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1. I n t r o d u c t i o n  

We consider the Dirichlet problem for Hamilton-Jacobi equations both in the scalar and 

in the vectorial cases. We deal with the following problem: 

F(Du(x)) =0,  a.e. x e ~ ,  (1.1) 

u(x) = r ~ e 0a ,  

where D is a (bounded) open set of R n, F: R m• and ~E W 1'~ (D; Rm). We empha- 

size that  u: D c R n - - * R  m, with m, n~>l, is a vector valued function if m >  1 (otherwise, if 

m - - l ,  we say that  u is a scalar function). As usual Du denotes the gradient of u. 

This problem (1.1) has been intensively studied, essentially in the scalar case in 

many relevant articles such as Lax [28], Douglis [23], Kru2kov [27], Crandall-Lions [16], 

Crandall-Evans-Lions [14], Capuzzo Dolcetta-Evans [8], Capuzzo Dolcetta-Lions [9], 

Crandall-Ishii-Lions [15]. For a more complete bibliography we refer to the main recent 

monographs of Benton [7], Lions [29], Fleming-Soner [25], Barles [6] and Bardi-Capuzzo 

Dolcetta [5]. 
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Our motivation to study this equation, besides its intrinsic interest, comes from the 

calculus of variations. In this context first order partial differential equations have been 

intensively used, cf. for example the monographs of Carath@odory [10] and Rund [36] (for 

more recent developments on the vectorial case, see [19]). 

In this paper we propose some new hypotheses on the function F in (1.1) that  allow 

us to treat  systems of equations as well as vectorial problems (cfi examples below). The 

general existence result (Theorem 2.1) can be applied to the following examples, that  

for the sake of simplicity we state under the additional assumption that  the boundary 

datum qa is of class Cl(~t ;Rm).  

Example 1 (noneonvex scalar case). Let m=l .  If {F(~)--0} is closed then under 

the sole assumption 

D~a(x) e { F ( ~ ) =  0}Uint co { F (~ )=  0} (1.2) 

the Dirichlet problem (1.1) has a solution u E W I ' ~ ( ~ ) .  (By intco{F(~)--0} we mean 

the interior of the convex hull of the zeroes of F.)  We emphasize that  no hypothesis is 

made on F,  neither convexity, nor coercivity, not even continuity. 

For instance a system of N equations of the type 

Fi(Du) = 0 a.e. in ~, i = 1, 2, ..., N, 
(1.3) 

u = qa on 0~t 

F N enters in the framework (1.1), (1.2), by setting =~"]i=1 F2" Thus, for example, the 

problem 

{l 
O u / O x ~ l = a i  a . e .  i n  ~t, i = l ,  2 ,  . . . ,  n ,  

(1.4) 
u = ~ on 0~2 

has a solution if a~ > 0 and l O~/Oxi f < ai for every i =  1, 2, ..., n. 

It is interesting to note that ,  if F is convex and satisfies a mild coercivity condition 

that  rules out the linear case, then (1.2) becomes the usual necessary and sufficient 

condition for existence (cf. Kru~kov [27], Lions [29]), namely 

F(D~(x)) <~ 0, x E ~ .  (1.5) 

Example 2 (the prescribed singular values case). Let n = m > l .  For every ~GR nxn 

(i.e. ~ is a real (nxn) -mat r ix ) ,  we denote by A~(~), 0~<AI<A2~<...<~An, i=1 ,2 ,  ...,n, the 

singular values of the matrix ~, i.e. the eigenvalues of the matr ix (~t~)1/2. 

Let 0 < a l  ~a2 ~ ... ~an. Then the problem 

Ai(Du) = ai a.e. in f~, i = 1, 2, ..., n, 
(1.6) 

u = ~ on 0 ~  
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has a solution uEWl ,~ ( f l ;  R n) if A,~(D~)<al in f~ (more general boundary conditions 

are considered in w 

So, in particular if m = n = 2 ,  the Dirichlet problem (1.6) can be rewritten in the form 

IDut2 2 2 = a 1 + a  2 a.e. in ~, 

[detDu[ =ala2 a.e. in f~, (1.7) 

u = ~ on 0fL 

Provided the L~-norm of D~ is sufficiently small, then (1.7) has a solution. Note that  

the system (1.7) is a combination of a vectorial eikonal equation, tDul2=a~+a 2, and a 

prescribed modulus of the Jacobian equation, [det Du[=ala> Both equations have been 

separately studied in the literature. For the first one, see for example Kru~kov [27] and 

Lions [29]. For the second one (without the modulus), cf. Dacorogna-Moser [20]. 

The Dirichlet problem (1.6) can also be rewritten in terms of "potential wells"; 
namely, if a~=l for i=1,2 ,  ... ,n, then (1.6) and (1.7) take the form 

Du(x) e SO(n)IUSO(n)I_, a.e. x �9 a ,  (1.8) 

U = ~ on 0f~, 

where SO(n) denotes the set of orthogonal matrices with positive determinant, I is the 

identity matrix and 

I _ =  1 " 

- 1  

The problem of potential wells finds its origins in elasticity (cf. Ball-James [4], for ex- 

ample). Problem (1.8) has been solved by Cellina-Perrotta [13] if n = 3  and r  

The existence results stated in the above examples are a consequence of general 

theorems established in w The main points in the proof are: 

(i) The Baire category method introduced by Cellina [11] and developed by De Blasi- 

Pianigiani [21], [221, [34], in the context of Cauchy problems for ordinary differential 

inclusions. 

(ii) The weak lower semicontinuity and the quasiconvexity condition introduced by 

Morrey [33] (see also Ball [3] and [17]), that  is the appropriate extension of convexity to 

vector valued problems. 

We very roughly outline the idea of the proof following the above scheme. We first 

construct a quasiconvex function f whose zeroes are also zeroes of F.  We then define 

for kCN, 

V= {uE~+WJ'~(a;R m) : f(Du) <~ 0 a.e. in a},  

Vk= {ue V : s f(Du(x))dX > - k  }. 
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The quasiconvexity of f (and at this stage, convexity of f would be sufficient) and 

boundedness of the gradients easily ensure that  V is a complete metric space in the L ~ 

norm and that  Vk is open in V. The more difficult part is to show that  Vk is dense in V 

and there the full strength of quasiconvexity is needed. Then the Baire category theorem 

implies that  the intersection of Vk, for kEN,  is dense in V, i.e. the set 

k E N  

= {u E ~+W01'~ : f (Du) = 0 a.e.} C {u E ~ + W ~ ' ~  : F(Du) = 0 a.e.} 

is dense in V. Therefore the set of solutions of the Dirichlet problem (1.1) is dense in 

the set V. 

This density property obviously contrasts with the uniqueness of viscosity solutions 

(notion introduced in this context by Crandall-Lions [16]) as established in the quoted 

literature on Hamilton-Jacobi equations in the scalar case. The notion of viscosity solu- 

tion has not yet been extended to the vectorial context, since the definition uses ordering 

of the set of values of u. In particular the notion of maximal solution is not defined in 

the vectorial case. In our approach we prove that  the set of solutions is not empty (and 

in fact it is even dense in V); one then could propose an optimality criterion to select one 

of these solutions. Of course in the scalar case, usually, the best criterion is the viscosity 

o n e .  

2. T h e  q u a s i c o n v e x  case  

We now state the main theorem of this section. 

THEOREM 2.1 (the quasiconvex case). Let ~ c R  n 

WI'~(E2; R m) and f: Rm• satisfy the following hypotheses: 

f is quasiconvex; (2.1) 

there exists a compact convex set K such that K C {~ E Rm• f(~) • 0}; (2.2) 

Q f - = 0  on in tK,  where f - - - - f  on K and +oc otherwise; (2.3) 

D~(x) is compactly contained in int K. (2.4) 

Then there exists uEWl '~ (g t ;  R m) such that 

f (Du(x))  = 0, a.e. x E ~t, (2.5) 

u ( z )  = ~ ( x ) ,  x E 0 ~ .  

Moreover Du(x) E K a.e. 

be an open set, and let ~E 
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Remarks. (i) Q f -  in (2.3) denotes the quasiconvex envelope of f - .  In view of the 

representation formula for Q f -  given in Theorem 7.2 (here we have dropped the index K,  

since there is no ambiguity), the hypothesis (2.3) guarantees that  there exists, for any 

linear boundary datum in K,  a sequence of approximate solutions with gradient in K.  

