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1. Introduction

We consider the Dirichlet problem for Hamilton-Jacobi equations both in the scalar and
in the vectorial cases. We deal with the following problem:

{F(Du(w))=0’ ae. z€, (1.1)

u(z)=p(z), =x€IQ,

where  is a (bounded) open set of R*, F: R™*"—R and o€ W1 (Q; R™). We empha-
size that u: QCR™"—R™, with m,n>1, is a vector valued function if m>1 (otherwise, if
m=1, we say that u is a scalar function). As usual Du denotes the gradient of u.

This problem (1.1) has been intensively studied, essentially in the scalar case in
many relevant articles such as Lax [28], Douglis [23], Kruzkov [27], Crandall-Lions [16],
Crandall-Evans—Lions [14], Capuzzo Dolcetta-Evans [8], Capuzzo Dolcetta—Lions [9],
Crandall-Ishii-Lions [15]. For a more complete bibliography we refer to the main recent
monographs of Benton [7], Lions [29], Fleming—Soner [25], Barles [6] and Bardi-Capuzzo
Dolcetta [5].
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Our motivation to study this equation, besides its intrinsic interest, comes from the
calculus of variations. In this context first order partial differential equations have been
intensively used, cf. for example the monographs of Carathéodory [10] and Rund [36] (for
more recent developments on the vectorial case, see [19]).

In this paper we propose some new hypotheses on the function F in (1.1) that allow
us to treat systems of equations as well as vectorial problems (cf. examples below). The
general existence result (Theorem 2.1) can be applied to the following examples, that
for the sake of simplicity we state under the additional assumption that the boundary
datum ¢ is of class C*(; R™).

Example 1 (nonconvex scalar case). Let m=1. If {F(£)=0} is closed then under
the sole assumption
Dy(z) € {F(¢)=0}Uint co{F(£) =0} (1.2)

the Dirichlet problem (1.1) has a solution ue W1>°(Q). (By int co{F(£)=0} we mean
the interior of the convex hull of the zeroes of F.) We emphasize that no hypothesis is
made on F, neither convexity, nor coercivity, not even continuity.

For instance a system of N equations of the type

F;(Du)=0 a.e. inf,i=12,..,N,
(1.3)

u=¢ on 0f)

enters in the framework (1.1), (1.2), by setting F =Zi1\;1 F?. Thus, for example, the
problem

|Ou/0z;|=a; ae inQ, 1=1,2,...,n,
(1.4)

U= on 99
has a solution if a; >0 and |0 /8z;|<a; for every i=1,2,...,n.
It is interesting to note that, if F is convex and satisfies a mild coercivity condition

that rules out the linear case, then (1.2) becomes the usual necessary and sufficient
condition for existence (cf. Kruzkov [27], Lions [29]), namely

F(Dp(z))<0, z€f. (1.5)

Ezample 2 (the prescribed singular values case). Let n=m>1. For every £eR™*"
(i.e. £ is a real (nxn)-matrix), we denote by A;{£), 0< A< 2<...< Ay, 1=1,2,...,m, the
singular values of the matrix &, i.e. the eigenvalues of the matrix (£¢€)1/2.

Let 0<a;<a2<...<a,. Then the problem

Ai(Du)=a; a.e. inf,i=12..,n,
(1.6)

u=¢ on 9N
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has a solution ueWh>(Q; R") if A\, (Dy)<a; in Q (more general boundary conditions
are considered in §5).
So, in particular if m=n=2, the Dirichlet problem (1.6) can be rewritten in the form
[Duf?=a2+a3 a.e. in,
|det Du|=a1a2 a.e. in Q, (1.7)

U= on 0f.
Provided the L*-norm of Dy is sufficiently small, then (1.7) has a solution. Note that
the system (1.7) is a combination of a vectorial eikonal equation, |Du|?=a%+a3, and a
prescribed modulus of the Jacobian equation, |det Du|=a;as. Both equations have been
separately studied in the literature. For the first one, see for example Kruzkov [27] and
Lions [29]. For the second one (without the modulus), cf. Dacorogna—Moser [20].
The Dirichlet problem (1.6) can also be rewritten in terms of “potential wells”;
namely, if a;=1 for i=1,2,...,n, then (1.6) and (1.7) take the form
{ Du(z)e SO(n)IUSO(n)I_, ae. z€,

(1.8)
u=y on 01,

where SO(n) denotes the set of orthogonal matrices with positive determinant, I is the
identity matrix and

1 0
- 1

0 -1
The problem of potential wells finds its origins in elasticity (cf. Ball-James [4], for ex-
ample). Problem (1.8) has been solved by Cellina—Perrotta [13] if n=3 and ¢=0.

The existence results stated in the above examples are a consequence of general
theorems established in §2. The main points in the proof are:

{i} The Baire category method introduced by Cellina [11] and developed by De Blasi—
Pianigiani [21], (22|, [34], in the context of Cauchy problems for ordinary differential
inclusions.

(ii) The weak lower semicontinuity and the quasiconvezity condition introduced by
Morrey (33] (see also Ball [3] and [17]), that is the appropriate extension of convexity to
vector valued problems.

We very roughly outline the idea of the proof following the above scheme. We first
construct a quasiconvex function f whose zeroes are also zeroes of F. We then define
for k&N,

V={ucp+Wy (% R™): f(Du)<0 a.e. in 0},

V= {ueV:Lf(Du(w))dx> —%}
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The quasiconvexity of f (and at this stage, convexity of f would be sufficient) and
boundedness of the gradients easily ensure that V' is a complete metric space in the L*°-
norm and that Vi is open in V. The more difficult part is to show that V} is dense in V'
and there the full strength of quasiconvexity is needed. Then the Baire category theorem
implies that the intersection of Vi, for k€N, is dense in V, i.e. the set

N sz{ueV:/Qf(Du(x))dx>0}

kN
={u€p+W}*: f(Du)=0 a.e.} C {ucp+Wy®: F(Du)=0 a.e.}

is dense in V. Therefore the set of solutions of the Dirichlet problem (1.1) is dense in
the set V.

This density property obviously contrasts with the uniqueness of viscosity solutions
(notion introduced in this context by Crandall-Lions {16]) as established in the quoted
literature on Hamilton—-Jacobi equations in the scalar case. The notion of viscosity solu-
tion has not yet been extended to the vectorial context, since the definition uses ordering
of the set of values of u. In particular the notion of mazximal solution is not defined in
the vectorial case. In our approach we prove that the set of solutions is not empty {(and
in fact it is even dense in V'); one then could propose an optimality criterion to select one
of these solutions. Of course in the scalar case, usually, the best criterion is the viscosity

one.

2. The quasiconvex case
We now state the main theorem of this section.

THEOREM 2.1 (the quasiconvex case). Let QQCR™ be an open set, and let p€
WbL®(Q:; R™) and f:R™*"»—R satisfy the following hypotheses:

f is quasiconver; (2.1)

there ezists a compact conver set K such that K C{£€R™*": f(£) <0}; (2.2)
Qf =0 on int K, where f~=—f on K and +0o otherwise; (2.3)
Dy(z) is compactly contained in int K. (2.4)

Then there exists ue W1 °(Q; R™) such that

{ f(Du(z))=0, ae zeQ,

(2.5)
uw(z)=p(z), =z

Moreover Du(z)€K a.e.
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Remarks. (i) Qf in (2.3) denotes the quasiconver envelope of f~. In view of the
representation formula for ) f~ given in Theorem 7.2 (here we have dropped the index K,
since there is no ambiguity), the hypothesis (2.3) guarantees that there exists, for any
linear boundary datum in K, a sequence of approximate solutions with gradient in K.

