
ASP-DAC ’97
0-89791-851-7$5.00 1997 IEEE

General Floorplanning with L-shaped, T-shaped

and Soft Blocks Based on Bounded Slicing Grid Structure

Maggie Kang Wayne W.-M. Dai
maggiek@cse.ucsc.edu dai@cse.ucsc.edu

Computer Engineering, University Of California,

Santa Cruz, CA, 95064, U.S.A.

Abstract| A new method of non-slicing oorplan-

ning is proposed, which is based on the new repre-

sentation for non-slicing oorplans proposed by [1],

called bounded slicing grid(BSG) structure. We de-

veloped a new greedy algorithm based on the BSG

structure, running in linear time, to select the alter-

native shape for each soft block so as to minimize the

overall area for general oorplan, including non-slicing

structures. We propose a new stochastic optimization

method, named genetic simulated annealing (GSA)

[3] for general oorplanning. Based on BSG struc-

ture, we extend SA-based local search and GA-based

global crossover to L-shaped, T-shaped blocks and ob-

tain high density packing of rectilinear blocks.

I. Introduction

A oorplan is a dissection of a rectangle into a set

of non-intersecting rectangles, called rooms. A oorplan

speci�es the topological relationship among rooms. Each

room has a set of alternative shapes or realizations of the

room. A realization of a oorplan is obtained by select-

ing a realization for each block. There are two kinds of

oorplans: slicing and non-slicing. A slicing oorplan is a

oorplan which can be obtained by recursively cutting a

rectangle into two parts by either a vertical or a horizontal

line [8], [5], otherwise is non-slicing oorplan.

For building block layout with multi-layer technology,

most of channel routing will be replaced by area rout-

ing and blocks are packed together to minimize the area.

This technology shift makes non-slicing oorplan becomes

more and more important.

Ref. [5] proposed a normalized Polish expression to

represent the slicing oorplan solution space, which en-

ables e�cient neighborhood search. Ref. [1] introduced

the bounded slicing grid(BSG) structure and [4] proposed

the Sequenced Pair (SP) to represent non-slicing oor-

plans. Both BSG and SP provide a �nite solution space

at least one of which is optimal if the solution space is

large enough, and the non-slicing oorplan solution can

be evaluated e�ciently during the stochastic optimization

process.

To solve the non-slicing oorplanning problem, we pro-

pose a new stochastic optimization method, named ge-

netic simulated annealing (GSA) which combines the local

stochastic hill climbing features from simulated annealing

(SA) and the global crossover operation from genetic al-

gorithm (GA). We extend both SA-based local search and

GA-based crossover to L-shaped and T-shaped blocks.

The experiment results demonstrate our algorithm can

obtain e�cient packing for rectilinear blocks very quickly.

Due to the physical layout purpose, most blocks in

oorplanning have a set of alternative realizations. We

develop an e�cient greedy algorithm, running in linear

time, to minimize the total area by selecting a realization

for each block.

Following Section 2 introduces the basic BSG struc-

ture and non-slicing oorplan realization by BSG sizing.

Section 3 presents the new greedy algorithm for general

oorplanning with soft blocks. The genetic simulated an-

nealing algorithm and the placement of L-shaped and T-

shaped blocks will be described in Section 4. Section 5

gives some concluding remarks.

II. Bounded Slicing Grid Structure(BSG)

The bounded slicing grid structure (BSG) can be ob-

tained as follows [2]: make a row of non-overlapping hor-

izontal line segments of two unit length and repeat them

row by row, shifting by one unit length between the ad-

jacent rows. A set of columns of vertical line segments

with two unit length can be constructed in a similar way.

Those line segments are called Bounded Slice Lines, or

BS-lines. None of the BS-lines are intersecting each other

(See Fig.1). The rectangle region enclosed by four BS-

lines is called a room. With BSG model, a oorplanning

is represented by an assignment of blocks to rooms and

this assignment is referred to as a BSG-seed. An empty

room contains no block. Otherwise, the room is called

occupied room. Given a BSG-seed, a oorplanning can be

realized by stretching or shrinking, collectively called siz-

ing, the BS-lines. The sizing operation shrinks the empty

rooms to zero area and determines the shapes, thus the

coordinates of the blocks.