(ii) The hypothesis (2.3) can be difficult to verify, however we will give a sufficient 

condition in Proposition 2.3. In the (scalar and vectorial) convex case, i.e. when f is 

convex, it is automatically satisfied. 

(iii) Note that  the hypothesis (2.1) of quasiconvexity of f can be removed if we can 

find g satisfying (2.1)-(2.4) of the theorem and such that  

{~ e K:  g(~) = 0} c {~ ~ a re• f ( 0  = 0}. 

This idea will be used in w 

(iv) The hypothesis of compactness of K in (2.2) can be suppressed in some cases 

such as the scalar case (cf. w or the vectorial convex case (cf. w 

(v) Finally the hypothesis (2.4) can be improved if we assume that  

E ci(yt ;  Rm)NWI'~ (f~; Rm), 

cf. the following corollary. 

COROLLARY 2.2 (the CLquasiconvex case). Let ~tCR n be an open set. Let f satisfy 

(2.1), (2.2) and (2.3) of the theorem. Let ~ECi(~2;Rm)NWI,~(~;R m) be such that 

D~(x) E int KU{~ E R'~X~ : f(~) = 0}. (2.6) 

Then there exists uEWi'~ R m) satisfying (2.5). 

Relevant to verify hypothesis (2.3) of Theorem 2.1 is 

PROPOSITION 2.3. A sufficient condition to have (2.3) is that 

R f -  (~) = o for eve . j  ~ ~ int K (2.7) 

where R f -  denotes the rank-one convex envelope of f - .  

Proposition 2.3 is a direct consequence of Theorem 7.2 in the appendix. We now 

turn to the proof of Theorem 2.1. 

Proof of Theorem 2.1. We first observe that  there is no loss of generality in assuming 

that  ~ is bounded. Otherwise we cover f~ by bounded open sets and we solve the problem 

on each set. We divide the proof into three steps. 
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Step 1. We let 

V={uE~+W~'~(~ t ;R  m) :Du(x)EK a.e. in ~2}. 

Note that  ~EV.  Observe that  V is a complete metric space when endowed with the 

L~-norm.  Indeed let {u.} be a Cauchy sequence in V. Since K is bounded we can 

extract  a subsequence {u,~ } which converges weak-* in W 1'~ to a function u. Since K 

is convex and closed, we deduce tha t  uEV. Hence the whole sequence (and not only the 

subsequence) converges to u in L ~ .  Thus V is complete. 

We then let for k E N ,  

1 
Vk= { u E V :  / f (Du(x) )dx>--~} .  

Suppose tha t  we can show that  

�9 Vk is open in V (cf. Step 2); 

�9 Vk is dense in V (cf. Step 3). 

V~ We will then deduce from the Baire category theorem tha t  Nk=l k is dense in V and 

hence nonempty. Observe tha t  any uE Nk~__l Vk is a solution of (2.5). Indeed 

DuEK=> f(Du)<~O~ ==~ f(Du)=O a.e. i n ~ .  

I 

fa f(Du(x)) dx >10J 

Step 2. We now show tha t  Vk is open in V. We will prove tha t  V - V k  is closed. 

Indeed let 
L or 

u~ E V - Vk , u, -----* u. 

We already know tha t  u is in V (cf. Step 1). In fact uEV-Vk,  by the quasiconvexity 

of f .  Indeed from Theorem 7.1, we have 

s r 1 f(Du(x)) dx <<. lim inf f(Du~,(x)) dx <<. ---s 
u - ~  j ~  

Thus V - V k  is closed and hence Vk is open. 

Step 3. It  therefore remains to show that  Vk is dense in V. Let k > 0  be a fixed 

integer. Let v E V and E > 0. We wish to show tha t  we can find 

v~ EVk with ]lv-vcilLcr <E. (2.8) 

We first observe tha t  we can assume, without loss of generality, tha t  

Dv(x) is compactly contained in int K. (2.9) 
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Indeed if this were not the case, using the convexity of K and (2,4), we would replace v 

by (1-t)v+t~ with t sufficiently small to get (2.9). 

We then apply Lemma 6.1 to v and we find v . E W I , ~ ( ~ ;  R m) such that  there exist 

~t~ C~.+1 C ~  open sets with 

' meas(~ t -~v)  ---~0 as ~---~ oc, 

v,  is piecewise affine in ~ ,  

Lcr 
v, ---~ v, (2.10) 

Vv ~ v o n  0 ~ ,  

Dv~ (x) E int K a.e. in ~t. 

We then let ~tv,~ be open sets so that  

= U~=I ~ ,~ ,  (2.11) 
Dv~(x)=A,,~ if x E ~t~,~. 

At this stage we apply (2.3) to A,,~ E int K to get Q f-(A~,~)=0. In view of Theorem 7.2, 
1 , ~  

this equality implies that  we can find ~.,~,z E W~ ( ~ , ~ ; R  m) such that  

dx-  0 as 

~,,~,~ converges weak-, in W 1,~ to 0 as 1--~ c~. 

Defining 

= ~ v~(x) if x E ~ - - ~ ,  
Yr 

[ v~(x)+~,,~,z(x) if x E  ~ , ~  

we have indeed that  v~ E V and, by choosing v and l sufficiently large, that  

Hve-v[iL~ <~ e. (2.12) 

Furthermore 

A 

Therefore, choosing ~, and l larger if necessary, we can ensure that  

s 1 
f(Dv~(x)) dx > --~, 

i.e. v~ E Vk, which is the desired density property required, i.e. (2.8). [] 

We now turn to the proof of Corollary 2.2. 
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Proof of Corollary 2.2. As in Theorem 2.1 we may assume without loss of generality 

that  f~ is bounded. We divide the proof into two steps. 

Step 1. We first define ~o={xe~:f(D~o(x))=O}. By continuity of f and D~o, we 

have that  the set ~t-~t0 is open. We therefore define 

u(x)=~o(x) if x e  fl0. (2.13) 

It remains to solve 

f(Du(x)) =0, a.e. x e f t - g t 0 ,  (2.14) 

u(x) = ~(x) ,  x e O ( a - a o ) .  

By construction we know that  

D~o(x)eintK if x e f~-f~o. (2.15) 

For every t>0,  we let f~t={xef~-~o:dist(D~o(x), OK)=t}. We will show in Step 2 that  

we can find a decreasing sequence tk>0  converging to zero such that  

m e a s ~ t k = 0  for every k e N .  (2.16) 

We then let f~k={aceFt--f~o:tk+l <dist(D~o(x), OK)<tk}. Observe that  gtk is open and 

that  

{ ~ - ~ 0  = U k ~ l  i lk ,  

f~-f~o 0~=1 f ~ k u g  with m e a s N = 0 ,  (2.17) 

Ol2k C 0(12- ~o) U 12 t~ U ~tk+~ 

(the second statement is a consequence of (2.16)). Using Theorem 2.1 on ~k we can then 

find ukeWl,~176 R m) such that  

f(Duk(x))=O, a.e. xeFtk ,  (2.1S) 

uk(z)  = ~o(z), z e Oak. 

Defining 

U(X)={Uk(X) i f x E ~ k ,  

~0(X) if X E ~0 

we find that  u has all the claimed properties. 

Step 2. It therefore remains to show (2.16). To do this we define for k E N  the set 

{ 1 meas f~ t 1 }  

Tk = t > 0: ~ - ~  ~ meas(f~-Do) < " 
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We claim that  this set is finite. Assume for the sake of contradiction that  this is not so. 

We then would get, from the fact 12-f~0=Ut>o ~tDUtET k f~t, that  

1 
meas( a - fro ) ) meas( f~ - fro) E k + 1 

tETk 

meas(12- ~0) 
-- k + l  L 1 = + o c ,  

tETk 

which contradicts the fact that  ~ is bounded. It follows that  the set 

o ~  

{ t > O : m e a s t 2 t > o }  C U Tk 
k = l  

is countable. Therefore the set { t>0:measf~t=0} is dense in [0, 1], and thus (2.16). [] 

3. T h e  n o n c o n v e x  s c a l a r  c a s e  a n d  s y s t e m s  o f  e q u a t i o n s  

We now turn to an application of the results of w The main theorem of this section is 

THEOREM 3.1 (the nonconvex scalar case). Let f~CR ~ be an open set. Let ~E 

WI'cc(~)  and F: Rn- - ,R  be such that 

D~(x)  is compactly contained in i n t co{~ER~:F(~)  =0}  a.e. in ~. (3.1) 

Then there exists uEWl,~(f~)  such that 

F ( D u ( x ) ) = O  a.e. in ~, (3.2) 

u ( x )  = x �9 o a .  

