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Abstract - This paper presents two general fading 

distributions- the K-!L Distribution and the T)-!L Distribution. 

The K-!L Distribution includes the Rice and the Nakagarni

m distnbutions as special cases. The T)-!L Distribution 
includes the Hoyt and the Nakagarni-m distributions as 
special cases. Therefore, in both fading distributions, the 
One-Sided Gaussian and the Rayleigh distributions also 
constitute special cases and the Lognormal distribution may 
be well-approximated. Preliminary results show that these 
new distributions provide a very good fitting to 
experimental data. 
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Resumo - Este artigo apresenta duas distribui~6es gerais de 

desvanecimento - a Distribui<;ao K-!L e a Distribui9iio T)-!L

A distribui9ao K-!L engloba as distribui96es de Rice e 

Nakagarni-m como casas especiais. A distribui9iio T)·!L 
engloba as distribui~6es de Hoyt e Nakagarni-m carno casas 
especiais. Conseqiientemente, em ambas as distribui96es de 
desvanecimento, as distribui~6es de Rayleigh e Semi
Gaussiana Positiva tambem sao obtidas como casas 

especiais e a distribui9ii0 Log-normal pode ser obtida de 
forma aproximada. Resultados preliminares mostram que 
estas novas distribuic;6es proporcionam urn born ajuste com 

dados experimentais. 

Palavras-Chave: distribuiq6es de desvanecimento, 
distribui<;iio de Nakagarni, distribui9iio de Rayleigh, Rice 
distribution, distribui10ao Semi-Gaussiana Positiva, 
distribui~iio de Hoyt, distribuil'iio Lognormal. 

1. INTRODUCTION 

The propagation of energy in a mobile radio environment 
is characterized by incident waves interacting with surface 
irregularities via diffraction, scattering, reflection, and 

absorption. The interaction of the wave with the physical 
structures generates a continuous distribution of partial 
waves [1], with these waves showing amplitudes and phases 
varying accoFding to the physical properties of the surface. 
The propagated signal then reaches the receiver through 
multiple paths. If the waves are not resolvable within the 
available bandwidth or if an appropriate signal treatment is 
not carried out, the result is a combined signal that fades 
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rapidly, characterizing the short term fading. For surfaces 

assumed to be of the Gaussian random rough type, universal 
statistical laws can be derived in a parameterized form [1]. 

A great number of distributions exist that well describe 
the statistics of the mobile radio signal. Extensive field 
trials have been used to validate these distributions and the 
results show a very good agreement between measurements 
and theoretical formulas. The long term signal variation is 

well characterized by the Lognormal distribution whereas 
the short term signal variation is described by several other 
distributions such as Rayleigh, Rice, Nakagarni-m, and 
Weibull, though to the latter, originally derived for 
reliability study purposes, little attention has been paid. It is 
generally accepted that the path strength at any delay is 
characterized by the short term distributions over a spatial 
dimension of a few hundred wavelengths, and by the 
Lognormal distribution over areas whose dimension is 
much larger [2]. Three other distributions attempt to 
describe the transition from the local distribution to the 
global distribution of the path strength, thus combining both 
fast and slow fading. These composite (or mixed) 
distributions assume the local mean, which is the mean of 
the fast fading distribution, to be lognormally distributed. 
The best-known composite distributions are Rayleigh
lognormal, also known as Suzuki, Rice-lognormal, and 
Nakagarni-m-lognormal. 

In fact, the Rayleigh distribution constitutes a special 
case of the Rice, Nakagarni-m, Weibull, and of the 
composite distributions and can be obtained in an exact 
manner by appropriately setting the parameters of these 
distributions. Nakagarni-m and Rice are found to 
approximate each other by some simple equations relating 
the physical parameters associated to each distribution. 

Among these, the Nakagarni-m distribution has been 
given a special attention for its ease of manipulation and 
wide range of applicability [3]. Although, in general, it has 
been found that the fading statistics of the mobile radio 
channel may well be characterized by the Nakagarni-m, 
situations are easily found for which other distributions 
such as Rice and even Wei bull yield better results [ 4, 5]. 
More importantly, situations are encountered for which no 
distributions seem to adequately fit experimental data, 
though one or another may yield a moderate fitting. Some 
researches [5] even question the use of the Nakagarni-m 
distribution because its tail does not seem to yield a good 
fitting to experimental data, better fitting being found 
around the mean or median. 