(ii) The hypothesis (2.3) can be difficult to verify, however we will give a sufficient
condition in Proposition 2.3. In the (scalar and vectorial) convex case, i.e. when f is
convex, it is automatically satisfied.

(ili) Note that the hypothesis (2.1) of quasiconvexity of f can be removed if we can
find g satisfying (2.1)-(2.4) of the theorem and such that

{6eK:g(§) =0t {{cR™™: f({) =0}

This idea will be used in §3.

(iv) The hypothesis of compactness of K in (2.2) can be suppressed in some cases
such as the scalar case (cf. §3) or the vectorial convex case (cf. §4).

(v) Finally the hypothesis (2.4) can be improved if we assume that

e e CHR™NWER(Q; R™),
cf. the following corollary.
COROLLARY 2.2 (the C'-quasiconvex case). Let QCR™ be an open set. Let f satisfy
(2.1), (2.2) and (2.3) of the theorem. Let p€C(; R™)NWL>(Q; R™) be such that
Dy(z) €int KU{E e R™*": (&) =0}. (2.6)

Then there exists ue W1 (Q; R™) satisfying (2.5).
Relevant to verify hypothesis (2.3) of Theorem 2.1 is

PROPOSITION 2.3. A sufficient condition to have (2.3) is that
Rf~(£)=0 for every £Ecint K (2.7)

where Rf~ denotes the rank-one convex envelope of f~.

Proposition 2.3 is a direct consequence of Theorem 7.2 in the appendix. We now
turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. We first observe that there is no loss of generality in assuming
that €2 is bounded. Otherwise we cover 2 by bounded open sets and we solve the problem
on each set. We divide the proof into three steps.
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Step 1. We let
V={ucp+W,®(;R™): Du(z) € K a.e. in Q}.

Note that ¢p€V. Observe that V is a complete metric space when endowed with the
L*-norm. Indeed let {u,} be a Cauchy sequence in V. Since K is bounded we can
extract a subsequence {u,,} which converges weak-+ in W to a function u. Since K
is convex and closed, we deduce that u€V. Hence the whole sequence (and not only the
subsequence) converges to u in L. Thus V is complete.

We then let for keN,

\@:{uéV:Lf@M@Mdz>—%}

Suppose that we can show that
» Vi is open in V' (cf. Step 2);
» Vi is dense in V (cf. Step 3).
We will then deduce from the Baire category theorem that {);-, Vi is dense in V and
hence nonempty. Observe that any ue(),-, Vi is a solution of (2.5). Indeed
u€ p+Wy e (;R™)
DueK = f(Du)<0} = f(Du)=0 ae. inQ.
Jo f(Du(z))dz >0

Step 2. We now show that V; is open in V. We will prove that V -V}, is closed.

Indeed let
U, €EV-Vi, u, L—»u.

We already know that u is in V' (cf. Step 1). In fact u€V —Vj, by the quasiconvexity
of f. Indeed from Theorem 7.1, we have

/ f(Du(z))d:cgliminf/ f(Du,(x)) dxg—%.
Q v—00 Q

Thus V -V is closed and hence Vj is open.

Step 3. It therefore remains to show that Vi is dense in V. Let k>0 be a fixed
integer. Let veV and £>0. We wish to show that we can find

ve € Vi with |lv—v.||r <e. (2.8)
We first observe that we can assume, without loss of generality, that

Duv(z) is compactly contained in int K. (2.9)
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Indeed if this were not the case, using the convexity of K and (2.4), we would replace v
by (1-t)v+te with ¢ sufficiently small to get (2.9).

We then apply Lemma 6.1 to v and we find v, e W1°°(Q2; R™) such that there exist
2, CQyy1 CO open sets with
( meas(N—Q,) >0 as v — 0,
v, is piecewise affine in Q,,,
v o, (2.10)
v, = v on 0f),

\ Dv,(z) €eint K a.e. in Q.

We then let €2, 5 be open sets so that

{ Qu = Ui\:l QV,A’

(2.11)
Dy, (z)=A, ifz€Q, ).

At this stage we apply (2.3) to A, y€int K to get Qf~(A,,2)=0. In view of Theorem 7.2,
this equality implies that we can find o, » ;€ W, >°(,,2; R™) such that

{fnm F(Aur+Dpy xi(z))dz— 0 as | — o0,

s converges weak-+ in W1 to 0 as [ — oo.
Pu,A,

Defining
vy (z) ifzeQ-9Q,,
Ve = =
v (x)+ouai(z) ifzely
we have indeed that v. €V and, by choosing v and [ sufficiently large, that

lve—v|lL= <e. (2.12)

Furthermore
A
/Q f(Dve(2)) dz = /Q . f(puu(gc))da:+§;‘1 /Q St Dy (@)

Therefore, choosing v and [ larger if necessary, we can ensure that

/ f(Dve(x)) dx > —l,
Q

i.e. v, €V, which is the desired density property required, i.e. (2.8). O

We now turn to the proof of Corollary 2.2.
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Proof of Corollary 2.2. As in Theorem 2.1 we may assume without loss of generality
that €2 is bounded. We divide the proof into two steps.

Step 1. We first define Qo={z€Q: f(Dy(z))=0}. By continuity of f and Dy, we
have that the set 2—Qq is open. We therefore define

u(x)=p(z) ifzeQy. (2.13)

It remains to solve

Du(z)) =0, a.e. z€Q-Q,
f(Du(z)) 0 (2.14)
u(z)=¢(z), z€O(Q~NQ)
By construction we know that
Dy(z)eint K if z€ Q. (2.15)

For every t>0, we let ' ={zcQ~Qy:dist(Dy(z), 8K)=t}. We will show in Step 2 that
we can find a decreasing sequence t; >0 converging to zero such that

measQ* =0 for every ke N. (2.16)

We then let Qp={z€Q—Qq:tx41<dist(Dy(z),0K)<tr}. Observe that ) is open and

that o =
Q=0 =Up2; &,

Q-0 =2, %UUN with meas N =0, (2.17)
O, C A(Q—Q) UL U+

(the second statement is a consequence of (2.16)). Using Theorem 2.1 on € we can then
find ur €eW1>°(Qx; R™) such that

(2.18)

f(Dug(x))=0, a.e. z€Qy,
up(z)=p(r), TE€IN.

Defining

{uk(x) if.’EEQk,
u(z) =
(p(.’l,') if reQy

we find that u has all the claimed properties.

Step 2. It therefore remains to show (2.16). To do this we define for k€N the set

¢ 1
Tkz{t>0: 1 measQ }

k41 = meas(Q2—Qp) <%
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We claim that this set is finite. Assume for the sake of contradiction that this is not so.
We then would get, from the fact Q—Qo=J,5 o DU, ', that

1 meas(2—2p)
meas(—p) > meas(Q2—Qy) Z = Z 1=+o00,
teTy k+1 k+1 teTx

which contradicts the fact that € is bounded. It follows that the set

{t>0:measQ* >0} c U Tx
k=1

is countable. Therefore the set {t>0: measQ?=0} is dense in [0, 1], and thus (2.16). O

3. The nonconvex scalar case and systems of equations
We now turn to an application of the results of §2. The main theorem of this section is

THEOREM 3.1 (the nonconvex scalar case). Let QCR™ be an open set. Let p€
Wh() and F:R"—R be such that

Dy(x) is compactly contained in int co{¢é € R™: F(£) =0} a.e. in €. (3.1)
Then there ezxists ue W1 >°(Q) such that

{F(Du(z)) =0 a.e inQ, (3.2)

w(z)=p(z), =x€0N.
If in addition peC*(Q) and {¢€R™: F(£)=0} is closed then (31) can be replaced by
Dy(z)eintco{ e R™: F(£) =0}u{£ e R": F(§) =0}, (3.3)

and the conclusion (3.2) still holds.