I f  in addition ~ECI(f~) and {~�9 is closed then (3.1) can be replaced by 

D~(x)  �9 int co{~ �9 a n :  F(~) = 0}U{~ �9 Rn:  F(~) = 0}, (3.3) 

and the conclusion (3.2) still holds. 

Remarks. (i) This result is only valid in the scalar case. One should note that  there 

is no hypothesis of convexity, coercivity or even continuity on the function F. 

(ii) The condition (3.1) excludes, as it should do, the linear case, since there 

int co{~ �9 R~:  F(~) = 0} = o.  

(iii) If F is convex and coercive then (cf. w 

int co{~ �9 R~:  F(~) = 0}U{~ �9 R~:  F(~) = 0} = {~ �9 Rn:  F(~) ~< 0}. 
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(iv) The condition (3.3) seems to be optimal. In general it cannot be replaced by 

Dg~(x) E co{r E Rn :  F(r = 0}. 

Indeed let n = 2  and F( r162  2. Then 

co{r e n ~ :  F( r  = 0} = {~ = (r r E n2:I~1 I, 1r ~< 1}. 

Choose then ~(x, y )=x+f ly  with Ifll < 1. Note that  

(1, fl) E co{F(r = 0} but (1, fl) • int co{F(r = 0}U{F(r = 0}. 

Let us show that,  if for example f t=(0,  1) 2, then the problem 

F(Ou/Ox, Ou/Oy) = 0  a.e. in ft, (3.4) 

u(x, y) = x + fly on Oft 

has no solution. Indeed we have 

I(o ) /ol(Ou) Ox dx= 1 -  dx= l -u (1 ,y )+u(O,y )=O.  

This implies that 

Ou O~x x Ox 1 a.e. 

We therefore deduce that there exists •: (0, 1)---*R such that 

{ u(x ,  y) = x + ~ ( y ) ,  

I r  1 a.e., 

~ ( y )  = Zy if (z,  y) e oft .  

This is of course impossible since I~l < 1. 

We now turn to applications of Theorem 3.1. 

COROLLARY 3.2 (prescribed gradient values). Let ~ c R  n be an open set; let E be 

any subset of R ~ and ~ E W l ' ~ ( f t )  be such that 

D~(x) is compactly contained in i n t c o E  a.e. in ~. (3.5) 

Then there exists u E W l , ~ ( f t )  such that 

Du(x )EE ,  a.e. xEl2, (3.6) 

u(x)  = ~(x) ,  x ~ 0 ~ .  

If  in addition ~ECI(Ft)  and E is closed then (3.5) can be replaced by 

D ~ ( x ) E E U i n t c o E ,  xE f t .  (3.7) 

Remark. This result has also been proved by Cellina [12] when qp is linear. 
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COROLLARY 3.3 (system of equations). Let ~ c R  n be an open set. Let also ~ � 9  

C l ( ~ ) c I w l ' ~  and Fi:Rn--*R, l <~ i<~ N, be such that {~�9  . . . . .  FN(~)--~O} 

is closed and 

D~(x) �9 int co{~ �9 R~: F1 (~) . . . . .  FN (~) = 0} U {~ �9 Rn:  F1 (~) . . . . .  FN (~) = 0}. (3.8) 

Then there exists u � 9 1 7 6  such that 

{ F~(Du(x)) = 0 (3.9) a.e. in ~, l <~i<~N, 

x �9 Of~. 

Remarks. (i) If ~ is only in W l ' ~ ( ~ ) ,  then the same theorem holds with (3.8) 

replaced by 

Dqo(x) is compactly contained in int co{~ �9 Rn:  Fi(~) =0 ,  1 <~i<~N}. (3.10) 

(ii) As before one should note that  no hypothesis on Fi, besides (3.8) or (3.10), is 

made. 

We now proceed with the proofs. 

Proof of Theorem 3.1. The idea of the proof is to find f :Rn- -+R and K satisfying 

all the hypotheses of Theorem 2.1 and such that  

{~ E K: f(~) = 0} C {~ E Rn: F(~) = 0}. (3.11) 

The conclusion following from Theorem 2.1 and (3.1 I), i.e. there exists u E W 1'~ (f~) such 

that 

f (Du(x))  = F(Du(x)) ---- 0 a.e. in f~, 

u ( x )  = o n  

We divide the proof into three steps. As usual we will assume, without loss of 

generality, that  ~ is bounded. In the first two steps we assume only that  ~EWI'~ 

Step 1. Since (3.1) holds we can find a convex and compact set L c R  n such that  

D~(x) e L C int co{r �9 Rn:  F(~) ---- 0}. (3.12) 

We can then find a polytope P (cf. the proof of Theorem 20.4 in Rockafellar [35]) with 

the following property: 

P -- co{~/1, ..., ~TN}, (3.13) 

L C int P C P C int co{~ �9 Rn:  F(~) = 0}. 
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We then use the Carath~odory theorem (cf. Theorem 17.1 in Rockafellar [35]) to write 

n + l  

7 k = Z  k k k Aif ~ where f ~ e { f e l ~ n : F ( f ) = 0 } .  (3.14) 

i=1 

This is possible since 7 k E P C c o { f e R ~ : F ( f ) = 0 } .  Combining (3.12), (3.13) and (3.14) 

we find that  D~(x)ELCintPCPCco{fll, 1 ---, in+l,  ..., N i n + l } "  

Among the {f11,..., 1 i n + l ,  f l  N, N �9 -', "-', fn+l } we remove all the fi k which are convex com- 

binations of the others (i.e. we keep only those which are extreme points) and we relabel 

the remaining ones as {fl,-.-, is}. Therefore summarizing what we have just obtained, 

we can write 

{ D~(x)  E i C int co(~1, ..., is}, 

F ( f i )  = 0, (3.15) 

none of the fi is a convex combination of the other ones. 

We then define g: Rn--- ,R=Rt.J{+oc} by 

{ -minl<.~<8{lf - f i [}  if f e c o { f l  , . . . , is},  

g(f) = +oc otherwise. 

We finally define f as the convex envelope of g, i.e. f(f)=Cg(f), and let 

K = co{f1,-.. ,is}- (3.16) 

Since f is finite only over K,  we redefine it outside as a convex function taking only finite 

values. This is always possible since g is Lipschitz over K with constant 1 and Cg has 

the same property. Indeed if f,  f + T c K ,  then by the Carath6odory theorem and since K 

is compact we can find (hi, fi) with f = ~  ~ifi and 

n + l  n + l  

c g ( f + 7 ) -  c g ( f )  = c g ( f + 7 ) -  x g(f ) <. x [g(f  < 171. 
i=1 i=1 

Since f and 7 are arbi trary we have indeed that  Cg is Lipschitz with constant 1 over K 

and hence it can be extended outside K in a convex and finite way. 

Step 2. Before checking that  f has all the claimed properties, we establish the fact: 

if f E K then the following property holds: 

f ( f ) = 0  *~ f E { f l , - . . , f s } .  (3.17) 

( ~ )  If f r {f~, ..., is } and f C K then g(f) < 0 and since f (f) = Cg(f) <~ g(f),  we deduce 

the result f ( f )  <0. 
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( ~ )  So let ~ E {~1, ..., ~s }. Then by definition and by the Carath~odory theorem 

( n + l  n + l  } 

f (~) = Cg(~) = inf ~ E "~ig(l]i): E ~i?Ti : ~, Vii E K 
" i ~ 1  i ~ 1  

(here the infimum is actually a minimum since K is compact). Since by (3.15) the ~ are 

extreme points (i.e. none of them is a convex combination of the others) we deduce that  

f(~i)=g(~i)=O and hence (3.17) is established. 

We are now in a position to prove that  f satisfy all the hypotheses of Theorem 2.1. 

�9 By definition f is convex, hence (2.1) is established. 

�9 By construction K satisfies (2.2). 