The well-known fading distributions have been derived 
assuming a homogeneous diffuse scattering field, resulting 

from randomly distributed point scatterers. With such an 
assumption, the central limit theorem leads to complex 
Gaussian processes with in-phase and quadrature Gaussian 
distributed variables x and y having zero means and equal 
standard deviations. In case one cluster of multipath wave is 
considered then the Rayleigh distribution can be obtained. 
If a specular component predominates over the scattered 
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waves, then the Rice distribution is accomplished. The 
Nakagami signal can be understood as composed of clusters 
of multipath waves so that within any one cluster the phases 
of scattered waves are random and have similar delay times 
with delay-time spreads of different clusters being relatively 
large. The assumption of a homogeneous diffuse scattering 
field is certainly an approximation because the surfaces are 
spatially con-elated characterizing a non-homogeneous 

environment [1]. 
This paper presents two general fading distributions - the 

1<-!1- Distribution and the 1)-!1- Distribution. The 7<:-!1-
Distribution includes the Rice and the Nakagami-m · 

distributions as special cases. The 1)-!1- Distribution includes 
the Hoyt and the Nakagami-m distributions as special cases. 
Therefore, in both fading distributions, the One-Sided 
Gaussian and the Rayleigh distributions also constitute 
special cases and the Lognormal distribution may be well
approximated. Prelintinary results show that these new 
distributions provide a very good fitting to experimental 
data. 

2. THE K-J.l DISTRIBUTION 

The 1<-!1- distribution is a general fading distribution that 
can be used to represent the srnall scale variation of the 
fading signal. For a fading signal with envelope r and 

normalized envelope p = r/1-' r = .JE[;3} being the nns 

value of r, the 1<-!1- probability density function p(p) is 

written as 

(1) 

where 1<: <! 0 is the ratio between the total power of the 
dominant components and the total power of the scattered 

2 ' 
waves, 11- <! 0 is given by 11- = E r- x 1 + 2 ~ (or 

Var r
2 {l+IC )' 

equivalently, 11- = 1 
2 

x 1+21C ), 
v;;;:(P') (!+IC )' 

and lv (.) is the 

modified Bessel function of the first kind and arbitrary 
order v ( v real). 

For a fading signal with power w = r 2 /2 and 

normalized power m = wjw, where w=E(w), the 1<-fl 

probability density function p(m) is given by 

p(m) 

p+1 

p.(1 +~<'fi' p-1 

p-
1 

m 2 exp(-!1-(1+~<:)m) 

1<: 2 exp(J.L~<) 

In . I I . - EZ(w) X 1+2K" ( 
parttcu ar, we may a so wnte f.i.- Var(w) ( 1 +~e)' or 

equivalently p. = ~( x (1+2';, ). 
var\ro J l+K" 

1 

2.1 PHYSICAL MODEL: K-J.I. DISTRIBUTION 

The fading model for the I<-f.i. Distribution considers a 
signal composed of clusters of multipath waves propagating 
in an non-homogeneous environment. Within any one 

cluster, the phases of the scattered waves are random and 
have similar delay times with delay-time spreads of 
different clusters being relatively large. The clusters of 
multipath waves are assumed to have the scattered waves 
with identical powers but within each cluster a dominant 
component is found that presents an arbitrary power. 

2.2 DERIVATION OF THE IC-J.I. DISTRIBUTION 

Given the physical model for the K:-!1- Distribution the 
envelope, the envelope r can be written in terms of the in
phase and quadrature components of the fading signal as 

? "( )' "( )2 ,.- = L xi +Pi - + L Yi + qi (3) 
i=l i=l 

where xi and Yi are mutually independent Gaussian 

processes with E(xi)=E(yi)=O·, E(x1)=E~?)=cr 2 , 
and Pi and qi are respectively the mean values of the in

phase and quadrature components of the multi path waves of 

cluster i. Now, we form the processes ~i =(xi+ Pi J2 and. 

'lfi = (Yi + qi )2, so that 

Define p(gi) and p('lfi) as the densities of Si and 'lfi, 

respectively. In such a case 

J..i +sf J h(-.[};si J 2 cos 2 
2cr cr 

where J..i = ~i and si =Pi or J..i = 'lfi and si = qi The 

Laplace transform L[p(J..i )] of p(J..i) is found in an exact 

manner as [6, page 1026, Eq. 29.3.77] 

-.Jr1=+~~~cr=2=s exp( 

xiJ.l_1 (zi4]K(1 +~<)m) 
(2) where s is the complex frequency (Laplace variable). 

Knowing that ~i and lfli, i = 1, 2, ... , n, are mutually 
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independent, the Laplace transform L[p(y )] of p(y) is 

found as a 2n -fold multiplication of L[p(y )]. T11erefore 

L(p(y)] 

whose inverse is given by [6, page 1026, Eq. 29.3.81] 

n-1 

[ ]

2 [ n ( ' z). 1 
r+L pf+q; 

p(r)=-z n & r ) exp .-1 2 

2u L 'f+q{ 2cr 

i=l 

[ 

r~ 1 &r+qf)l 
x/n-1 ., 

,,.-

It is not difficult to show 

9
2 

= E~ 2 J= 2no-
2 

+ Lj=l c'f , where 

same way it can be shown that 

2 2 2 
Cj =Pi +qi . 