Remarks. (i) This result is only valid in the scalar case. One should note that there
is no hypothesis of convexity, coercivity or even continuity on the function F'.
(ii) The condition (3.1) excludes, as it should do, the linear case, since there

intco{§ cR™: F(£)=0} =02.
(iii) If F' is convex and coercive then (cf. §4)

intco{6 cR™: F(§)=0}U{{ eR™": F(§)=0}={({ eR": F(§) <0}
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(iv) The condition (3.3) seems to be optimal. In general it cannot be replaced by
Dy(z)cco{ cR™: F(€) =0}.
Indeed let n=2 and F(¢)=(|€1]-1)%2+(|&2|—1)2. Then
co{f€ eR*: F(§) =0} = {€ = (&1, &) eR?: 4], €2 < 1}
Choose then p(z,y)=z+ 0y with |8]<1. Note that
(1,8)€co{F(§)=0} but (1,8)¢intco{F(§)=0}U{F(£)=0}.
Let us show that, if for example 2=(0, 1)2, then the problem
F(Ou/0z,0u/0y)=0 a.e. inQ,
{ u(z,y)=z+Py on 09

has no solution. Indeed we have

L/ou| Ou ! ou
/0<8x ax)dac /()(1 6g':)dz w(l,y)+u(0,y)
This implies that
Q’_{_ QE =1 a.e
dz  |oz| "

We therefore deduce that there exists 1: (0,1)—R such that
u(z,y) =z+9%(y),
[¥'(y)=1 ae,
Y(y)=Py if (z,y)€o0.

This is of course impossible since |3]<1.
We now turn to applications of Theorem 3.1.

COROLLARY 3.2 (prescribed gradient values). Let QCR™ be an open set; let E be
any subset of R™ and peW1H*(Q) be such that

Dy(z) is compactly contained in intco E a.e. in Q. (3.5)

Then there exists ue W1H°(Q) such that

Du(z)e E, ae z€Q,
(3.6)
u(z)=p(x), z€dq.
If in addition p€C*(Q) and E is closed then (3.5) can be replaced by
Dy(z)e EUintco E, ze&f. (3.7)

Remark. This result has also been proved by Cellina [12] when ¢ is linear.
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COROLLARY 3.3 (system of equations). Let QCR™ be an open set. Let also p€
CH)NWL2(Q) and Fi: R"—R, 1<i<N, be such that {€€R™: Fy(£)=...=Fy(£)=0}
is closed and

Dy(z)eintco{é eR™": F1(§) =...=Fn(£)=0}U{€eR™": F1(§)=...=Fn(£)=0}. (3.8)

Then there exists uc W1>(Q) such that

F;(Du(z))=0 a.e.in , 1<i<N,
(3.9)

u(r)=p(z), =z

Remarks. (i) If ¢ is only in WH>(Q2), then the same theorem holds with (3.8)
replaced by

Dy(z) is compactly contained in int co{¢é e R™: F;(£) =0, 1 <i< N} (3.10)
(i) As before one should note that no hypothesis on F;, besides (3.8) or (3.10), is
made.
We now proceed with the proofs.
Proof of Theorem 3.1. The idea of the proof is to find f:R"—R and K satisfying

all the hypotheses of Theorem 2.1 and such that

{€eK: f(§)=0}Cc{{cR": F(£)=0}. (3.11)

The conclusion following from Theorem 2.1 and (3.11), i.e. there exists ue W1 (£2) such

that
{ f(Du(z)) = F(Du(z)) =0 a.e. in £,

u(z) = p(x) on 0f.
We divide the proof into three steps. As usual we will assume, without loss of
generality, that 2 is bounded. In the first two steps we assume only that € W1 (Q).

Step 1. Since (3.1) holds we can find a convex and compact set LCR™ such that
Dy(z)e LCintco{¢ e R™: F(£)=0}. (3.12)

We can then find a polytope P (cf. the proof of Theorem 20.4 in Rockafellar [35]) with
the following property:

{ P=co{m, .1~}

(3.13)
Lcint PCPCintco{¢é € R": F(¢)=0}.
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We then use the Carathéodory theorem (cf. Theorem 17.1 in Rockafellar [35]) to write

n+1
M=) _ MeF where ¢fe{¢eR™: F(£)=0}. (3.14)

i=1

This is possible since n€ PCco{(€R": F(£)=0}. Combining (3.12), (3.13) and (3.14)
we find that Do(z)€ LCint PCPCco{&}, ..., & 41, &N, . €N )

Among the {¢},...,&L .1, ... &N, ..., €N, 1} we remove all the £¥ which are convex com-
binations of the others (i.e. we keep only those which are extreme points) and we relabel
the remaining ones as {&;,...,£s}. Therefore summarizing what we have just obtained,
we can write

Dy(z)e L Cintco{é,...,&s},
F(&)=0, (3.15)
none of the ; is a convex combination of the other ones.
We then define g: R* —=R=RU{+o0} by
-miniGgs{l§—&il} i £€co{by, ..., &)
9(8) = :
+oo otherwise.

We finally define f as the convex envelope of g, i.e. f(£)=Cg(£), and let

K =co{&1, ..., &} (3.16)

Since f is finite only over K, we redefine it outside as a convex function taking only finite
values. This is always possible since g is Lipschitz over K with constant 1 and Cg has
the same property. Indeed if £, £+n€ K, then by the Carathéodory theorem and since K
is compact we can find ();,&;) with £=5_ \;§; and

n+1 n+1l
Cg(€+n)—Cg(§) = Cg(§+n)—z Aig(é) < Z Ailg(&+n)—g(&)] < Inl.

Since & and 7 are arbitrary we have indeed that Cg is Lipschitz with constant 1 over K
and hence it can be extended outside K in a convex and finite way.

Step 2. Before checking that f has all the claimed properties, we establish the fact:
if £€ K then the following property holds:

f€)=0 & &e{&,...&) (3.17)

(=) U E¢{&y, ..., &) and £€ K then g(£) <0 and since f(£)=Cg(£)<g(£), we deduce
the result f(£)<0.
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(<) So let £€{&, ..., &} Then by definition and by the Carathéodory theorem
n+1 n+1
f&)=Cyg(&) = inf{z Xig(m): > Am=& m EK}
i=1 i=1

(here the infimum is actually a minimum since K is compact). Since by (3.15) the &; are
extreme points (i.e. none of them is a convex combination of the others) we deduce that
f(&)=g(&)=0 and hence (3.17) is established.

We are now in a position to prove that f satisfy all the hypotheses of Theorem 2.1.

+ By definition f is convex, hence (2.1) is established.

» By construction K satisfies (2.2).

« Since we are in the scalar case, (2.3) amounts to prove that C f~(£)=0 for every £€
int K. Indeed every £€ K can be written by the Carathéodory theorem as & :Z?:ll Ai&i-
Hence

n+1 n+1 n+1
0<Cr(©) =int{ =3 s ) meK and 3 =g} <= 3 Aif(6)=0
=1 i=1 i=1

where we have used (3.17). Hence (2.3) is established.
» Dy(z) is compactly contained in int K by (3.15) and thus (2.4) is proved.
So we may now apply Theorem 2.1 and find u€ @+ Wy *°(Q) such that

f(Du(x))=0 ae.inQ and Du{z)eK ae. (3.18)
Observe finally that by (3.15) and (3.17) we have
{€eK : f(§)=0}C{{cR™: F(£)=0}. (3.19)

Combining (3.18) and (3.19) we have indeed established the theorem in the case g€
Wheo(Q).

