by ‘⊥’, just as the Liar paradox
results from the Curry paradox in the same way.

8 Conclusion

Harmony is not normalization, nor is harmony conservative extension, that is,
Dummett’s “total harmony”. Harmony is given by the inversion principle. The
correct account of harmony is “general-elimination harmony”. The totality of
introduction-rules for a logical expression give the grounds for assertion of
statements containing it, and so serve to define its meaning. That meaning then
justifies inferences made from such statements by application of the E-rule.

In this way, the logical constants are given a proof-conditional meaning in
which the introduction- and elimination-rules lie in harmony, where harmony
ensures transparency in the meaning conferred and whose virtue is clarity.
The notion of harmony used here, general-elimination harmony, differs from
Dummett’s preferred sense of harmony, for it does not guarantee normaliza-
tion, nor does normalization guarantee harmony. Moreover, it differs from
Dummett’s total harmony, for ge-harmony does not guarantee conservative-
ness. Nonetheless, ge-harmony better matches what Gentzen meant by saying
that the introductions serve to define the meaning of the logical expressions
and that the eliminations are no more than a consequence of the meaning so
conferred.
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