Therefore Var~· 2 )= 4no.4 + 4a
2 L;'=

1 
c{ . 

We define 

""" 2 .::"'::c;-::!1-,:c,'--· 
X:= 

2na2 

(4) 

that 

In the 

Note that x: is the ratio between the total power of the 
dominant components and the total power of the scattered 
waves. Then 

(1 +x: )2 
n X -7(1_+_2-"-x:') (5) 

Note from (5) that n may be totally expressed in terms 

of physical parameters such as mean squared value, 
variance of the power, and the ratio of the total power of the 
dominant components and the total power of the scattered 
waves of the fading signal. Note also that whereas these 

physical parameters are of a continuous nature, n is of a 
discrete nattue. It is plausible to presume that if these 
parameters are to be obtained by field measurements, their 
ratios, as defined in (5), will certainly lead to figures that 

may depart from the exact n. Several reasons exist for this. 
One of them, probably the most meaningful one, is that, 
although the model proposed here is general, it is in fact an 
approxinlate solution to the so-called random phase 
problem, as are approxinlate solution to the random phase 
problem all the other well-lmown fading models. The 
limitation of the model can be made less sttingent by 
defining f.l as 

1+2x: 
X ' (1 +x: )-

(6) 

f.l being the real extension of n. Non-integer values of the 

parameter f.l account for a) non-zero correlation among the 

clusters of multi path components and b) non-Guassianity of 
the in-phase and quadrature components of the fading 
signal. (We note that in derivation of the Nakagami-m 
model [7], the parameter n, which describes the number of 

''component signals" [7], therefore discrete, is also vvritten 

in terms of the Nakagami continuous parameter m as 

m = n/2 .) It has been observed experimentally by 

Nakagami [7] that 
E2 r2) 1 

, ~ ? . Therefore, for the X:-fl 
Var r- -

Distribution 

(7) 

with x: ~ 0 and Jl ~ 0 . Being of an experinlental nature 

[7], the constraint of Equation 7 does not necessarily need 
to be observed. In fact, the distribution can be used for Jl 

assuming any real value Jl ~ 0 and x: ~ 0, as already 

observed. Using the definitions and the considerations as 
above and by means of a transformation of variables and a 

series of algebraic manipulations, the x:-JL probability 
density function of the envelope can be written from (4) as 

, () 2JL(1+x:)";' (r)p. ( (1 {r)2

) rp r = -;- exp -JL +x: -;-
~ 1 r r 

x: 2 exp(j!x:) 
(8) 

In the same way, the probability density function of the 
power is given as 

(9) 

Equations (8) and (9) in their normalized forms are 
respectively given by (1) and (2). 

2.3 THE K·J.L DISTRIBUTION AND THE 
OTHER FADING DISTRIBUTIONS 

The X:-JL Distribution is a general fading distribution that 
includes the best !mown fading distributions, namely Rice 
and Nakagami-m disuibutions. Note that both Rice and 
Nakagami-m include the Rayleigh distribution and the 
Nakagami-m includes the One-Sided Gaussian. Therefore, 
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these distributions can also be obtained from the K-J1 

Distribution. The Lognormal distribution may also be weii 

approximated by the K-J.L Distribution. 

2.3.1 RICE AND RAYLEIGH 

The Rice distribution describes a fading signal with one 
cluster of multipath waves in which one specular 
component predominates over the scattered waves. 

Therefore, by setting J.L ; 1 in (1), the K·J.L Distribution 

reduces to 

p(p) 

which is the Rice probability density function for the 
normalized envelope. In titis case, the parameter K 

coincides with the weii-known Rice parameter 1c. Now 

setting K; 0 in (10) (therefore, J.L; 1 and K -7 0 in the 

K-J.L Distribution) the Rayleigh distribution can be obtained 

in an exact manner. Moreover, for K ; m -1 + Jm! m -1) 

in (10) (therefore J.L;l and K;m-l+Jm(m-1) in the 

K·J.L Distribution), where m is the Nakaganti parameter, the 
Nakaganti-m distribution can be obtained in an approximate 
manner. 

2.3.2 NAKAGAMI-M, RAYLEIGH, AND ONE-SIDED 
GAUSSIAN 

The Nakagami-m signal can be understood as composed 
of clusters of multipath waves with no dominant 
components within any cluster. Therefore, by setting K; 0 

in the K-J.L Distribution it should be possible to obtain the 
Nakaganti-m distribution. We note, however, that, apart 
from the case f1 ; 1, wltich has been explored in the 

previous subsection, the introduction of K; 0 in the K·J.L 

Distribution leads to indeterminacy (zero divided by zero). 
For small arguments of the Bessel function the relation 

I J.f-l (z)= (z/2)J.!-I /r(J.L) holds [6, page 375, Eq. 9.6.7]. 