The sizing operation is based on two directed acyclic

graphs: the horizontal adjacency graph Gh and the verti-

cal adjacency graph Gv (See Fig.2). Given a BSG struc-

ture, a vertex v 2 Gh represents a vertical BS-line. There

r

BSG Room

Horizontal BS-lines

Vertical

BS-lines

vvm

vn
vi

j

mv

vn vi

vj

e(m, n)
e(i, j)

Fig. 1. Bounded Slicing Grid Structure.

s

hs t h

t

Vertical Adjacency Graph Gv

Horizontal Adjacency Graph G h

v

v

Fig. 2. The adjacency graphs of the BSG structure of Fig. 2

is a directed edge or an arc from vertex vi to vertex vj
if the BS-line corresponding to vertex vi is on the left

of the BS-line corresponding to vertex vj and they share

the same room (See Fig.1). In particular, there is an arc

from the source vertex sh 2 Gh to each of the vertices

representing the leftmost BS-lines. Similarly, there is an

arc from each of the vertices representing the rightmost

BS-lines to the target th (See Fig. 2). Gv can be de�ned

similarly. Corresponding to each room r in a BSG struc-

ture, there is an unique arc ehr in Gh and an unique arc evr
in Gv. The weights of ehr and evr are given by the width

and height of the block assigned to the room r respec-

tively, if the room is occupied. Otherwise, the weights are

zero. For each vertex v 2 Gh, l(sh; v) denotes the length

of the longest path from the source sh to v. l(sh; v) gives

the x-coordinate of the vertical BS-line represented by

v, or the x-coordinate of one side of the rooms bounded

by the BS-line. In particular, the length of the longest

path from the source sh to the target th, l(sh; th), gives

the width of the overall layout. The y-coordinates of the

blocks and the height of the overall layout can be deter-

mined in a similar way by the lengthes of longest pathes

in Gv. Since the adjacency graphs Gh and Gv are directed

acyclic graphs, the longest paths can be found in linear

time.

III. Area Minimization for General Floorplans

The area minimization problem of a oorplan can be

de�ned as follows: given a BSG structure and a BSG-

seed, given the realizations of each block, determines the

realization of the oorplan which has the minimal area.

We develop a new greedy algorithm which alternatively

reduces the overall width and height monotonically until

no such reduction is possible. Since the height reduction

and width reduction process are similar, in the following,

we describe only the height reduction.

Recall that each room r in BSG structure corresponds

to one arc ehr in Gh and one arc evr in Gv. The weights

w(ehr) and w(evr) represent the width and the height of

the room r respectively.

For any arc e(i; j) 2 Gh, w(i; j) denotes weight of

e(i; j), that is the width of the room corresponding to

e(i; j). We de�ne the slack of the arc e(i; j) as the maxi-

mum amount of increase in the width of the correspond-

ing room such that no increase in the overall width. Let

l(sh; vi) and l(vj ; th) denote the length of the longest path

from the source sh to vi and that of the longest path from

vj to the target th respectively. The slack of e(i; j) is given

by:

sl(i; j) = l(sh ; th) � l(sh ; vi)� l(vj ; th)� w(i; j) (1)

We de�ne the slack of a path p as the minimum value of

sl(i; j) for e(i; j) 2 p, that is:

sl(p) = min
e(i;j)2p

sl(i; j) (2)

At each iteration of the height reduction, we choose one

path ph from sh to th in Gh and change the heights of the

corresponding blocks, such that no increase in the overall

width. As the result of the height reduction, the widths of

the blocks may increase. The slack of the path ph amounts

to the maximal accumulated increase in widths of those

blocks without increase in the overall width.