�9 Since we are in the scalar case, (2.3) amounts to prove that  C f - ( ~ ) = 0  for every ~E 

int K.  Indeed every ~ E K  can be written by the Carath~odory theorem as =z_~i=l 

Hence 

0 < C f - ( ~ ) = i n f  - # i f ( ~ ) : ~ E g a n d  E # i ~ ? i = ~  ~<- ~ i f ( ~ i ) = 0  
i~1 i = l  i = l  

where we have used (3.17). Hence (2.3) is established. 

�9 D~(x) is compactly contained in i n t K  by (3.15) and thus (2.4) is proved. 

So we may now apply Theorem 2.1 and find uE~+W~'~(~t) such that  

f(Du(x)) = 0  a.e. in ~t and Du(x)EK a.e. (3.18) 

Observe finally that  by (3.15) and (3.17) we have 

{~ E K :  f(~) = 0} C {~ E R~: F(~) = 0}. (3.19) 

Combining (3.18) and (3.19) we have indeed established the theorem in the case ~E 

Step 3. If ~ECI(~) ,  we then follow exactly the proof of Corollary 2.2, applied to f 

and K as above. [] 

Proof of Corollary 3.2. We just set 

{o 
F ( ~ ) =  1 

and then apply Theorem 3.1. 

Proof of Corollary 3.3. We just set 

N 

if ~EE,  

i f ~ E  

: 2 

i : 1  

[] 

and then apply Theorem 3.1. [] 
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4. T h e  convex  case (scalar  a n d  vec tor ia l )  

THEOREM 4.1 (the convex case). Let ~ c R  n be an open set. Let ~ E W I ' ~ ( i t ; R  m) and 

f :  Rm• satisfy 

f is convex; (4.1) 

there exists A E R m• with rank {A} = 1 such that 

lim f(~+tA) = +oc for every ~ E RmX~; (4.2) 
Itl-*o~ 

there exists ~ > 0 such that f ( D ~ ( x ) )  <~ - 6 ,  a.e. x E f~. (4.3) 

Then there exists uEWl'~176 R m) such that 

f ( n u ( x ) ) = O ,  a.e. x e i t ,  (4.4) 

u(x) = ~(x),  x ~ ~. 

I f  in addition ~6Cl ( i t ;  R m) then (4.3) can be replaced by 

f ( D ~ ( x ) )  <~ 0 for every x E it (4.5) 

and the same conclusion holds. 

Remarks. (i) Note that  in the scalar case, (4.2) means that  f is coercive in at least 

one direction. In the vectorial case this direction should be of rank one. In this sense 

the coercivity condition is weaker than the usual one (cf. Lions [29]). 

(ii) In the calculus of variations it is often more desirable to write the above theorem 

in the following form: Let K c R  m• be convex and bounded in at least one direction of 

rank one (cf. (4.2)) and let ~EWI,~(12; R TM) be such that  D~(x)  is compactly contained 

in K.  Then there exists u E W01'~ (it; R m) with Du (x) E OK (cf. Lemma 3.5 of Dacorogna- 

Marcellini [19] or, in the bounded scalar case, Lions [29], Mascolo-Schianchi [31]). 

(iii) One can also deduce the vectorial version of the theorem by choosing m - 1  

components equal to those of the boundary datum. Of course to do this one needs to 

have an existence theorem for Carath4odory functions of the form f ( x ,  Du). 

Proof of Theorem 4.1. We divide the proof into two steps. 

Step 1. We first prove the theorem under hyptheses (4.1), (4.2) and (4.3). We just 

have to find K such that  we can apply Theorem 2.1. We observe that  by (4.3) we can 

find, trivially, a compact and convex set L such that  

{ D~(x) is compactly contained in int L, (4.6) 

L c int{~ E RmXn: f(~) <~ 0}. 
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We then define 

K = {~ E RmXn: f(~) ~< 0 and there exists (~, t) E L x R with ~ = ~+tA}. (4.7) 

Observe that  K is compact and convex, since f is convex and satisfies (4.2). Therefore 

hypotheses (2.1) and (2.2) of Theorem 2.1 are satisfied. Note that  (2.4) is verified in view 

of (4.6). We therefore only need to show (2.3). To do this, in view of Proposition 2.3, it 

is sufficient to prove that  

R f -  (~) = 0 for every ~ E g .  (4.8) 

Since (4.2) holds we can write any ~ E K  as 

r / =  s ({+ t lA)+  (1-s)({+t2A) 

where sE [0, 1], EEL and f ({+tlA)=f({+t2A)=O. Therefore in view of the general for- 

mula for R f  we have 

0 <. R f - (~ )  <. s f - (~+t lA)+(1-s ) f - (~+t2A)  = 0 

and thus (4.8) is established and the first part of the theorem as well. 

Step 2. We now assume that,  in addition, ~ECI(~t ;Rm);  we proceed as in Corol- 

lary 2.2 and obtain the result. [] 

5. T h e  p r e s c r i b e d  s ingu la r  va lues  case 

We recall that,  given ~ER nxn, we denote by 0~A1 (~)~<... ~An(~) the singular values of 

(i.e. the eigenvalues of (~t~)1/2). The main theorem of this section is 

THEOREM 5.1 (the singular values case). Let ~ be an open set of R n, and let 

~EWI'~ R n) be such that there exists 5>0 satisfying 

An(D~(x)) < 1 -5  a.e. in ~. (5.1) 

Then there exists u E W I ' ~ ( ~ ;  R n) such that 

Ai(Du(x)) < 1 a.e. in ~, i = 1,..., n, (5.2) 

u(x)  = ~ (x ) ,  x ~ 0 ~ .  
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If  in addition ~ E C I ( F t ; R  n) then (5.1) can be replaced by: for every x E ~  one of the 

following conditions holds: 

either An(D~(x)) < 1 or A i ( D ~ ( x ) ) = l  for every i = l , . . . , n ,  (5.3) 

and the same conclusion holds. 

Remarks. (i) In the case when n=3, ~=0 ,  Cellina-Perrotta [13] have proved the 

same result. 

(ii) As already mentioned the above theorem proves in particular that, if n=2 ,  one 

can solve the problem 

IDul2 = 2, Idet Du] = 1 

with the boundary datum u =  ~. This shows in some sense that we can solve at the same 

time the eikonal equation with the modulus of the Jacobian given. 

The theorem admits a corollary. 

COROLLARY 5.2. (1) Let f t c R  n be an open set. Let A E R  n• be defined by 

(: o) 
an 

with O<al <~a~ <<....~an. Let ~EWI,~(f~;  N n) be such that there exists REO(n)  and 5>0  

satisfying 

An(D~(x)RA -1) <~ 1 - 5  a.e. in a. (5.4) 

Then there exists u E W I, ~176 ( ~; R n) such that 

{ )~i(Du(x))=ai a.e. i n ' t ,  l<~i<.n, 
(5.5) 

u ( x )  = x 

(2) If  in addition ~ E C I ( ~ ; R  n) then (5.4) can be replaced by: for every x E ~ ,  one 

of the following conditions hold: 

) ,n (Dp(x)RA -1) < 1, 

)~i(D~(x)RA -1) = 1, 1 ~ i ~ n. 

(5.6) 

(5.7) 

(3) If  ~ is a.O~ne then (5.4) is satisfied if 

Ai(D~(x))  < ai in ~, 1 <~ i <~ n. (5.8) 
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Remark. Contrary to (5.1) and (5.3) which are essentially optimal, it does not seem 

that  (5.4), (5.6), (5.7) or (5.8) are optimal when the a~s are different. 

We may now proceed with the proof of Theorem 5.1. 

Proof of Theorem 5.1. We divide the proof into two steps. 

Step 1. We first consider the Wl,~-case  with inequality (5.1) satisfied. We want to 

construct f and K as in Theorem 2.1. We let 

n (n)] 

and let 

K = c o { ~  E Rn• Ai(~)= 1 , 1~< i ~< n} = {~ e Rn• A,~(~) ~< 1}. (5.10) 

We now check that  f and K satisfy all the hypotheses of Theorem 2.1. 

�9 f is polyconvex and thus quasiconvex. Therefore it satisfies (2.1). 

�9 gc{~ERn• since 

l ~ i l < . . , < i s ~ n  

�9 Q f - ( ~ ) = 0  for every ~Eint K.  This comes from Proposition 2.3 and the fact that  

R f -  (~) = 0 for every { E K 

and will be proved below. 

�9 D~a(x) is compactly contained in i n t K  by (5.1). 