Using tltis in (1), and after some algebraic manipulation, 

p(p) (11) 

As K -7 0 (11) reduces to 

which is the exact Nakaganti-m density function for the 
normalized envelope. In tltis case, the parameter J.L 

coincides with the well-known Nakagami parameter m. 

Now setting J.L; 1 in (12) (therefore, J.L; 1 and K -7 0 in 

the K·J.L Distribution) the Rayleigh distribution can be 

4 

obtained in an exact manner. In the same way, by setting 

J.L; 0.5 in (12) (therefore, f1; 0.5 and K -7 0 in the K-J.L 

Distribution) the One-Sided Gaussian distribution can be 
obtained in an exact manner. Moreover, for 

J.L;(l+k)Z/(1+2k) in (12) (therefore K->0 and 

J.L ; (1 + k )2 /(1 + 2/c) in the K-f1 Distribution), where k is 

the Rice parameter, the Rice distribution can be obtained in 
an approximate manner. The Lognormal distribution, given 
as a function of m in (12) of [7], can also be approximated 

by the K·J.L Distribution for e -I ~ p ~ e, and for K-> 0 

and J.L ;m. 

2.4 APPLICATION OF THE ~J.I. 

DISTRIBUTION 

The K·J.L Distribution, as implied in its name, is based on 
two parameters, K and f1 . Its use involves .a procedure 

similar to that of ti1e other distributions, as explained next. 
From (6), it can be seen that the two parameters K and f1 

can be expressed in terms of the ratio between ti1e mean 
squared value and the variance of the power, which is 
usually defined as m. In other words 

m (13) 

For a given m, the parameters K and f.1 are chosen that 

yield the best fitting. Note, on the other hand, that, for a 
given m, the parameter f.1 shall lie within the range m and 

0, obtained for K ; 0 and K -7 =,respectively. Therefore, 

for a given m 

(14) 

The parameter J.L is then chosen within the range of (14). 

Given that J.L has been chosen, then K must be calculated 

as 

m ~(m) 
K ;;-1+ v-.ur;;·-1 J (15) 

so that the relation as in (13) be kept. 

2.5 SAMPLE EXAMPLES OF THE K:·J.I. 
DISTRIBUTION 

This section shows some plots of the K·J.L Distribution. 
Fig. 1 and Fig. 2, respectively, depict a sample of the 

various shapes of the K-J.L probability density function p(p) 

and probability distribution function P(p) as a function of 

the normalized envelope p for the same Nakaganti 

parameter m; 0.5 . Fig. 3 and Fig. 4 do the same but for 

m; 0.75; and Fig. 5 and Fig. 6, for m; 1.0; and Fig. 7 and 

Fig. 8, for m; 1.25; and Fig. 9 and Fig. 10, for m; 1.5. 
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The plots are illustrated for K---> ~, K = 8.47, 3.43, 1.72, 

0.81, and K---> 0 (which in decibels correspond to 

approximately+~, 9.28, 5.35, 2.36, -0.92, and-= dB). The 
corresponding values of J1. are respective! y: 

o 0, 0.1, 0.2, 0.3, 0.4, and 0.5, for Fig. 1 and Fig. 2; 

• 0, 0.15, 0.3, 0.45, 0.6 and 0.75, for Fig. 3 and Fig. 4; 

• 0, 0.2, 0.4, 0.6, 0.8 and 1, for Fig. 5 and Fig. 6; 

• 0, 0.25, 0.5, 0.75, 1 and 1.25, for Fig. 7 and Fig. 8; 

• 0, 0.3, 0.6, 0.9, 1.2, and 1.5, for Fig. 9 and Fig. 10; 

In addition, in Fig. 9 and Fig. 10, the curve for K = 1.37 

(:1.36 dB) was plotted with J1. = 1 . 

The curves for which K ---> 0 coincide with the 

Nakagami-m curve, in which case 11 = m . 11le curves for 

which J1. = 1 coincide with the Rice curve for which 

K=k. 

It can be seen that, although the normalized variance 
(parameter m) is kept constant for each Fignre, the curves 
are substantially different from each other. And this is 

1.0 

0.8 

0.6 

-" 
0. 

0.4 

0.2 

3.0 

Figure 1. A sample of the vru.ious shapes of the K-Jl. 

probability density function for the same Nakagami 
parameter m = 0.5 . 

particularly relevant for the distribution function, in which 
case the lower tail of the distribution may yield differences 
in the probability of some orders. This feature renders the 

K-Jl. Distribution very flexible and this flexibility can be 
used in order to adjust the curves to practical data. 