Notice that for any pair of paths ph from sh to th in

Gh and pv from sv to tv in Gv, there exist exact one arc

eh on ph and exact one arc ev on pv such that eh and ev
correspond to the same room. We call a block h-critical

if the corresponding block is on a longest path in Gh.

Similarly, v-critical if the arc is on a longest path in Gv.

Corresponding to a path ph, if we reduce the heights of

all v-critical blocks by �h and reduce the heights of other

blocks accordingly, the overall height will be reduced by

exactly �h.

Next we derive a su�cient condition for the height re-

duction not to increase the overall width. Let �w(i; j)

denote the increase in weight of e(i; j). Obviously the

overall width will not be increased if the following condi-

tion holds: X

e(i;j)2ph

�w(i; j) � sl(ph) (3)

The maximal slack sl
0

(i; j) for arc e(i; j) 2 Gh can be

obtained by increasing the height of the corresponding

block until it becomes critical, that is the slack of the

corresponding arc in Gv is zero. Due to the property of

BSG structure, for any two arcs on path ph in Gh, the

corresponding arcs in Gv are not on the same path. So

corresponding to the arcs on a path ph in Gh, setting the

slacks of those arcs in Gv to zero will not increase the

length of the longest path in Gv.

Let num(p) denote the number of arcs in path p. We

de�ne a bottleneck path p from sh to th in Gh as a path

that maximize
sl

0

(p)

num(p)
, where sl

0

(p) is computed using

maximal slack of arcs on p. We de�ne the slack of vertex

vj as sl
0

(p), where p is a bottleneck path from sh to vj .

Similarly, num(vj) is the number of arcs on path p. To

�nd a bottleneck path, we initialize sl(sh) and num(sh)

as follows:

sl(sh) = 1 (4)

num(sh) = 0 (5)

At each step, to update the slack of vertex vj , we �rst

�nd a particular vertex v�i among all predecessors vi in

Gh, such that
min(sl(v�

i
);sl

0

(i;j))

num(v�
i
)+1 is maximized. Then we

update sl(vj) and num(vj) as follows:

sl(vj) = min(sl(v�i); sl
0

(i; j)) (6)

num(vj) = num(v�i) + 1 (7)

Since Gh is an acyclic directed graph, an appropriate

visiting order is topological: we order the vertices reach-

able from sh so that if e(i; j) is an arc, vertex vi appears

before vertex vj in the order. Such topological order can

be found in O(j V j) time. Thus we can �nd the bottle-

neck path p in Gh by linear time.

In the following we discuss the detail how to adjust the

heights of the blocks corresponding to the bottleneck path

p 2 Gh. Let �w(ehr) denote the width increment of arc ehr ,

�w(evr) denote the height reduction of arc evr , where ehr
and evr correspond to the same block. Assume the block

has been sized in such way that sl(evr) is zero and sl(ehr)

is maximized.

w(evr)

(w(evr)��w(evr))
=

(w(ehr) + �w(ehr))

w(ehr)
(8)

�w(evr) = �h (9)
X

eh
r
2p

�w(ehr) � sl
0

(p) (10)

where w(evr) and w(ehr) denote the weight of arc evr and

ehr respectively. From the equations, we derive the width

increment of the block as follows:

�w(ehr) = sl
0

(p)�
w(ehr)=w(e

v
r)P

eh
r
2pw(e

h
r)=w(e

v
r)

(11)

Accordingly we can obtain the block' height reduction

�h, which is the amount of overall height reduction.

Fig. 3. Placement of MCNC benchmark: ami49 without soft
blocks. Achieve total area of 38,813,880 and total wire length of
2,761,122 in 2.27 hours on Sun SPARC 20 workstation. The result
is the average of 10 runs.