Step 3. If peC*(Q), we then follow exactly the proof of Corollary 2.2, applied to f

and K as above. O
Proof of Corollary 3.2. We just set
0 if&e€E,
F§)= ,
1 ifé¢F
and then apply Theorem 3.1. O

Proof of Corollary 3.3. We just set
N

GEDIG)E

=1

and then apply Theorem 3.1. O
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4. The convex case (scalar and vectorial)

THEOREM 4.1 (the convex case). Let QCR™ be an open set. Let pe WL>°(; R™) and
f:R™"™ =R satisfy

f is convez; (4.1)

there exists A€ R™ ™ with rank {A} =1 such that

It}im f(E+tA) =+o00 for every £ e R™*T; (4.2)
there exists § >0 such that f(Dy(z)) < =06, a.e. €. (4.3)
Then there exists ue WH°(; R™) such that
D =0, a.e. z€X,
f(Du(z)) (4.4)
u(z)=p(z), el
If in addition o€ C*(;R™) then (4.3) can be replaced by
f(De(x)) <0 for every z €5} (4.5)

and the same conclusion holds.

Remarks. (i) Note that in the scalar case, (4.2) means that f is coercive in at least
one direction. In the vectorial case this direction should be of rank one. In this sense
the coercivity condition is weaker than the usual one (cf. Lions [29]).

(if) In the calculus of variations it is often more desirable to write the above theorem
in the following form: Let K CR™*™ be convex and bounded in at least one direction of
rank one (cf. (4.2)) and let o€ W1H°(Q; R™) be such that Dp(z) is compactly contained
in K. Then there exists u€ W' (€; R™) with Du(z) €K (cf. Lemma 3.5 of Dacorogna—
Marcellini [19] or, in the bounded scalar case, Lions [29], Mascolo-Schianchi [31]).

(iii) One can also deduce the vectorial version of the theorem by choosing m—1
components equal to those of the boundary datum. Of course to do this one needs to
have an existence theorem for Carathéodory functions of the form f(z, Du).

Proof of Theorem 4.1. We divide the proof into two steps.

Step 1. We first prove the theorem under hyptheses (4.1), (4.2) and (4.3). We just
have to find K such that we can apply Theorem 2.1. We observe that by (4.3) we can
find, trivially, a compact and convex set L such that

{ Dy(z) is compactly contained in int L, (16)

LcCint{¢ e R™*": §(£) < 0}.
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We then define
K={neR™": f(n) <0 and there exists (§,t)€ LxR with n=£+tA}. (4.7

Observe that K is compact and convex, since f is convex and satisfies (4.2). Therefore
hypotheses (2.1) and (2.2) of Theorem 2.1 are satisfied. Note that (2.4) is verified in view
of (4.6). We therefore only need to show (2.3). To do this, in view of Proposition 2.3, it
is sufficient to prove that

Rf(n)=0 for every ne K. (4.8)

Since (4.2) holds we can write any n€ K as
n=s(+t1A)+(1-s)({+t2A)

where s€[0,1], £€L and f(£+t1\)=f(£+t2A)=0. Therefore in view of the general for-
mula for Rf we have

OSRf~(n) <sf (§+tiN)+(1—-5)f~(€+t20) =0

and thus (4.8) is established and the first part of the theorem as well.

Step 2. We now assume that, in addition, o€ C*(2; R™); we proceed as in Corol-
lary 2.2 and obtain the result. O

5. The prescribed singular values case

We recall that, given £ ER™*™, we denote by 0< A1 (€)<...< A\, (&) the singular values of £
(i.e. the eigenvalues of (¢££)1/?). The main theorem of this section is

THEOREM 5.1 (the singular values case). Let Q be an open set of R™, and let
PEWL>(Q; R™) be such that there exists §>0 satisfying

A(Dp(z))<1-6 a.e in Q. (5.1)
Then there exists uce WH(Q; R™) such that

A(Du(z)) <1 ae in Q,i=1,..,n,
(5.2)

ulz)=p(z), =z
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If in addition @€C'(2; R™) then (5.1) can be replaced by: for every € one of the
following conditions holds:

either Ap(Dyp(z)) <1 or A\{(Dy(x))=1 for every i=1,...,n, (5.3)

and the same conclusion holds.

Remarks. (i) In the case when n=3, p=0, Cellina—Perrotta [13] have proved the
same result.
(ii) As already mentioned the above theorem proves in particular that, if n=2, one

can solve the problem
|Dul?=2, |det Du|=1

with the boundary datum u=¢. This shows in some sense that we can solve at the same

time the eikonal equation with the modulus of the Jacobian given.
The theorem admits a corollary.

COROLLARY 5.2. (1) Let QCR™ be an open set. Let ACcR™ ™ be defined by

al 0
0 an

with 0<a;<a2<...<ay. Let pe WH®(Q; R™) be such that there exists ReO(n) and >0
satisfying
A(Dp(z)RA™)<1-6 a.e. in S (5.4)

Then there exists ue WH*°(; R™) such that

Ai(Du(z))=a; a.e. inQ, 1<i<n,
(6.5)

u(z) = p(z), x € 0.

(2) If in addition peC'(; R™) then (5.4) can be replaced by: for every €Q, one
of the following conditions hold:

A (Dp(z)RA™Y) <1, (5.6)
Mi(Dp(z)RA™H =1, 1<i<n. (5.7)

(3) If ¢ is affine then (5.4) is satisfied if

Ai(Do(z))<a; mQ, 1<i<n. (5.8)
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Remark. Contrary to (5.1) and (5.3) which are essentially optimal, it does not seem
that (5.4), (5.6), (5.7) or (5.8) are optimal when the a;s are different.

We may now proceed with the proof of Theorem 5.1.
Proof of Theorem 5.1. We divide the proof into two steps.

Step 1. We first consider the W1 *-case with inequality (5.1) satisfied. We want to
construct f and K as in Theorem 2.1. We let

G =an[|adjs§| - )] (5.9)

s=1

and let
K=co{€eR™™:\(6)=1,1<i<n}={€eR™": N\, (§) <1} (5.10)

We now check that f and K satisfy all the hypotheses of Theorem 2.1.
« f is polyconvex and thus quasiconvex. Therefore it satisfies (2.1).
o« KC{(eR™ ": f(£)<0} since

. n
ladj, €= A?l...,\ig(S).

1€ <...<i.<n

» Qf(£)=0 for every £€int K. This comes from Proposition 2.3 and the fact that
Rf=(£)=0 forevery (€K

and will be proved below.
» Dp(z) is compactly contained in int K by (5.1).
So we may apply Theorem 2.1 and deduce that we can find uG(p-}-WOl P> R™)
such that
f(Du(z))=0 ae. inQ and Du(z)eK ae.