2.6 COMMENTS ON THE K-p. DISTRIBUTION 

A new general fading distribution - the K-Jl. Distribution 
- has been presented. It models a signal composed of 
clusters of multipath waves propagating in a non
homogeneous environment. Within any one cluster, the 

phases of the scattered waves are random and have similar 
delay times· with delay-time spreads of different clusters 
being relatively large. The clusters of multipath waves are 
assumed to have the scattered waves with identical powers 
but within each cluster a dominant component is found that 
presents an arbitrary power. The distribution includes the 
One-Sided Gaussian, the Rayleigh, and, more generally, the 
Nakagami-m and the Rice distributions as special cases and 
offers a higher degree of freedom. 

10'' ':--~-.J.._-~--L-~--'--~-_j 
·30 -20 ·10 0 10 

20 log(p) 

Figure 2. A sample of the vru.ious shapes of the K-Jl. 

probability distribution function for the same Nakagami 

parameter m = 0.5 . 
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1.0 

0.8 
Nakagami 

0.6 

-"' 
0. 

0.4 

0.0 '::---,-L--.L----,-' __ _,__=,.--' 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

p 

Figure 3. A sample of the various shapes of the T<-Jl. 
probability density function for the same Nakagami 
parameter m = 0. 7 5 . 

1.0 

Rayleigh 

0.8 

0.6 

-"' 
0. 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

p 

Figure 5. A sample of the various shapes of the K:-Jl. 
probability density function for the same Nakagami 

parameter m = LO. 

6 

10"' _L-~-...L-~--'-::-~~-:--~-..J 
~30 -20 -10 0 10 

20 log(p) 

Figure 4. A sample of the various shapes of the K:-Jl. 
probability distribution function for the same Nakagami 
parameter m = 0. 7 5 . 

1 o' 

10'
1 

a: 1 o·2 

;;:-

1 o·l 

10
4 

-30 -20 -10 0 10 

20 log(p) 

Figure 6. A sample of the various shapes of the T<-Jl. 

probability distribution function for the same Nakagami 
parameter m = L 0 . 
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0.8 

0.6 

2o 
~ 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

p 

Figure 7. A sample of the various shapes of the K:-Jl. 

probability density function for the same Nakagami 
parameter m = 1.25. 

1.0 Nakagami 

R!ce 

0.8 

0.6 

2o 
~ 

0.4 

0.2 

0.5 1.0 1.5 2.0 2.5 3.0 

p 

Figure 9. A sample of the various shapes of the K:-Jl. 
probability density function for the same Nakagami 

parameter m = I. 5 . 

2o 10'2 

c. 

10.3 

Rice 

10~ 
-30 -20 -10 0 10 

20 log(p) 

Figure 8. A sample of the various shapes of the K:-Jl. 

probability distribution function for the same Nakagami 

parameter m = 1.25. 

1 o' 

10"
1 

1 o·:o 

a: 
0:: 

1 o·a 

10~ 

1 o·s 
-30 

Rice 

-20 -10 

20 log(p) 

0 10 

Figure 10. A sample of the various shapes of the K:-Jl. 

probability distribution function for the same Nakagami 

parameter m = 1.5 . 
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3. THE 17"J.l DISTRIBUTION 

The 11-11 distribution is a general fading distribution that 
can be used to better represent the small scale variation of 
the fading signal. For a fading signal whose envelope is r 

and whose envelope p normalized with respect to the nns 

value is given by p = r/r, r = J E~ 2 ), the 11-11 probability 

density function p(p) is wtitten as 

4-.[; J1 J1 +l: h J1 ( ) 
p(p)= I p2J1 exp-2J1hp2 

r(}J.)H
11

' 

X I Jl-2. (2J1Hp 
2

) 
2 

(16) 

equivalently, J1 = ~x ( 1 +~: ), rO is the Gamma 
VariP-J l+7]J 

function, I v (.) is the modified Bessel function of the first 

kind and arbitrary order v ( v real), J1 2: 0 and 0 s 71 $ 1. 

(In fact, the distribution is symmetrical for 1 S 71 < = , or 

-I 

equivalently 0 $71-1 $1, in which case H = ~-~ . 

Therefore, more generally, we may write 0 $ 71 < = and 

H =[11-n-1
[j4. But, due to the symmetry around 1, it 

suffices to consider 71 within one of the ranges only, the 

range 0 $ 71 $ 1 being preferable for its compactness.) 