So we may apply Theorem 2.1 and deduce that  we can find uE~a+W~'~(~t ;R m) 

such that  

f(Du(x))=O a.e. in fl and Du(x)eK a.e. 

Since for every { E K  we have f({)~<0, we deduce that  

]adjsDu]2=(:) r ~i(Du)=l a.e. in~, l ~ i ~ n ,  

and (5.2) has been established. 

So it now remains to establish that  

R f -  = 0 for every ~ E K. (5.11) 
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We first observe tha t  since f - t > 0 ,  then 

R f -  >~ 0 for every ~ E K. (5.12) 

We then use the invariance under rotations of f to deduce that  it is enough to establish 

(5.11) for matrices 

(o 0) ( = "-. (5.13) 

an 

with 0~<al ~<...~<an~<l. This is easily established observing tha t  

o ) ( o l  o) 
1 ( 1 + a l  ) a2 a2 = ... + 1 ( 1 - a l )  ... . (5.14) 

an an 

Since the two matrices on the right-hand side differ by rank one we find (since R f -  is 

rank-one convex) 1 0 ) ( 1  0 
0 <~ R f - ( ~ )  <<. � 8 9  a2 a2 �9 .. + � 8 9  ... 

0 a,~ 0 a,~ 

Therefore to deduce (5.11) it is enough if we can show that  0) 
R f -  a2 . = 0. (5.15) 

0 an 

We then iterate the process and write 

a2 = �89 a3 + �89  a3 . 

". .  *. 

0 an 0 an an 

Again the two matrices on the right-hand side differ by rank one so tha t  0) 
0 <~ R f -  a2 "-. 

an 

1 

a3 

an I 
-I-1 0 I - 1  

+ � 8 9  a3 . . 

0 an 
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Therefore, to establish (5.11) it is enough to show that 0) 
=kl 

R f -  a3 . =0 .  (5.16) 

an 

Proceeding analogously with a3, ..., an we see that a sufficient condition for having (5.11) 

is that 

RI-  

O 

and this is obvious since (5.12) holds and 

f -  (-4-10 

0) 
•  = 0  

d:l 

",o 
0 ) = 0 .  

~:1 

Step 2. We next consider the Cl-case and this is treated exactly as in Corollary 2.2. 

This achieves the proof of this theorem. [] 

We now turn to the proof of Corollary 5.2. 

Proof of Corollary 5.2. We divide the proof into 3 steps, the first two establishing 

parts (1) and (2), and the last one part (3). 

Step 1. Let R and A be as in (5.4). We let 

B = A R  1, 

~t = B a ,  (5.17) 

r = v ( B - l y ) ,  y �9 5. 

We therefore have from (5.4) 

An(De(y)) =- An(D~(B-ly)RA -1) < 1-5 a.e. in ~. (5.18) 

We may therefore apply Theorem 5.1 and obtain vEWI'~ R n) such that 

{ )~i(Dv(y)) = 1, a.e. y e 5,  i = 1, n, 

v(y) = r y e 05.  
(5.19) 

Step 2. We now verify that 

u(x) = v ( B x )  (5.20) 
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has all the claimed properties, i.e. uEWl'~ R '~) and 

{ Ai(Du(x) )=ai ,  a.e. x e l 2 ,  i = l , . . . , n ,  (5.21) 

u(x) = x �9 

The boundary condition is satisfied by combining (5.17) and (5.19). We furthermore 

have by (5.20) that  

Ai(Du(x)) =A~(Dv(Sx)B) ,  x �9 12. (5.22) 

We now show that  (5.22) implies (5.21). To prove this we first use the invariance by 

rotation of the singular values Ai and the fact that  B = A R  -1 to deduce that  

Ai(Du(x)) = Ai(Dv(Bx)A) .  

Furthermore since Ai(Dv)=I ,  we deduce that  DvEO(n) ,  i.e. it is an orthogonal trans- 

formation. Using again the invariance of Ai under the action of O(n) we deduce that  

Ai(Du(x))=Ai(A)=ai ,  which establishes (1) of the corollary. (2) is as usual a combina- 

tion of (1) and the same argument as in Corollary 2.2. 

Step 3. It now remains to establish (3), so we assume that  ~ is affine and set D~=~ .  

We can then find P, P'EO(n)  and 0~<al ~<...~an such that  

a l  0 ) 

= P ".. p,. 

0 ~n 

Hence (5.6) is equivalent to o ) ) ( ( :  o) ) 
An P "" P 'RA  -1 =An "'. P 'RA  -1 <1. 

O~ n C~n 

( 5 . 2 3 )  

It is then clear that  the best choice in (5.23) consists in choosing p t R = I .  Hence we 

[] 

obtain ((o17 0)) 
An "'. < 1 

OZn/an 

which implies hi~hi < 1 ~ Ai(~) <hi. 

6. Appendix: Some approximation lemmas 

We give here two approximation lemmas which present minor modifications to standard 

results. The first one is a basic finite element approximation. Since however it presents 

some refinements we will give here a complete proof. 
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LEMMA 6.1 (finite element approximation). Let f t c R  n be a bounded open set. Let 

K be a compact and convex set of R mxn with nonempty interior. Let uEWl'~176 R m) 

be such that 

Du(x)  is compactly contained in int K. (6.1) 

Then there exist open sets f t ,  Cf t  and u ,  EWl ,~( f t ;  a m) such that 

f t ,  Cft~+l  and meas ( f t - f t~ ) -~0  as u--+ cr 

uu is piecewise aJfine on flu; 

u~ = u on Oft; 

u ,  ~ u uniformly in ft; 

D u , - - ~ D u  a.e. in ft; 

[[Duu[[LOO <~ [[DU[[Lo~+C(~), with c(u)--+0 as u--+oe; 

Du~ (x) is compactly contained in int K, a.e. x E ft. 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

Remark. The difference between this lemma and standard ones (cf. for example 

Ekeland-T6mam [24]) is that  this lemma is vectorial and at the same time the approxi- 

mation should satisfy (6.8). Note that  (6.7) is, in some sense, a consequence of (6.8). 

Proof. We divide the proof into three steps. 

Step 1 (regularisation of u). We first note that  by hypothesis we can find a compact 

and convex set L such that  

On(x)  E L C int K a.e. in ft. (6.9) 

Let c>0.  We can then find an open set O with Lipschitz boundary (for example a finite 

union of balls), compactly contained in ft and such that  

meas ( f t -  O) ~< c. (6.10) 

We then let s E N and regularize each component of u by convolution with an appropriate 

kernel Qs and let 

so that  w~ EC~(() ;  R m) and 

{ 
ws(x) = / R ~ s ( x - - y ) u ( y )  dy (6.11) 

Ilw --UllL (O) 1/s 2, 

Dw~--~ Du a.e. in 0 ,  

IIDwsllz (o) IlVullz (o), 
Dws(x)  E L for every x E O. 

(6.12) 
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The last two conclusions hold since the process of convolution involves convex combina- 

tions (and L is convex). 

Step 2 (piecewise approximation). We then use standard finite elements to approxi- 

mate ws (cf., for example, Proposition 2.1 of Chapter  X of Ekeland-T6mam [24]) to find 

oo piecewise affine functions {ws,i}i=l on O such that  

( w~,i -+ w, uniformly in O as i --+ oo, 

Dw~,i --+ Dw~ uniformly in O as i --+ oo, (6.13) 

IIDws,~llz~r <<. IIDw~IIL~(O). 

(The uniform convergence of the gradient is on the whole of O, since ws is also defined 

outside O.) 

Step 3. The problem is then just to match the boundaxy condition and to verify all 

the claimed properties. We then define ~s to be an open set such that  

{ fl~ c O c ~1, (6.14) 

dist(f~s, 0 0 )  = 1/s. 

We next let r/sEC~176 satisfy 

0 i fxEO0,  

{ 1  i fxE122, ,  
~?~(x) 

0 ~ ~?~(x) ~ 1 for every x E 12, (6.15) 

]]D~s IIL~ (O) ~< aS (for a certain a ~ 1). 

We now return to (6.13) and choose i sufficiently large so that  

Itws,i-Ws ]Iw',~(o) ~< 1/s 2. (6.16) 

We are now in a position to define us. We let 

S ~s(x)w~,i(x)+(1-ys(x))u(x) if x E  O, 
Us(X) (6.17) 

(u(x) i f  x E f t - O .  

We now verify all the claimed properties. 