Since for every £€ K we have f(£)<0, we deduce that
|adj, Dul* = (Z) < AN(Du)=1 ae. in, 1<i<n,

and (5.2} has been established.
So it now remains to establish that

Rf-=0 forevery £€K. (5.11)
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We first observe that since f~ >0, then
Rf~->0 forevery E€K. (5.12)

We then use the invariance under rotations of f to deduce that it is enough to establish

a) 0
€= ( ) (5.13)
0 an,

with 0<a; <...€a,<1. This is easily established observing that
1 0 -1 0

az as
. +1(1-ay)

(5.11) for matrices

£=4(1+a) (5.14)
0 an, 0 an

Since the two matrices on the right-hand side differ by rank one we find (since Rf~ is

rank-one convex)
1 0 -1 0
1 - a2
+3(1—a1)Rf :

0 an 0 Qn

0<Rf (§)<3(1+a)Rf-

Therefore to deduce (5.11) it is enough if we can show that
+1 0
Rf- . =0. (5.15)
0 an

We then iterate the process and write

11 0 +1 . 0 +1 " 0
“ ) =1 (1+az) as +3(1—ay) as
0 n 0 an 0 an,
Again the two matrices on the right-hand side differ by rank one so that
+1 0
0<Rf- 2
0 a,
+1 0 +1 0
1 -1
<i(1+a)Rf- as + 3(1—a2)Rf~ as
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Therefore, to establish (5.11) it is enough to show that

+1 0
*1

Rf_ as . =0

0 ay

19

(5.16)

Proceeding analogously with as, ..., a, we see that a sufficient condition for having (5.11)

is that
+1 0
+1
Rf~ =0
0 +1

and this is obvious since (5.12) holds and

+1 0
- =0.
0 +1

Step 2. We next consider the C'-case and this is treated exactly as in Corollary 2.2.

This achieves the proof of this theorem.

We now turn to the proof of Corollary 5.2.

0

Proof of Corollary 5.2. We divide the proof into 3 steps, the first two establishing

parts (1) and (2), and the last one part (3).
Step 1. Let R and A be as in (5.4). We let
B=AR1,
Q= BQ,
¥(y)=p(By), ye.
We therefore have from (5.4)
An(DY(y)) = An(Dp(B~'y)RA™1)<1-6 ae. in €.

We may therefore apply Theorem 5.1 and obtain UEWI’”(Q; R™) such that

{)\i(Dv(y))zl, ae yel, i=1,..n,
v(y) =v(y), yeo

Step 2. We now verify that
u(z) =v(Bz)

(5.17)

(5.18)

(5.19)

(5.20)
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has all the claimed properties, i.e. ue W (Q; R™) and

Ai(Du(z))=a;, ae z€Q,i=1,..,n,
(5.21)

u(z) = (), z €090.
The boundary condition is satisfied by combining (5.17) and (5.19). We furthermore
have by (5.20) that
Xi(Du(x)) = A;(Dv(Bz)B), zef. (5.22)
We now show that (5.22) implies (5.21). To prove this we first use the invariance by
rotation of the singular values ); and the fact that B=AR~! to deduce that

Ai(Du(z)) = \i(Dv(Bz)A).

Furthermore since \;(Dv)=1, we deduce that DveO(n), i.e. it is an orthogonal trans-
formation. Using again the invariance of A; under the action of O(n) we deduce that
Ai(Du(z))=X;(A)=a;, which establishes (1) of the corollary. (2) is as usual a combina-
tion of (1) and the same argument as in Corollary 2.2.

Step 3. It now remains to establish (3), so we assume that ¢ is affine and set Dyp=¢.
We can then find P, P’€0(n) and 0< o1 <...<ay, such that

(03} 0
0 Qg
Hence (5.6) is equivalent to
aq 0 (65} 0
M | P PRA7Y | =), PRA7' | <1 (5.23)
0 Qg 0 o'

It is then clear that the best choice in (5.23) consists in choosing P’"R=1I. Hence we

obtain
(831 /a1 0

An <1
0 an/an

which implies ;/a;<1 = A(€) <a;. O

6. Appendix: Some approximation lemmas

We give here two approximation lemmas which present minor modifications to standard
results. The first one is a basic finite element approximation. Since however it presents
some refinements we will give here a complete proof.
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LEMMA 6.1 (finite element approximation). Let QCR™ be a bounded open set. Let
K be a compact and convex set of R™*™ with nonempty interior. Let ue WH°(Q; R™)
be such that

Du(z) is compactly contained in int K. (6.1

Then there exist open sets 2, CQ and u, EWH°(Q; R™) such that

Q, CQt1 and meas(Q—Q,) —0 as v — o0;
Uy, 1s piecewise affine on Q,;

u, =u on 0Q;

(6.2

(6.3

(6.4
u, — u uniformly in Q; (6.5)
Du, — Du a.e. in Q; (6.6

| Duy || Lo < || Dullpe +c(v), with c(v) —0 as v — oo; (6.7
(6.8

Du,(z) is compactly contained in int K, a.e. x €.

Remark. The difference between this lemma and standard ones (cf. for example
Ekeland-Témam [24]) is that this lemma is vectorial and at the same time the approxi-
mation should satisfy (6.8). Note that (6.7) is, in some sense, a consequence of (6.8).

Proof. We divide the proof into three steps.

Step 1 (regularisation of u). We first note that by hypothesis we can find a compact
and convex set L such that

Du(r)e LCint K a.e. in . (6.9)

Let £>0. We can then find an open set O with Lipschitz boundary (for example a finite
union of balls), compactly contained in € and such that

meas(Q—0) Le. (6.10)

We then let s€N and regularize each component of u by convolution with an appropriate
kernel p, and let

we(z) = /R 0s(z—y)u(y) dy (6.11)
so that w,€C>(0; R™) and

l|lws —ul| Lo (0) <1/52,

Dwg; — Du a.e. in O,
(6.12)
| Dws || Lo (0) < | De]| Lo (0,

Duws(z)e L for every z € O.
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The last two conclusions hold since the process of convolution involves convex combina-
tions (and L is convex).

Step 2 (piecewise approximation). We then use standard finite elements to approxi-
mate w, (cf., for example, Proposition 2.1 of Chapter X of Ekeland—Témam [24]) to find
piecewise affine functions {w, ;}52, on O such that

w, ; — w, uniformly in O as ¢ — oo,
Dw, ; — Dw, uniformly in O as ¢ — o0, (6.13)
| Dws,ill L= 0y < | Dws |l L= (0)-

(The uniform convergence of the gradient is on the whole of O, since w; is also defined
outside O.)

Step 3. The problem is then just to match the boundary condition and to verify all
the claimed properties. We then define 2, to be an open set such that
{ Q,cocq,

(6.14)
dist(Q2,,00) =1/s.

We next let n,€C>(0) satisfy

0 ifz€d0,
ns(T ={ .
1 lf(l‘EQQB,

0<ns(z) <1 for every z€Q, (6.15)

| D5l oo (0y < s (for a certain o > 1).

We now return to (6.13) and choose i sufficiently large so that
st,i—wsﬂwx.m(o) < 1/82. (616)

We are now in a position to define u,. We let

() = { Ns(z)ws i()+(1-ns(2))u(z) fz€O, (6.17)
u(z) ifze2-0.

We now verify all the claimed properties.

» Choosing appropriately ¢ in (6.10} and s in (6.14) we have indeed (6.2).

» By construction u, is piecewise affine on Q, and so (6.3) is satisfied.

* ug=u on 99, i.e. (6.4) holds.

+ We have indeed (6.5), since

s =l oo (@) = |15 (ws i =) | Lo (0) < l|ws,i=ws | oo (0) + [lws — ]| Lo (0) < 2/57
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by (6.12) and (6.16).
« We next prove (6.6). By definition we have

Duy—Du=n,(Dw, ; — Du)+ Dns@(ws,; —u),

and (6.6) follows from (6.12), (6.15) and (6.16).
» To establish (6.7) we just observe that

Dug =nsDws ;+(1—ns)Du+Dns @ (ws ; —u), (6.18)

and combine it with (6.12), (6.13), (6.15) and (6.16).