For a fading signal with power w = r2/2 and normalized 

power (J) = wfw, where w=E(w), the 71-Jl probability 

density function p((J)) is given by 

p((J)) 

I 

2..[;11
11+zh11 1 ==-.:.:

1
-(1)

11
2 exp(-2J1h(J)) 

r(}J.)H 11
' 

(17) 

xi 
11

__J_ (2j1H(J)) 
2 

I · 1 a! . E
2(w)x 1+~' ( 

n parttcu ar, we may so write J1 = Var(w) (!+~)' or 

· _ I 1+7]
2 

eqmvalently Jl- ~x-( \2 ). 
var\w J 1+1] 1 

3.1 PHYSICAL MODEL: 11"J.l DISTRIBUTION 

The fading model for the 11-11 Distribution considers a 
signal composed of clusters of multipath waves propagating 
in an non-homogeneous environment. Within any one 

cluster, the phases of the scattered waves are random and 
have similar delay times with delay-time spreads of 
different clusters being relatively large. The in-phase and 

8 

quadrature components of the fading signal within each 
cluster are assumed to have different powers. 

3.2 DERIVATION OF THE Tf·J.l DISTRIBUTION 

Given the physical model for the 11-11 Distribution the 
envelope r can be written in terms of the in-phase and 
quadrature components of the fading signal as 

2 n[ 2 2) 
r = L\xi +y; 

i=l 

(18) 

where x; and Y; are mutually independent Gaussian 

processes with E(x;)=E(y;)=O, E(xr)=a; and 

E~[ )=a~. Now we form the process r? = xl + yf, so 

2 n ? n 

that r = L If . In the same way, we may write w = L w; , 
i=l i=l 

where w = r2 /2 and w; = r? /2. We proceed to find the 

density of 'l . This can be carried by following the standard, 

but long and tedious, procedure so that 

where 71 = 0' ?;j 0' ~ and I 0 (.) is the modified Bessel 

function of the first kind order zero. Note that 0 $ 71 $ 1 

defines the region within which a.~::; a~, whereas. 

0 $71-1 Sl. defines the region within which 0'~ $ 0'.~. It is 

possible to show that 1'5 !E~l )= (1 +71-
1 )o-.~ . Therefore 

2"1/nr,. r· r· 
/, [ ( J2] [ ( J2] p(rd= il

1 

exp -h r~ lo H ;~ 

where h and H are as previously defined. The density 

p(w;) of the power w; is easily found by a simple 

transformation of variables and it is given by 

p(w;)==-exp -_' Io ~ Jh ( hw· J (Hw· J 
vv0 vv0 lv0 

where w0 = E(w; ). The Laplace transform L[p(w; )] of 

p(w;) is found in an exact manner as [6, pag. 1025, Eq. 

29.3.60] 

~(s+h/%) 2 -(H/wof 

Knowing that w; , i = 1, 2, ... , n, are independent, the 

Laplace transform L[p(w)] of p(w) is found as 
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L(p(w)]= .Jh/wo [ ]
" 

~ (s + h/\Vo f- (H /liio'f 

whose inverse is given by [6, pag. 1025, Eq. 29.3.60] 

We note, however, that w=E(w)=nw0 . Therefore 

wp(w) 

(19) 

The corresponding density of the envelope is found to be 

(20) 

From Equation 18 we find that £~ 2 )= n(l +1) )a~ aud 

Var~ 2 )= 2n(l +1)
2 )a~ . Thus 

(21) 

Note from Equation 21 that n/2 may be totally 

expressed in terms of physical parameters such as meau 
squared value, variance of the power, aud power of the in
phase aud quadrature components of the fading signal. Note 
also that whereas these physical parameters are of a 

continuous nature, n/2 is of a discrete nature (integer 

multiple of 1/2 ). It is plausible to presume that if these 

parameters are to be obtained by field measurements, their 
ratios, as defined in Equation 21, will certainly lead to 

figures that may depart from the exact n/2 . Several reasons 

exist for this. One of them, probably the most significant 
one, is that, although the model proposed here is general, it 
is in fact au approximate solution to the so-called random 
phase problem, as are approximate solution to the random 
phase problem all the other well-known fading models. The 

limitation of the model cau be made less stringent by 

defining J.1. as 

(22) 

J.l. being the real extension of n/2. Values of J.1. that 

differ from multiples of I/2 account for a) non-zero 

correlation among the clusters of multipath components aud 
b) non-Guassiauity of the in-phase aud quadrature 
components of the fading signal. C:We note that in derivation 
of the N akagami model [7], the parameter n , which 
describes the number of "component signals", therefore 
discrete, is also written in terms of the Nakagami 

continuous parameter m as m = n/2 .) It has been observed 

experimentally by Nakagami [7] that 

Therefore, for the 1)-j.l. Distribution 

(23) 

with 

0 :> 1) :>I (24) 

(or equivalently 0:;; 1)-I :;; 1 ). Being of au experimental 

nature [7], the constraint of Equation 23 does not 
necessarily need to be observed. In fact, the distribution can 
be used for ,u assuming any real value J.1. ;o, 0 and 

0 :;; 1) :;; I , as already observed. 