The process of height reduction terminates when the

following condition is true: for any path p from sh to

th in Gh, there exists one block corresponding to an arc

on p, which is both v-critical and h-critical. When this

happens, we cannot further reduce the overall height by

changing the heights of blocks corresponding to p with-

out increasing of overall width. The width reduction can

be performed similarly. We reduce height and width al-

ternatively until both of them terminate. At this point,

no reduction of overall area is possible by reducing the

heights or widths of a set of blocks corresponding to a

path in Gh or Gv.

Since the overall height and width are reduced mono-

tonically, the algorithm will terminate eventually. Once a

block becomes critical in one dimension, it will remain

critical in this dimension. This implies that once the

height or width of a block is reduced, it will never be

increased later. we can show that the oorplan area min-

imization algorithm runs in linear time.

The experiment result shown in Fig. 4 is the non-slicing

oorplanning given each block is soft. For comparison,

the placement of same blocks without soft assumption, is

shown in Fig. 3. Using the greedy algorithm presented

above, we can obtain the area minimization for general

oorplanning.

IV. GSA Optimization and Placement of

L-shaped, T-shaped Blocks

A. Genetic Simulated Annealing Algorithm

To improve the performance of simulated annealing

(SA) and genetic algorithm (GA), several hybrid algo-

rithms were proposed, such as SAGA [11], AG [12] and

PGSA [13]. We apply a new optimizationmethod, named

genetic simulated annealing (GSA) [3], which combines

the local stochastic hill climbing features from SA and the

global crossover operations from GA. The further discus-

sion and comparison between GSA and previous hybrid

algorithms can be seen in [3].

Fig. 4. Floorplanning of MCNC benchmark: ami49 given each
block is soft. Achieve total area of 37,334,668 (%3:9 improvement)
and total wire length of 2,893,677 in 2.28 hours on Sun SPARC 20
workstation. The result is the average of 10 runs.

During the optimization process, GSA maintains a set

of solutions named population: S = fs1; s2; s3; � � � ; sng

and repeatedly applies the SA-based local search, popula-

tion update and GA-crossover operation. GSA preserves

the local best-so-far solution s�L during the SA-based lo-

cal search, which each time produces a candidate solu-

tion s
0

by changing a small fraction of the current solu-

tion s. The new candidate is accepted with probability

minf1; e��f=Tg, in which �f is the cost reduction and T

is the temperature. Population S is updated by replac-

ing the worst solution with the local best-so-far solution

s�L at the end of SA-based local search. When the local

search reaches a at surface or the system is frozen, GSA

picks up two parent solutions randomly in the population

and makes a large jump in the solution space by using

a GA-based crossover operation. Crossover generates the

new solutions by combining the partial features from both

parents. The new SA-based local search starts with the

new generation and optimization process continues until

CPU time reaches given limit. Finally GSA reports the

global best-so-far solution s�G in population S.

B. Placement of Rectangular Blocks

During the GSA optimization process, the SA-based

operation aims to create small changes of the solution

state. It takes a single solution and modi�es it at random

in a localized manner. Based on the BSG structure, we

apply three kinds of SA-based operator : move, exchange

and rotate. GSA selects one of these operators at random

and applies it in a randomized manner at each optimiza-

tion step of SA-based local search. On the other hand,

GA-based crossover aims to make a big jump in the so-

lution space by combining the partial features of parent

solutions. It will be addressed separately. Fig. 5 gives an

experiment result for the placement of rectangular blocks.

Our algorithm can obtain the high density placement very

quickly.

Fig. 5. Placement of MCNC benchmark: ami49. Achieve total
area of 37,935,800, and total wire length of 2,761,122 in 1.52 hours
on Sun SPARC 20 workstation. The result is the average of 15
runs. Notice that we didn't compare our result with [6] because
the current implementation of our approach uses cost function.
The �nal result has to be a�ected by the coe�cient in the cost
function.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. E�cient L-partition.

C. Placement of L-shaped and T-shaped Blocks

The BSG structure provides a convenient way to han-

dle rectilinear blocks which we may encounter due to the

design reuse and special layout constraints. Here we dis-

cuss the representations of L-shaped and T-shaped blocks

in BSG structure and the extension of optimization oper-

ations.