« Finally we have (6.8). Indeed by (6.12) and (6.13) Dw,; is compactly contained
in int K and by (6.9) Du is also compactly contained in int K. Thus since K is convex
we deduce that n,Dw, ;+(1—7s)Du is compactly contained in int K. Since finally the
last term in (6.18) is as small as we want by (6.12), (6.15) and (6.16) we deduce (6.8).

This achieves the proof of the lemma. ]

We conclude this section by a second approximation lemma which is used to prove
necessary conditions in the calculus of variations (see e.g. Ekeland-Témam [24] or Da-
corogna [17]). The version given below is slightly stronger than the existing ones.

LEMMA 6.2. Let QCR™ be a bounded open set. Let K CR™*"™ be a convex set with
nonempty interior. Let A, BEK with rank{A—B}<1 and A€(0,1], and let €>0. Then
there exist £y, CQ, open disjoint sets, and gaEWO1 (Q; R™) such that

|meas 2; — A meas (2|, |meas Q — (1— ) meas Q| < ¢; (6.19)
lp(z)|<e  for every x € (6.20)
AA+(1=X)B+Dyp(x) is compactly contained in int K for a.e. z€€Y;  (6.21)
M+ (1-X)B+Dyp(z)—A|<e, a.e. x€Qy; (6.22)
[AM+(1-A)B+Dy(z)-B|<e, a.e z€Qy. (6.23)

Proof. Except for the condition (6.21), this lemma can be found for example in
Dacorogna [17]. We divide the proof into two steps.

Step 1. We start by assuming that A, B€int K; otherwise we proceed by approxi-
mation. We also will assume that

a1 0..0
A-B=C={ : i :]. (6.24)
a, 0 ... 0
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This is not a loss of generality, since we can always find R and Q) invertible, with det Q=1,
such that

A-B=RCQ
(this comes from the fact that rank{A—B}<1). We then set
K=R1'KQ™,

Q=Q0 (= meas () = meas (),

A=R"'4Q"!, B=R1BQ"..
We then use the lemma (cf. Step 2) and find 01,9, and Ge W, *(0); R™) with all the
claimed properties. Setting

o(r) = Rp(Qx), €],
Q'i :Q_lﬁ‘i’ 1= 17 27

we will immediately obtain the lemma.

Step 2. So from now on we will assume that A and B satisfy (6.24) and A, B€int K.
We then express 2 as a union of cubes whose faces are parallel to the axis and a set of
small measure. We set =0 on this last set and we do the construction on each cube.
So, without loss of generality, we assume that (2 is the unit cube.

We then reason component by component. We let N be a fixed integer and define
Y Wy ™(0,1), 1<i<m, so that

( [O, 1] =fNUjN, InNJINn=9,

meas Iy =\, measJy =(1—1),

(1-X)a; on Iy,
{ Yi(ar) =
vil@) {—/\a,— on Jy,

¥:(0) =v:(1) =0,
li(x1)] < 6(N), where §(N)—0as N — oo.

(6.25)

We then denote by Q25= (\/5 ,1—-v46 )n_1 and observe therefore that
(0,1)" =(0,1)xQsU(0,1) x Qg
where Q§=(0,1)” —Qs.

We then define € W1°°((0,1)™) to be any function so that
n(z)=1 if z € (0, 1) x Ny,
n(z) =0 if 2,€(0,1) and (z2, ..., ) €(0,1)" L,
0<n(x) <1 for every z €(0,1)",
|Dn(z)| <a/vé in (0,1)" (for a certain a > 0).

(6.26)



GENERAL EXISTENCE THEOREMS FOR HAMILTON-JACOBI EQUATIONS 25

We then let
() = (1, -+, Pm) =N @) (W1 (1), ..y Y (1)) (6.27)

Note that ¢=0 on 9Q. Indeed if z;=0 or z;=1, we have ¢,;=0 by (6.25) and if
(z2, ..., Tr)€0(0,1)" L, then n=0 by (6.26). Furthermore

0p; , on
B2, —n(w)wi(xl)Jr—axl Yi(z1),
Op; On .
= >9.
Br ~ Day Vi TE22

Since by (6.25) and (6.26) (n/0zx)1; is as small as we want and since n=1 in (0,1) xQs,
we have indeed obtained the result by setting Q1 =1In xQs and Qa=Jyn x Q5. O

7. Appendix: Polyconvexity, quasiconvexity, rank-one convexity

We gather here some of the most important notions and results that we used throughout
the article. We refer for a more extensive discussion to Dacorogna [17]. We start with
the following definition.

Definition. Let f:R™*"—>R.

(i) f is said to be rank-one convez if

f(tE+(1-t)n) <tf(§)+(1-¢)f(n) (7.1)

for every t€(0, 1], §,n€eR™*™ with rank {£—n}<1.

(ii) f is said to be quasiconvez if f is Borel measurable, locally integrable and satisfies
£(6)-meas < / f(6+ Du(z)) do (7.2)
Q

for every bounded domain QCR™, every £ER™>™ and every uGW(} (Q; R™).
(iii) Let for s€{1,2,...,mAn}, where mAn=min{m, n}, adj, £ denote the matrix of
all (sx s)-minors of {ER™*™. Denote

a(s)=(’:)<’s’) and T(m,n)=mzl\:na(s).

s=1

Finally let, for EeR™*",

T(€)=(&, adjy &, ...,adj,An &) € R



26 B. DACOROGNA AND P. MARCELLINI

We say that f: R™*" R is polyconver if there exists g: R"(™™ SR convex such that
f(&)=9(T(¢)). (7.3)
In particular if m=n=2 then T(¢)=(¢, det £)eR?*2xR~R? and 7(2,2)=5.
Before giving examples we recall the well-known fact that
f convex = f polyconvex = f quasiconvex = f rank-one convex. (7.4)

All the counter implications are false (for the last one at least when m2>3; cf.
Sverak [37)).

Ezamples. (i) Let m=n. For £eR™*™ denote by
0< A (§) < A2(€) <. S An(é)

the singular values of ¢ (i.e. eigenvalues of (€!€)'/2). It is well known that (cf. Proposi-
tion 1.2 in the appendix in Dacorogna [17], or §7 in Dacorogna—-Marcellini [19])

& — Ap(€) is conver. (7.5)
Furthermore ) n )
|§| = Zi:l[)‘i(f)] s
|adj, €| = 21<11<...<i5sn /\f1 ’\123’
[det&| =TT, i
The function "
£— Z ladj, ¢|? is polyconvex. (7.6)
s=1

(ii) If m=n=2, yeR and
F1(©) = €17 (1€* 27 det €)
then (cf. Dacorogna—Marcellini [18] and Alibert-Dacorogna [2])

fyisconvex & |v|< %\/5,

& i<y,
fy is quasiconvex <« |vy|<14¢ for a certain € >0,
=4

Iy <2/V3.

f+ is polyconvex

f+ is rank-one convex

The main theorem which justifies the notion of quasiconvexity is the following es-
tablished by Morrey [33] and refined by many authors, cf. Meyers [32], Acerbi-Fusco [1]
and Marcellini [30].
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THEOREM 7.1. Let Q be a bounded open set of R™. Let f:R™*" >R be quasi-
convez. If u, converges weak-x to u in WH(Q; R™), then

Iiyrgi@gf/(;f(Duy(x)) dx;/ﬂf(Du(x))d:c. (7.1

Remark. The theorem admits also a converse, but we shall not need it here, i.e.
quasiconvexity is also necessary for lower semicontinuity.