The probability density function of the envelope can be 
written as 

'z;(r) 

In the same way, the probability density function of the 
power is obtained as 

wp(w) 

xi 1 (
2pHw) 

f-LZ W 

(25) 

(26) 

which, in the normalized form, are given as in Equations 16 
and 17, respectively. 
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3.3 THE TJ·J.L DISTRIBUTION AND THE 
OTHER FADING DISTRIBUTIONS 

The TJ· f.l Distribution is a general fading distribution that 
includes the Hoyt, the One-Sided Gaussian, the Rayleigh, 
and, more generally, the Nakagami distributions as special 
cases. Rice and Lognormal distributions may also be well

approximated by the TJ-J.L Distribution. We note that the 
One-Side Gaussian and the Rayleigh distributions can be 
obtained from the Nakagami distribution by setting the 

Nakagami parameter m = 0.5 and m = 1, respectively. 

Therefore, in order to relate the TJ·J.L Distribution with these 
two distributions it suffices to relate it with the Nakagami 

one. 

3.3.1 HOYT, ONE-SIDED, AND RAYLEYGH 

The Hoyt distribution can be obtained from the TJ·f.l 

Distribution in an exact manner by setting f.l = Yz . From 

the Hoyt distribution the One-Sided Gaussian is obtained 
when 1J --> 0 . In the same way, from the Hoyt distribution 

the Rayleigh distribution is obtained when TJ = 1 . 

3.3.2 NAKAGAMI·M, RAYLEIGH, AND ONE-SIDED 
GAUSSIAN 

The Nakagami distribution can be obtained in an exact 

manner from the TJ-f.l Distribution for f.l = m and TJ --7 0 

(or equivalently TJ --7 =) or, in the same way, for f.l = m/2 

and TJ --> I . This result is not straightforwardly seen from 

the densities here derived. We observe, nonetheless, that for 
these conditions all the Gaussian variates present identical 
variances and the fading model proposed here deteriorates 
into that of [8], where the Nakagami distribution is obtained 

in an exact manner. For intermediate values of TJ the TJ·f.l 

distribution and tlte Nakagami distribution relate to each 

other for l'(l+~'f = m. This is a very interesting result 
l+ry 

which shows that an infinite number of curves of the TJ·f.l 
distribution can be found that presents the same Nakagami 

parameter m, conditioned on the fact that the constraints 

E..-~z.t:-1 
m m 

j2. 
and TJ are satisfied. The 

m 

Lognormal distribution, given as a function of m in 

Equation 13 of [7], can also be approximated by the TJ-J.L 

Distribution for e -! ~ p ~ e , and for TJ , f.l , and m 

satisfying the relations given above for the Nakagami case. 

In the same way, an infinite number of curves of the TJ·f.l 
Distribution can be found that presents the same Nakagami 
parameter for the Lognormal distribution. The Rice 

distribution can be approximated by the TJ-JL distribution for 

!'(l+ry 'f = (l+k 'j' where k ~ 0 is the Rice parameter. In the 
l+ry2 1+2k ' 

same way, this result shows that an infinite number of 

curves of the TJ-f.l Distribution can be found that presents 

the same Rice parameter k , conditioned on the fact that the 

10 

constraints 

(!+k 'f/z < < (l+k 'f 
2k+l ,, - 2k+l 

and 

TJ =('"(1+2k)
(l+k)' 

are satisfied. 

2!'(1+2k) -l )/(l-1"(1+2k)) 
(!+k)' (!+kr 

3.4 SAMPLE EXAMPLES OF THE TJ·Jl 
DISTRIBUTION 

This section shows some plots of the 1]-J.L Distribution. 
Fig. 11 and Fig. 12, respectively, depict a sample of the 

various shapes of the TJ·f.l probability density function p(p) 

and probability distribution function P(p) as a function of 

the normalized envelope p for the same Nakagami 

parameter m = 0.5. Fig. 13 and Fig. 14 do the same but for 

m = 0.75; and Fig. 15 and Fig. 16, for m = 1.0; and Fig. 17 

and Fig. 18, for m = 1.25; and Fig. 19 and 20, for 

m = 1.5. The plots are illustrated for TJ --7 0, TJ =0.005, 

0.026, 0.055, 0.127, 0.225, 0.382, and 1J ->I (which in 

decibels correspond to approximately-=, -23.01, -15.85, -
12.60, -8.96, -6.48, -4.18 and 0 dB). The corresponding 
values of JL are respectively: 

• 0.5, 0.495, 0.475, 0.45, 0.4, 0.35, 0.3, 0.25, for Fig. 11 
andFig.12; 

• 0.75, 0.7425, 0.7125, 0.675, 0.6, 0.525, 0.45, 0.375, for 
Fig. 13 and Fig. 14; 