�9 Choosing appropriately r in (6.10) and s in (6.14) we have indeed (6.2). 

�9 By construction us is piecewise affine on f~, and so (6.3) is satisfied. 

�9 us = u  on 0f~, i.e. (6.4) holds. 

�9 We have indeed (6.5), since 

Ilus - u l l z ~ ( ~ )  = II~ (w~,~-u)IlL~(o) -< II~,,-~, IIL~(O) + Ilws-ullL~(o) -< 2/s 2 
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by (6.12) and (6.16). 

�9 We next prove (6.6). By definition we have 

Du~ - Du = ~ (Dws,i - Du) + D ~  | (w~,i - u), 

and (6.6) follows from (6.12), (6.15) and (6.16). 

�9 To establish (6.7) we just observe that 

Dus = ~lsDw,,i + (1-r ls )Du+Dr~,  | (w,,i - u ) ,  (6.18) 

and combine it with (6.12), (6.13), (6.15) and (6.16). 

�9 Finally we have (6.8). Indeed by (6.12) and (6.13) Dws,~ is compactly contained 

in int K and by (6.9) Du is also compactly contained in int K. Thus since K is convex 

we deduce that ~ D w s , i + ( 1 - ~ 8 ) D u  is compactly contained in int K. Since finally the 

last term in (6.18) is as small as we want by (6.12), (6.15) and (6.16) we deduce (6.8). 

This achieves the proof of the lemma. [] 

We conclude this section by a second approximation lemma which is used to prove 

necessary conditions in the calculus of variations (see e.g. Ekeland-T~mam [24] or Da- 

corogna [17]). The version given below is slightly stronger than the existing ones. 

LEMMA 6.2. Let ~ c R  n be a bounded open set. Let K c R  mxn be a convex set with 

nonempty interior. Let A, B e K  with r a n k { A - B } ~ l  and hE[0, 1], and let ~>0. Then 

there exist ~1, ~2 C~,  open disjoint sets, and ~EW~'~ (~ ;  R m) such that 

Imeas ~ I - A  meas DI, Imeas ~ 2 - ( 1 - A ) m e a s  f't I <~; (6.19) 

I~(x)I ~<~ for every x E f t ;  (6.20) 

A A + ( 1 - ) ~ ) B + D ~ ( x )  is compactly contained in int K for a.e. x Eft; (6.21) 

I A A + ( 1 - A ) B + D ~ ( x ) - A ]  <~, a.e. x e f t l ;  (6.22) 

I A A + ( 1 - A ) B + D ~ ( x ) - B ]  <~, a.e. x e ~ 2 .  (6.23) 

Proof. Except for the condition (6.21), this lemma can be found for example in 

Dacorogna [17]. We divide the proof into two steps. 

Step 1. We start by assuming that A, BCint  K; otherwise we proceed by approxi- 

mation. We also will assume that (o:0 
A - B  = C = i . (6.24) 

0 
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This  is not  a loss of generality, since we can always find R and Q invertible, with det  Q =  1, 

such tha t  

A- B = RCQ 

(this comes from the fact tha t  r a n k { A - B }  ~ 1). We then  set 

{ ~=R-ZKQ -1, 

= QD ( 3  meas ~ = meas gt), 

/i=R-1AQ-1, ~=R-1BQ -1. 

We then  use the lemma (cf. Step 2) and find 121, ~2 and ~ 6 W ~ ' ~ ( ~ ;  R m) with all the  

claimed propert ies.  Set t ing 

{ ~(x)  = n~(Qx), x �9 12, 

~i=Q-l~i, i =  1,2, 

we will immediate ly  obta in  the lemma. 

Step 2. So from now on we will assume tha t  A and B satisfy (6.24) and A, B E i n t  K .  

We then express ~ as a union of  cubes whose faces are parallel to the axis and a set of 

small measure.  We set ~ - -0  on this last set and we do the const ruct ion on each cube. 

So, wi thout  loss of generality, we assume tha t  12 is the unit  cube. 

We then  reason component  by component .  We let N be a fixed integer and define 

~iEW~'~(O, 1), l~i<~m, so tha t  

measlN = A, meas JN = ( 1 - I ) ,  

~b~(Xl) = - )~i on IN, (6.25) 

A on Jg, 
r = r = 0, 

fr < 5(N),  where as 

We then  denote  by 12~= (v/6, 1 -  v ~  )n-1 and observe therefore tha t  

(0, 1) ~ = (0, 1) • ~ 6 U ( 0 ,  1) x ~ 

where ~ = ( 0 ,  1 ) n -  ft~. 

We then  define ~ / �9  1) n) to  be any function so tha t  

/ 
~(x) = 1 if x �9 (0, 1) x 126, 

y(x)  = 0 if Xz �9 (0, 1) and (x2, ..., xn)  �9 0(0, 1) n - l ,  (6.26) 

0 ~< ~(x) ~< 1 for every x �9 (0, 1) n, 

IDv(x)I ~< a/v~ in (0, 1) ~ (for a certain a > 0). 
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We then let 

~(x) = (~1, ..., ~m) = T](X)(~/)l (Xl), ..., ~2m (Xl)). (6.27) 

Note that ~ = 0  on 0ft. Indeed if Xl=O or X l = l ,  we have r  by (6.25) and if 

(x2, ...,Xn)eO(O, 1) n - l ,  then q =0  by (6.26). Furthermore 

{ 
0~i 

O qa i O~ 
OXk Oxk r if k ~> 2. 

Since by (6.25) and (6.26) (Oy/Oxk)r is as small as we want and since ~---1 in (0, 1) • 

we have indeed obtained the result by setting ~ l = I g  •  and ~ 2 = J N  • ~5. [] 

7. A p p e n d i x :  Po lyconvexi ty~  quasiconvexi ty~ r a n k - o n e  c o n v e x i t y  

We gather here some of the most important notions and results that  we used throughout 

the article. We refer for a more extensive discussion to Dacorogna [17]. We start with 

the following definition. 

Definition. Let f:  R'~x~--~R. 

(i) f is said to be rank-one convex if 

f(t~ +(1-t)y) <. t f ( ~ ) + ( 1 - t ) f ( ~ )  (7.1) 

for every t e  [0, 1], ~, ~ e R  m• with rank {~-~/}E1. 

(ii) f is said to be quasiconvex if f is Borel measurable, locally integrable and satisfies 

f(~) .meas ~ ~< f~  f(~+Du(x)) dx (7.2) 

for every bounded domain ~ C R  n, every ~ E R  mx'~ and every uEWl'~ Rm). 

(iii) Let for se{1,  2, ..., man}, where mAn=min{m, n}, adj s ~ denote the matrix of 

all (s • s)-minors of ~ E R  m• Denote 

()() a(s)= m n and Tim ,n)= E a(s). 
8 8 s=l 

Finally let, for ~ER m• 

T(~) --- (~, adj2 ~, ..., adj,~^ n ~) E R ~(m'~) �9 
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We say that  f:  R m •  is polyconvex if there exists g: R ~ ( m ' n ) ~ R  convex such that  

f(~) = g(T(~)). (7.3) 

In particular if r e = n = 2  then T({)=({,  det {)ER2X2 x R ~ R  5 and T(2, 2)=5. 

Before giving examples we recall the well-known fact that  

f convex ~ f polyconvex :=> f quasiconvex => f rank-one convex. (7.4) 

All the counter implications are false (for the last one at least when m>~3; cf. 

SverAk [37]). 

Examples. (i) Let m = n .  For ~ E R  n• denote by 

0 ~< AI(~) ~< A2(~) < ... < A,(~) 

the singular values of ~ (i.e. eigenvalues of (~t~)1/2). It is well known that (cf. Proposi- 

tion 1.2 in the appendix in Dacorogna [17], or w in Dacorogna-Marcellini [19]) 

~---~An(~) is convex. (7.5) 

Furthermore 
2 ~ A 2 I~1 - - ~ = 1 [  ~(~)] , 

i adj8 ~12 = ~1<i~ <...<i~<n A?~ ... Ai ~2 , 

I det 51 = H i L l  h i .  