We also need the notion of convex envelopes of a given function. For f: R™*"—R
we let

Cf=sup{p < f:p convex},
Pf=sup{y < f:¢ polyconvex},

Qf =sup{e < f : ¢ quasiconvex},

Rf =sup{p < f :  rank-one convex}.

In view of (7.4) we always have

Cf<PFSQfSRfL. (7.8)

For more details about these envelopes we refer to Dacorogna [17].
We finally need to establish a representation formula for the quasiconvex envelope
(this formula is used in Theorem 2.1).

THEOREM 7.2. Let QCR™ be a bounded open set. Let K CR™*™ be a compact and
convex set with nonempty interior. Let g: K—R be continuous. Define for E€ K

1
meas )

QKg(§)=inf{ /ﬂg(§+Du(x))dx:ueWJ’W(Q;R”‘),§+Du(:z:)€K}. (7.9)

Then the definition of Qg is independent of ; moreover Qg satisfies
Jo @r9(¢+Du(z)) dz > Qi g(£)-meas Q,
teint K, ue Wy (Q;R™), £+Du(z)eK a.e. in Q
and

Qkg(§) <Rrg(§) for every £ €int K

where Ry g is the rank-one convex envelope of the function g (extended to be +00 out-
side K). Furthermore for every E€K, there exists w, €Wy ™ (Q; R™) such that

Jo 9(+Duy (z)) dz — Qk g(£) meas L,
£+Du,(z)eK a.e.,

U, converges weak-+ to 0 in Whoo,
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Remark. When K=R™*", this is the formula established by Dacorogna [17] and it
gives that Qg is the quasiconvez envelope of g. However, we have to reproduce the proof
in this case since the notion of quasiconvexity on part of R™*™ is not well established.
Here we use strongly the fact that K is convez, otherwise the problem is open.

Proof. We divide the proof into 6 steps. For simplicity we do not denote the depen-
dence of Qg on K and we use the symbol Qg to denote the infimum in (7.9).

Step 1. We first prove that the definition of Qg is independent of the choice of .
So let CCR™ be the unit cube and QCR™ be an arbitrary bounded open set. Let

1
meas C

Qgc(§)=inf{ / g(§+Du(:1:))d1::ueW()l’w(C;Rm),§+Du(sv)€Ka.e.} (7.10)
C

and Qgq be defined similarly with C replaced by 2. We wish to show that

Qga=Qgc- (7.11)

To do this we first observe that if zeR™, A>0 and Cy(z)=x+AC, then by a change of

variable
Qgc =Q9gc(x)- (7.12)

We then fix £>0. Since Q is open and bounded we can find z;€8, A;>0, 1<i<1, such

that ;
meas(Q—{J;_; C, (z:)) <e,

Cx(zi) C R, (7.13)
Ca, (IL‘,‘)ﬂC)‘J. (3',‘3) =gz ifi#j.
Using (7.10) and (7.12) we can find u; €Wy ™ (Cy, (z:); R™), £+Du;(z)€K a.e. so that

[, . o+ D) de < (e+Qao(e)) meas O, (a2 (7.14)

Defining next ue W, (€; R™) by
u;(z) if z€Cy, (),
u(z) = . I
0 if e Q-UJ;_; Cx, (zi),

we find that

Qgo(£) meas 2 < /Q 9(+Du(z)) dz

I

< g(é)-meas(ﬂ’ .LzlJl Cx, (“)) 2

i=1

/ 9(6+Dus(z)) de.
Ci; (z:)
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Combining (7.13), (7.14) and the arbitrariness of £ we get

Qga < Qygc. (7.15)

The reverse inequality is proved similarly. First assume that €2 is a union of cubes.
If we denote by €; translation and dilation of 2 we have as in (7.12) that Qgo, =Q@gq.
We can then for £>0 find Q; such that

meats(C’—UiI=1 Q) <e,
Q;CC,
QN = if i#]
and obtain as in (7.15)
Qgc < Qga- (7.16)

If €2 is any open set we can find for every £>0, x; €8, A;>0, 1<i<I, such that
I
meas( U C’Ai(aci)—ﬂ) <e
=1

and then proceed as in (7.15) to get Qgyc,, <Q9a.
Using then (7.16) we have indeed established the reverse of (7.15) and thus Step 1.

Step 2. We then show the following:

(g is continuous on int K, (7.17)
limsup Qg(£,) < Qg(&) for every £ € OK. (7.18)
& —¢
£ €int K

From Step 1 we see that there is no loss of generality in assuming that meas Q=1. Since
g is continuous over K {compact) we have that, for every € >0, there exists §;==61{¢)>0

such that
[E—nl < é1(g)
Enek
We first show (7.17). Let £€int K. Then, by definition, we can find for every >0,
peW, (%, R™) such that

{ Q9(€) > —3e+ [ 9(€+Do(x)) da,
£+Dy(z)eK a.e.

l9(€)—g(n)| < 3e. (7.19)

(7.20)

We then recall that since K is bounded we can find M >0 so that

EeK = [fI<M. (7.21)
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We therefore define

_oi{e) . fdi(e)
t—m—/\l——mm{ Wi ,1}. (7.22)

Observe that, since £€int K, we have
E+(1-t)Dp=tE+(1-t)(+Dyp)eint K
and thus we can find, for ¢ as in (7.22), 62(t) such that

| —n| < 82(2)

} = n+(1-t)Dp=n—-€+£+(1-t)Dp€int K. (7.23)
nek

Therefore defining
b(g) = 36:1(e) A2(t), (7.24)

we deduce that
€-nl<b8(e) = [(6+Dp)—(n+(1~1)Dp)| <|€—nl+t|Dip| <€ ~n|-+tM < 1(e)
and hence by (7.19) we have
lE-nl<b(e) = |g(é+Dp)—g(n+(1-t)D)| < e (7.25)

We may now return to (7.20), using (7.23) and (7.25), to write

36+Qg() > /Q [9(€+Dy(z))~g(n+(1-t)Dp(z))] dz+ /Q g(n+(1-t)Dy(z)) dz
>3+ [ gl+(1-0)Dp(a) da
Q
which implies, using the definition of Qg, that

Qg(m)—Qg(&) <e. (7.26)

Since the reverse inequality is obtained similarly, we deduce that Qg is continuous on
int K, i.e. (7.17).

We now show (7.18). So we have £€0K,, £, €int K with £, —£. As before we choose
81(¢) as in (7.19) and t as in (7.22). We then define 7, so that

&= t?’}u+(1—t)€,
7, € int K.
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We then proceed as above and find, by definition of (Jg, a function € WO1 > R™) so
that

{ 26+Q9(€) = [, 9(6+Dy(2)) dz, (7.2
E+Dp(r)eK ae.
Since 7, € K we find that
tn,+(1—t)[+Dp(x)]e K ae. (7.28)
Observing that from (7.19) we have
|£_77VI < %61(5)
Y
€+ D)= (tm +(1-8)6+(1-1) Do) | <t —nmu |+t Dp| <tE—mu|+EM < 61 (e)
4

l9(€+Dp)—g(tn, +(1-t)¢+(1-t)Dy)| < 3¢,
we then deduce that
e+Qq(8) > /Q gt +(1~)E+(1-t)Dp(x)) dz > Qa(tn, + (1—H)E) = Qg(&.),

the last inequality coming from (7.28) and the definition of Qg.. Passing to the limit and
using the fact that € is arbitrary we have indeed obtained (7.18).