C.1 Representation of L-shaped block in BSG

structure

Intuitively we partition an L-shaped block into two sub-

rectangles. In BSG structure, there are eight ways in

which the two sub-rectangles can form an L-shaped block.

Through BSG sizing, other block can be packed into the

area enclosed by the sub-rectangles in all of the eight

conditions. During the optimization of GSA, the two

sub-rectangles are adjacent each other in BSG structure.

We extend the operations of SA-based local search to L-

shaped blocks. The con�guration of L-shaped block de-

pends on that of the target rooms. For example, an L-

shaped block shown in Fig. 6(a) is moved into the new

(a)

(c)

(b)

(d)

Fig. 7. Coordinate Alignment for L-shaped Block.

(a) (b) (c)

Fig. 8. Non-e�cient partition schemes for T-shaped block.

rooms shwon in Fig. 6(b) and an L-shaped block in Fig.

6 (a) is rotated to (e).

Fig. 7 shows the coordinate alignment for L-shaped

blocks. Given L-shaped blocks can be ip, this align-

ment obtains the feasible con�guration of L-shaped block

without changing BSG sizing. Therefore, even with non-

rectangular blocks, BSG sizing still can evaluate solution

accurately during the optimization.

C.2 Representation of T-shaped block in BSG

structure

Fig. 8 shows the di�erent ways to partition a T-shaped

block to a set of rectangles. They are not e�cient because

no block can be packed into the area enclosed by the sub-

rectangles for some particular BSG con�guration. On the

other hand, the partition scheme shown in Fig.9 is e�cient

given that we can replace the four sub-rectangles with

each other and rotate them as from Fig.9 (b) to Fig. 9

(b').

Similarly GSA optimization can be extended easily to

T-shaped blocks based on the BSG structure. Due to

the regular structure of BSG, this kind of operations can

be done very quickly. Also we can process the coordinate

alignment for T-shaped blocks without changing the BSG

sizing.

The experiment result shown in Fig. 10 demonstrates

that our algorithm can handle L-shaped and T-shaped

blocks e�ciently and obtain the packing of rectilinear

blocks with high density.

1 2 1 2

3 4 3 4

1

2

3

4

1 2

3 4

1 2

3 4

1

2
4

3

 (a) (b) (b’)

(c) (d) (d’)

Fig. 9. E�cient partition scheme for T-shaped block.

Fig. 10. Placement of modi�ed ami49 with L-shaped and

T-shaped blocks. Achieve total area of 60,628,152 and total wire
length of 5,359,748 in 3.54 hours on Sun SPARC 20 Workstation.
The result is the average of 20 runs.

1 1 2

3

4 5

1 1

1 2

3

44 5

2 3 1

5 4 5

2

1 1

3

P1 P2 C1 C2

Fig. 11. BSG crossover creates C1 and C2 from P1 and P2.

D. Crossover Operation

There are three requirements to make the crossover op-

eration desirable [3]. First, crossover should only produce

the partial solution which belongs to either parent. All

features in child solutions should be inherited from the

parent solutions. Second, it should create a child in such a

way that the more the parents have in common, the more

the child has similarity to the parents. In the extreme

case where both parents are identical, the child should be

identical to the parents. Finally crossover should produce

a feasible child solution.

We extend the crossover operation for rectangular

blocks [3] to L-shaped and T-shaped blocks. Each block

in child solution is placed in the same room or rooms as

in one of the parent solutions. Notice that an L-shaped or

T-shaped block occupies more than one rooms. Crossover

copies blocks from both parents alternatively in order to

inherit features fairly from both parents. Block M1 is

called conicting with blockM2 if the room(s) in P1 which

contains M1 has corresponding room(s) in P2 which con-

tains M2. If a pair of blocks are conicting with each

other, crossover copies both blocks from the same parent.