The function 

~ ~ [adj8 ~l 2 is polyconvex. (7.6) 

s : l  

(ii) If r e : n : 2 ,  7 E R  and 

f~(~) = 1~12(1~12- 2-y det ~) 

then (cf. Dacorogna-Marcellini [18] and Alibert-Dacorogna [2]) 

2 A is convex r h'l~< ~v~ ,  

f~ is polyconvex r [71~<1, 

f~ is quasiconvex r 17[ ~< l + e  for a certain ~ > 0, 

f.y is rank-one convex ca I~1 ~< 2/v~.  

The main theorem which justifies the notion of quasiconvexity is the following es- 

tablished by Morrey [33] and refined by many authors, cf. Meyers [32], Acerbi-Fusco [1] 

and Marcellini [30]. 
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THEOREM 7.1. Let gt be a bounded open set of R n. Let f :Rm•  be quasi- 

convex. If u~ converges weak-, to u in WI,~(g~; Rm), then 

lim_,inf ~ f(Du~(x)) dx ~ ~ f(Du(x) ) dx. (7.7) 

Remark. The theorem admits also a converse, but we shall not need it here, i.e. 

quasiconvexity is also necessary for lower semicontinuity. 

We also need the notion of convex envelopes of a given function. For f:  Rm• 

we let 

Cf  = sup{~ ~ f : ~ convex}, 

P f  -- sup{~ ~< f : ~ polyconvex}, 

Qf  = sup{~ ~< f : ~ quasiconvex}, 

R f  = sup{~ ~< f : ~ rank-one convex}. 

In view of (7.4) we always have 

Cf  <~ P f  <~ Qf  <~ R f  <~ f. (7.8) 

For more details about  these envelopes we refer to Dacorogna [17]. 

We finally need to establish a representation formula for the quasiconvex envelope 

(this formula is used in Theorem 2.1). 

THEOREM 7.2. Let ~ C R  n be a bounded open set. Let K c R  m• be a compact and 

convex set with nonempty interior. Let g: K-~ R be continuous. Define for ~ E K 

Q K g ( ~ ) = i n f m  Hi2 g(~+Du(x))dx:uEW~' ( n ; R ) , ~ + D u ( x ) e K .  (7.9) 

Then the definition of QKg is independent of ~; moreover QKg satisfies 

{ fn QKg(~ + Du(x) ) dx >i QKg(~)'meas n, 

~ E i n t K ,  uEW~'~(~ t ;R '~ ) ,  ~+Du(x)EK a.e. in 

and 

QKg(~) <~ RKg(~) for every ~ E int K 

where RKg is the rank-one convex envelope of the function g (extended to be +co out- 

side K). Furthermore for every ~ E K , there exists u~ E W~'~ ( ~; R m) such that 

{ fn g(~+Du~(x)) dx --* QKg(~)'meas 12, 

~+Du~(x)EK a.e., 

u, converges weak-, to 0 in W 1'~. 
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Remark. When K = R  mxn, this is the formula established by Dacorogna [17] and it 

gives that  Qg is the quasiconvex envelope of g. However, we have to reproduce the proof 

in this case since the notion of quasiconvexity on part of R mxn is not well established. 

Here we use strongly the fact that  K is convex, otherwise the problem is open. 

Proof. We divide the proof into 6 steps. For simplicity we do not denote the depen- 

dence of QKg on K and we use the symbol Qg to denote the infimum in (7.9). 

Step 1. We first prove that  the definition of Qg is independent of the choice of ~t. 

So let C c R  '~ be the unit cube and g t c R  n be an arbitrary bounded open set. Let 

Qgc(~)=inf{m?asC /cg(~+Du(x))dx:uEWJ'~(C;Rm),~+Du(x)CKa.e. } (7.10) 

and Qg~ be defined similarly with C replaced by 12. We wish to show that  

Qga = Qgc. (7.11) 

To do this we first observe that  if x E R  n, A>0 and C~(x)=x+AC, then by a change of 

variable 

Qgc = Qgc~(=). (7.12) 

We then fix r  Since gt is open and bounded we can find xiE~t, Ai>0, 1<.i<~I, such 

that  { meas(a-U[_ 1 C,x, (xi)) ~<c, 

Cx, (xi) C gt, (7.13) 

Cx, (x~)NCxj (xj) = Z if i ~ j .  

Using (7.10) and (7.12) we can find uieW~'~ Rm), ~+Dui(x)EK a.e. so that  

Iv g(~+Dui(x)) dx <~ (r C~, (xi). 

Defining next uEWJ'~~ R m) by 

we find that  

u(x)=~ui(x) ifxeCx,(xi), 

t 0 ifxE~-U~_lC~(xi), 

Qga(~) .meas ~ < ~ g(~+Du(x)) dx 

' 

<~g(~)'meas(~-U1C),,(xi))+ 

(7.14) 
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Combining (7.13), (7.14) and the arbitrariness of e we get 

Qga <~ Qgc. (7.15) 

The reverse inequality is proved similarly. First assume that  ~ is a union of cubes. 

If we denote by ~ti translation and dilation of ~ we have as in (7.12) that  Qga, =Qga. 
We can then for ~>0 find ~ti such that  

m e a s ( C - U f =  a i ) ~ r  

f~i C C, 

Ft~nf~j = ~  if iCj  

and obtain as in (7.15) 

Qge <~ Qg~. 

If ft is any open set we can find for every e>O, xiEft, Ai>O, 1<~i<.I, such that 

meas(  l (xd-a) < 

(7.16) 

and then proceed as in (7.15) to get Qguc~ <~Qga. 
Using then (7.16) we have indeed established the reverse of (7.15) and thus Step 1. 

Step 2. We then show the following: 

Qg is continuous on int K, 

lira sup Qg(~.) <~ Qg(~) 

~ E int K 

(7.17) 

for every s c E OK. (7.18) 

From Step 1 we see that  there is no loss of generality in assuming that  meas l~ = 1. Since 

g is continuous over K (compact) we have that,  for every ~ > 0, there exists 51 =51 (e)>0 

such that  

~< lc.  (7.19) 

We first show (7.17). Let ~E in tK .  Then, by definition, we can find for every e>0,  

1/171,~ {O ~ E , , 0  ~o~;R m) such tha t  

{ Qg(~)~ -�89 g(~+Dcp(x))dx, 
(7.20) 

~+D~(x)EK a.e. 

We then recall that  since K is bounded we can find M > 0  so that  

E K  ~ ]~[~<M. (7.21) 
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We therefore define 
(51(g') . .  . ~" 51(s  "~ 

t =  --~---/~-/\ 1 = m m  el --~-/~-, 1 j~. 

Observe that,  since ~Eint K,  we have 

(7.22) 

~+ ( 1 - t ) D ~  = t ~ + ( 1 - t ) ( ~ + D ~ ) � 9  int K 

and thus we can find, for t as in (7.22), 52(t) such that  

~EKJ 

Therefore defining 

we deduce that  

7?+(1-t)D~=~-~+~+(1-t)D~EintK. (7.23) 

= (7.24) 

I~-~l ~ I(~ + D~)-(~l+(1-t)DT)l <~ [~-~?l+t[D~[ <. I~-~[+ tM <~ 51(e) 

and hence by (7.19) we have 

1~-~1<~5(~) ~ Ig(~+D~)-g(~+(1-t)D~)l<~ �89 (7.25) 

We may now return to (7.20), using (7.23) and (7.25), to write 

�89 +Qg(~) >~ .L [g(~ + D~(x) )-g(~+(1-t)D~(x) )] dx +.fo g(~+ (1-t)D~(x) ) dx 

- �89 g(~?+ (1-t)D~(x)) > dx 

which implies, using the definition of Qg, that  

Qg(TI)-Qg(~) ~ ~. (7.26) 

Since the reverse inequality is obtained similarly, we deduce that  Qg is continuous on 

i n tK ,  i.e. (7.17). 

We now show (7.18). So we have ~EOK, ~ e i n t  K with ~ - - ~ .  As before we choose 

51(~) as in (7.19) and t as in (7.22). We then define ~?v so that  

~/v E int K. 
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l o o  
We then proceed as above and find, by definition of Qg, a function ~EWg'  (~t; R m) so 

that  

{ �89 >~ fn g(~+D~(x)) dx, (7.27) 

~+D~(x) E K a.e. 