Step 3. We next wish to prove that

{ Jo Q9(€+Dy(x)) dz > Qg(€) -meas Q,

. ) (7.29)
(et K, E+Dy(z)e K ae. and 3 € W™ (; R™).

The above fact shows that Qg is indeed quasiconvex for every £€int K. Observe that
there is no loss of generality if we also assume that

£+ Dy(x) is compactly contained in int K. (7.30)
Indeed observe that for a fixed 0<t<1 we have, since £€int K:
&+ (1—t)Dy(x) is compactly contained in int K. (7.31)

So fix now >0 and use the upper semicontinuity of Qg to deduce by Fatou’s lemma that
we can find t=t(¢)>0 so that

| Qute+Dut@) s>+ [ Qute+0-0)Dw() do. (7.32)
Q Q
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Therefore, if (7.29) has been established under the hypothesis (7.30), we deduce from
(7.31) and (7.32) that

/Q Qo(¢+Dy(z)) de > e+Qg(€)-meas .

Since € is arbitrary we would have the result.
So from now on we assume that £ and v satisfy (7.30). We then use Lemma 6.1 to
find ¥, W, (Q; R™), Q, CQ such that
meas(2—Q,) —0 as v — oo,

D, — Dy ace. in Q,

(7.33)
1, is piecewise affine on 2,
&+ Dy, () is compactly contained in int K, a.e. in Q.
Writing
{ QV = Ufiyl) ﬁu,ia
(7.34)
Dy, (z)=mn; in Qy;
we find
| @ste+Dw(@) da= [ [Qate+ Dua))~Qole+ D @) da
(7.35)

1
+[2_QVQQ(E+D¢V($)) dz +Z Qg(€+n;) -meas, ;.

i=1
Now observe that, since Qg is continuous on any compact set in K and since

D1, — D) a.e., we can find by Lebesgue’s theorem, for every >0, v sufficiently large so
that

/Q (Qa(€-+ Do (z))— Qg+ D (2))] d > — Le.

Since K is compact and meas(2—$2,)—0 we can also deduce that

| Gote+Dute) o> e
Q-9Q,

Therefore combining these two estimates, we find in (7.35) that

I
| Qote+Du(e) do>~3e+3 Qule ) mens (7.36)

i=1
Using now the definition of Qg we can find ¢; such that
{ Qg(§+m:) -meas,; > _;_135+fgu,i 9(§+n;i+Dy;i(z)) dz,

e (7.37)
0 €Wy (,;; R™), E+mi+Dy; € K.
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Writing
Nz ifreQ-Q,,
Yo (x)+pi(z) fzeQ,;
we have indeed that 1
6 e Wy ™ (&, R™),
(7.39)
£+DO(z)e K ae. in Q.

Combining (7.36), (7.37), (7.38) and (7.39) we deduce that
/Qg(ﬁ—i—Dw(x))d:cB—E—F/ 9(§+Db(z)) dx
Q Q,

2—6+/{29(5+D9(x))dx—/

g9(§+Db(z)) dz
Q-Q,

> —+Qg(¢) meas 2~ /Q _a(e+D(@) da,

where we have used the definition of Qg in the last inequality. Letting v— o0 and e—0
we have indeed obtained (7.29).

Step 4. We next show that if A, B€int K with rank{A—B}<1, A€[0, 1], then
Qu(AA+(1-X)B) < AQg(A4)+(1-N)Qy(B). (7.40)

Let ¢>0. We then choose €W, ®(; R™) as in Lemma 6.2, i.e. there exist open sets

Q4,5 C such that

N =2,
|meas 2; — Ameas |, |meas Q2 — (1—A) meas Q| <¢,
AA+(1—X)B+Dvy(z) is compactly contained in int K, (7.41)
IAA+(1-X)B+Dy(z)—A|<e ae. in Oy,

A+ (1-A)B+Dy(z)—B|<e ae. in Qs.

We therefore have from (7.29) that
Qg(AA+(1-A)B) measﬁg/Qg()\A+(1—)\)B+D1/)(x))dx
Q
= / Qg(AA+(1—X)B+D(z)) dz (7.42)
Q—(Q1U0;)
+ [ 1Qa(4)~(Qa(4)~QurA+(1-NB+Dis(w))) de

+ /Q Qa(B)— (Qa(B)~Qg(M+(1—X)B+Dib(z)))) de.
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Using (7.41), the uniform continuity of Qg on compact sets of K, we deduce immediately
(7.40) as £—0.
We next extend (7.40) and show

{ Q9(AA+(1-2)B) < AQg(A)+(1-2)Qg(B),

7.43
A€[0,1], A,BeK, rank{A—B}<1, AMA+(1-\)B€int K. (743)

We first choose A,, B, €int K converging respectively to A and B. By the continuity of
Qg in the interior of K and by its upper semicontinuity in K, we deduce (7.43) from
(7.40) by passing to the limit as v— 0.

Step 5. We now prove that
Qg(&) < Rg(&) for every £ €int K. (7.44)

Note that we cannot apply directly the previous step and the definition of Rg to conclude
at (7.44), since we do not, a priori, know that Qg is rank-one convex all over K (we know
it only in int K).

Recall that Rg can be obtained by the following procedure (cf. Kohn—-Strang [26] or
Dacorogna. [17]). Let for keN

Rog=g,
Ri+19(€) =inf{ARkg(A)+(1-A)Rkg(B): A€ [0,1], A,BEK, (7.45)
rank{A—B} <1, AMA+(1-\)B=¢}, '

limk—’oo ng = Rg.

So in order to prove (7.44) it will be sufficient to establish, by induction, that for every
keN
Qg(&) < Rpg(&) for every {€int K. (7.46)

Observe that when k=0, (7.46) is trivial. We therefore assume that (7.46) has been
established for & and wish to show it for k+1. Fix £>0 and find, by definition, A, A, B
such that

{ Rry19(€) > —e+ARkg(A)+(1-A\) Ry g(B), (7.47)

AM+(1-A)B=¢, A Be K. rank{A-B}<1, A€[0,1].
Using the hypothesis of induction we find, since £<int K,

Ric119(8) 2 —e+2Qg9(A)+(1-X)Qg(B) > —e+Qg(§)

where we have used (7.43) in the last inequality. Since ¢ is arbitrary we have indeed
(7.46) and thus (7.44).
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Step 6. We finally show that we can find u, satisfying
w, €Wg ™ (% R™),
u,, converges weak-x to 0 in W1,
&+ Du,(z)EK ae.,
Jo 9(6+Duu(2)) dz — Qg(§) meas Q.

We prove this when Q is a cube (the general case follows easily). By definition we can
find 1, so that

(7.48)

{ P, €Wy ™(GR™), £+Dyy, €K aee, (7.49)

Jo 9(6+Dy,(x)) dz — Qg(£) - meas Q.
Extending ¢, by periodicity from €2 to R™ (still denoting this extension by 1,) we let

u(2) =~ ().

It is clear that u, has all the claimed properties. This achieves the proof of Theo-
rem 7.2. 0O

Remarks. (i) The question whether Qg is continuous up to the boundary remains
open. However, it can be proved that this is the case if K is a ball or more generally
that Qg is continuous at extreme points of K. But we did not need this refinement in
our analysis.

(ii) The continuity of g can also be removed, as this is the case when K=R™*",
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