• 1.0, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5, for Fig. 15 and 
Fig. 16; 

• 1.25, 1.2375, 1.1875, 1.125, 1.0, 0.875, 0.75, 0.625, for 

Fig. 17 and Fig. 18; 

• 1.5, 1.485, 1.425, 1.35, 1.2, 1.05, 0.9, 0.75, for Fig. 19 
and 20; 

The curves for which TJ --7 I and TJ --7 0 coincide with 

each other and also with the Nakagami one, as indicated in 

the Figures. In such cases, we have f.l = m/2 and f.l = m , 

respectively. It can be seen that, although the normalized 
variance (parameter m) is kept constant for each Figure, the 

curves are substantially different from each other. And this 
is particularly noticeable for the distribution function, in 
which case the lower tail of the distribution may yield 

differences in the probability of some orders. Moreover, the 
curves present a very interesting feature, as described next. 

For the same value of m and departing from the condition 

for which TJ --> I , as TJ diminishes the curves depart from 

that for which TJ --7 1 , initially keeping a similar shape. As 

TJ dinainishes the shapes of the curves change substantially. 

As '7 dinainishes even further and as TJ _, 0 , the curves 

merge with that of the initial shape but such curves present 

shapes very different from those obtained as TJ --7 0 . This 

feature renders the TJ·f.l Distribution very flexible and this 
flexibility can be used in order to adjust the curves to 
practical data. 
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p 

Figure 11. A sample of the various shapes of the 1)-!l 
probability density function for the same Nakagami 

parameter m = 0.5 . 
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 
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Figure 13. A sample of the various shapes of the 1)-/l 
probability density function for the same Nakagami 

parameter m = 0. 75 . 

Nakagami 

10., LL~L--'---~--'--~-"'--~--' 
-30 -20 -10 0 10 

20 log(p) 

Figure 12. A sample of the various shapes of the 1)-p. 
probability distribution function for the same Nakagami 

parameter m = 0. 5 . 

10-1 

-"' 
0. 

10-l! 

Nakagam! 

·20 -10 

20 log(p) 

0 10 

Figure 14. A sample of the various shapes of the 1)-!l 
probability distribution function for the same Nakagami 

parameter m = 0. 7 5 . 
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a: 
c: 

0.4 
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0.0 0.5 1.0 1.5 
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2.0 2.5 3.0 

Figure 15. A sample of the various shapes of the T]-Jl. 

probability density function for the same Nakagami 
parameter m = I. 0 . 
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0.6 
.g, 
0. 

0.4 

0.2 

0.0 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

p 

Figure 17. A sample of the various shapes of the T]-Jl. 

probability density function for the same Nakagami 
parameter rn = I. 25 . 

3.5 COMMENTS ON THE ry·JL DISTRIBUTION 

A new general fading distribution -the T]-Jl. Distribution 
- has been presented. It models a signal composed of 
clusters of multipath waves propagating in a non

homogeneous environment. Within any one cluster, the 
phases of the scattered waves are random and have similar 

12 
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1 a·, 

Rayleigh 

a: 1 o·2 

ii:" 

10·.~~~--~--~--~--~----L---~--~ 

-30 -20 -10 0 10 

20 log(p) 

Figure 16. A sample of the various shapes of the T]-Jl. 

probability distribution function for the same Nakagami 
parameter m = I. 0 . 

10"
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ii:" 
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20 log(p) 

Figure 18. A sample of the various shapes of the T]-Jl. 
probability distribution function for the same Nakagami 
parameter m = 1.25 . 

delay times with delay-time spreads of different clusters 
being relatively large. The clusters of multipath waves are 
assumed to have the scattered waves with different powers 
and no dominant component is found. The distribution 
includes the One-Sided Gaussian, the Rayleigh, the Hoyt 
and, more generally, the Nakagami-m distributions as 
special cases and offers a higher degree of freedom. 
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2.0 2.5 3.0 

Figure 19. A sample of the various shapes of the T{-fl. 

probability density function for the same Nakagami 

parameter m = !.5 . 

4. CONCLUSIONS 

This paper presented two general fading distributions -

the IC-fl. Distribution and the T{-fl. Distribution. The IC-fl. 

Distribution includes the Rice and the Nakagami-m 

distributions as special cases. The T{-fl. Distribution includes 

the Hoyt and the Nakagami-m distributions as special cases. 

Further investigations, not included here, show that the 
Nakagami distribution can be thought of as a mean 

distribution which divides the fading plane into two: the 

upper plane is then described by the IC-fl. Distribution 

whereas the lower plane is described by the 7]-f.l. 

Distribution. Because these distributions are more flexible 

than the other fading distributions they can yield better 

fitting to experimental data. 
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