Since ~. E K we find that  

t~+(1-t)[~+D~(x)]EK a.e. (7.28) 

Observing that  from (7.19) we have 

I ~ - ~ 1  ~< 161(~) 

I(~ + D~)-(t~ +(1-t)~ +(1-t)D~)I ~ ti~-q~l+tiD~I ~ ti~-~l+tM ~ SI (E) 

Ig(~+D~)  - g ( t ~  + (1 - t)~ + (1 - t ) D ~ )  I < �89 

we then deduce that  

~ +Qg(~) >1 ~ g(t~ +(1-t)~ +(1-t)D~(x) ) dx >7 Qg(t~ + ( 1 - t ) ~ )  = Qg(~) ,  

the last inequality coming from (7.28) and the definition of Qg. Passing to the limit and 

using the fact that  e is arbitrary we have indeed obtained (7.18). 

Step 3. We next wish to prove that  

{ f~ Qg(~+Dr dx >! Qg(~).meas ~, 
(7.29) 

~ E i n t K ,  ~+Dr a.e. and CEWI '~(12 ;Rm) .  

The above fact shows that  Qg is indeed quasiconvex for every ~ E i n t K .  Observe that  

there is no loss of generality if we also assume that  

(+Dr is compactly contained in int g .  (7.30) 

Indeed observe that  for a fixed 0 < t ~  1 we have, since ~ E int K: 

~+ ( 1 - t ) D r  is compactly contained in int K. (7.31) 

So fix now c>0  and use the upper semicontinuity of Qg to deduce by Fatou's lemma that  

we can find t = t ( c ) > 0  so that  

]~ Qg(~+Vr >~c+/~ Qg(~+(1-t)Dr (7.32) 
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Therefore, if (7.29) has been established under the hypothesis (7.30), we deduce from 

(7.31) and (7.32) that  

fnQg(~+Dr dx >1 c+Qg(~) ~. .meas 

Since e is arbitrary we would have the result. 

So from now on we assume that ~ and r satisfy (7.30). We then use Lemma 6.1 to 

find r Rm),  it~Cf~ such that 

[ meas (~-~u) - -~O as u---*oc, 

) Dr ~ D e  a.e. in it, 
(7.33) 

] r  piecewise on ~ ,  is affine 

I, ~+Dr is compactly contained in int K,  a.e. in ~. 

Writing 

we find 

= ) 

Dr = ~  in it~,i 
(7.34) 

~ Qg(~ + Dr ) dx = f~ [Qg(~ + Dr )-Qg(~ + DCv(x) )] dx 

z (7.35) 

+ ~  Qg(~+DCv(x))dx + ~  Qg(~+yi).measa~,,i. 
--l~,~ i----1 

Now observe that, since Qg is continuous on any compact set in K and since 

D~b~,---*Dr a.e., we can find by Lebesgue's theorem, for every c>0,  v sufficiently large so 

that  

~ [Qg(~+Dr162 dz >1 1 ---~E. 

Since K is compact and meas(~- i t~)--~0 we can also deduce that 

~ _a Qg(~ + D~b~,(x)) dx >~ -�89 

Therefore combining these two estimates, we find in (7.35) that 

I 

/nQg(~+DO(x) ) >~ _2~+~ Qg(~+qi)'meas it~,i. (7.36) dx 
i = l  

Using now the definition of Qg we can find ~i such that 

{ Qg(~+~/i).meas it~,,i >1-�89 g(~+~h+D~i(x))dx, 
(7.37) 

~viEW~ (itv,i;Rm), ~+~h+D~viEK. 
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Writing 

O(x) = ~ r if x �9 g t -  ~G, (7.38) 

( r  if x � 9  

we have indeed that 
0 �9 W0~'~ (a; nm) ,  

(7.39) 
~+DO(x) �9 K a.e. in 12. 

Combining (7.36), (7.37), (7.38) and (7.39) we deduce that 

Qg(~ + Dr ) dx ~ -e + ~9(~  + DO(x) ) dx 

-c+Qg(~) .meas ~t- fa_ag(~ + DO(x)) dx, 

where we have used the definition of Qg in the last inequality. Letting v--*cc and e-*0 

we have indeed obtained (7.29). 

Step 4. We next show that if A, B �9 int K with r a nk{A-  B} ~< 1, A �9 [0, 1], then 

Qg(AA+(1-A)B) <~ AQg(A)+(1-A)Qg(B). (7.40) 

Let e>0.  We then choose CEW(~ '~ (~ ;R  m) as in Lemma 6.2, i.e. there exist open sets 

~tl, ~t2 C ~t such that 

Imeas ~ I - A  meas ~tl, Imeas ~ 2 - ( l - A ) m e a s  ~l ~<c, 

AA+(1-A)B+Dr is compactly contained in int K,  

IAA+(1-A)B+Dr <~c a.e. in ~tx, 

IAA+(1-A)B+Dr <~e a.e. in gt2. 

(7.41) 

We therefore have from (7.29) that 

Qg(AA+ ( 1 -  A)B) meas f~ <~ /~ Qg(AA+ ( 1 - A ) B + D r  dx 

= f Qg(AA+(1-A)B+Dr dx (7.42) 

+ ~I[Qg(A)-(Qg(A )-Qg( AA+(1- A)B + Dr ) )] dx 

+ ~  [Qg(B)-(Qg(B)-Qg(AA+(1-A)B+Dr dx. 
2 
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Using (7.41), the uniform continuity of Qg on compact sets of K,  we deduce immediately 

(7.40) as s--*0. 

We next extend (7.40) and show 

{ Qg()~A+ (1-) , )B)  ~< AQg(A) + (1-)~)Qg(B), 
(7.43) 

AE[0,1], A, BEK, r ank{A-B}~<l ,  AA+(1-A)BEintK. 

We first choose A~, B ,  Eint K converging respectively to A and B. By the continuity of 

Qg in the interior of K and by its upper semicontinuity in K,  we deduce (7.43) from 

(7.40) by passing to the limit as v--,oc. 

Step 5. We now prove that  

Qg(~) <~ Rg(~) for every ~ E int K. (7.44) 

Note that  we cannot apply directly the previous step and the definition of Rg to conclude 

at (7.44), since we do not, a priori, know that  Qg is rank-one convex all over K (we know 

it only in int K).  

Recall that  Rg can be obtained by the following procedure (cf. Kohn-Strang [26] or 

Dacorogna [17]). Let for k E N  

Rog=g, 

Ra+lg(~) = inf{ARkg(A)+(1-•)Rkg(B): A E [0, 1], A, U E K, 

r a n k { A - B }  ~< 1, AA+(1 -A)B  = ~}, (7.45) 

limk_.~ Rkg = Rg. 

So in order to prove (7.44) it will be sufficient to establish, by induction, that  for every 

k E N  

Qg(~) <~ nkg(~) for every ~ E int K.  (7.46) 

Observe that  when k--0, (7.46) is trivial. We therefore assume that  (7.46) has been 

established for k and wish to show it for k + l .  Fix ~>0 and find, by definition, A, A, B 

such that  

{ Rk+lg(~) ~ -~+~Rkg(A) + (1-~)Rkg(B) ,  (7.47) 

~A+(1-)~)B=~, A, BEK. r ank{A-B}~<l ,  ~E[0,1]. 

Using the hypothesis of induction we find, since ~Eint K,  

Rk+lg(~) >~ -E + i~Qg(A)+(1- )~)Qg( B) >~ -~ +Qg(~) 

where we have used (7.43) in the last inequality. Since e is arbitrary we have indeed 

(7.46) and thus (7.44). 
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Step 6. We finally show that  we can find u~ satisfying 

Rm), 

u~ converges weak- ,  to 0 in W 1'~,  

~ + D u ~ ( x ) e g  a.e., (7.48) 

fa g(~ + Du,(x)  ) dx --* Qg(~).meas ~. 

We prove this when Q is a cube (the general case follows easily). By definition we can 

find r so that  

)v e WI '~(~ '~ ;  R m ) ,  ~ + D r  �9 K a.e. ,  

(7.49) 
fn g(~ + Dr ) dx ~ Qg(~).meas Q. 

Extending ~p. by periodicity from ~t to R n (still denoting this extension by ~ . )  we let 

= 

It  is clear tha t  u ,  has all the claimed properties. This achieves the proof of Theo- 

rem 7.2. [] 

Remarks. (i) The question whether Qg is continuous up to the boundary remains 

open. However, it can be proved that  this is the case if K is a ball or more generally 

that  Qg is continuous at extreme points of K.  But  we did not need this refinement in 

our analysis. 

(ii) The continuity of g can also be removed, as this is the case when K = R  m• 
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