The crossover procedure always creates feasible solutions

in which all partial features are consistent with either of

the parents. Fig. 11 shows an example of crossover based

on BSG structure, C1 and C2 are generated by starting

with copying blocks from P1 and P2 respectively.

V. Summary and Conclusions

In this paper, we have demonstrated that the BSG

structure is very e�ective for the general oorplanning,

including non-slicing structures, L-shaped and T-shaped

blocks, and soft blocks. We have presented a new stochas-

tic optimization method GSA, which combines the local

stochastic hill climbing features from SA and the global

crossover operations from GA. We have also proposed a

new e�cient algorithm for area minimization of general

oorplanning. The experimental results are very promis-

ing.

Based on BSG structure, the future work includes gen-

eralizing arbitrarily shaped, rectilinear blocks' packing,

handling various con�guration requirements, incorporat-

ing multiple objectives: area, wire length and timing con-

straints into the cost vector [6] during GSA optimization.

Acknowledgements

The authors like to thank H. Murata, S. Nakatake, and

Y. Kajitani for helpful comments on an earlier version of

the paper.

References

[1] S. Nakatake, H. Murata, K. Fujiyoshi and Y. Kajitani,
\Bounded-Slicing Structure for module placement," Technical

Report of the Institute of Electronics, Information and Com-

munication Engineers of Japan, Vol. VLD94, pp. 19-24, 1994.

[2] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani, \Mod-
ule placement on BSG-structure and IC layout applications,"

IEEE/ACM International Conf. on Computer Aided Design,
in press.

[3] S. Koakutsu, M. Kang and W. W.-M. Dai, \Genetic simulated
annealing and application to non-slicing oorplan design," Fifth

ACM/SIGDA Physical Design Workshop, pp. 134-141, 1996.

[4] H. Murata, K. Fujiyoshi, S. Nakatake and Y. Kajitani,

\Rectangle-packing-basedmodule placement," IEEE/ACM In-

ternational Conf. on Computer Aided Design, pp. 472-479,

1995.

[5] D. F. Wong and C.L.Liu, \A new algorithm for oorplan de-

sign," Proc. of 23rd ACM/IEEE Design Automation Conf., pp.
101-107, 1986.

[6] H. Esbensen and E. S. Kuh, \Exploring the design space for
Building-Block placements considering area, aspect ratio, path

delay and routing congestion," Fifth ACM/SIGDA Physical

Design Workshop, pp. 126-133, 1996.

[7] W. W.-M. Dai, B. Eschermann, E. S. Kuh and M. Pedram, \Hi-
erarchical placementand oorplanning in BEAR," IEEE Trans.

Computer-Aided Design, Vol. CAD-8, pp. 1335-1349, 1989.

[8] R.H.J.M.Otten, \Automatic oorplan design," Proc. of 19th

ACM IEEE Design Automat. Conf., pp. 261-267, 1982.

[9] P. Pan and C. L. Liu, \Area minimization for oorplans," IEEE
Trans. on CAD, Vol. 14, pp. 123-132, 1995.

[10] W. Shi, \An optimal algorithm for area minimization of slic-
ing oorplans," IEEE/ACM International Conf. on Computer

Aided Design, pp. 480-484, 1995.

[11] H. Esbensen and P. Mazumder, \SAGA: A uni�cation of the
genetic algorithm with simulated annealing and its application

to marco-cell placement," Seventh International Conference on

VLSI Design, pp. 211-214, 1994.

[12] F.-T. Lin, C.-Y. Kao and C.-C. Hsu, \Applying the genetic ap-
proach to simulated annealing in solving some NP-hard prob-
lems," IEEE Trans. System, Man, and Cybernetics., Vol. 23,
no. 6, pp. 1752-1767, 1993.

[13] S. Koakutsu, Y. Sugai and H. Hirata, \Floorplanning by im-
proved simulated annealing based on genetic algorithm,"Trans.
of the Institute of Electrical Engineers of Japan, Vol. 112-C, No.
7, pp. 411-416, 1992.

