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Abstract: Discrete orthogonal moments such as Tchebichef moments and Krawtchouk moments are more

powerful in image representation than traditional continuous orthogonal moments. However, less work has

been done for the summarisation of these discrete orthogonal moments. This study proposes two general

forms which will simplify and group the discrete orthogonal Tchebichef and Krawtchouk polynomials and their

corresponding moments, and discusses their importance in theories and applications. Besides, the proposed

general form can be used to obtain other three discrete orthogonal moments: Hahn moments, Charlier

moments and Meixner moments. Computations of these discrete orthogonal polynomials are also discussed in

this task, including the recurrence relation with respect to variable x and order n. Some properties of these

discrete orthogonal moments, which are of particular value to image processing applications, such as energy

compact capability and signal decorrelation, are also presented. Finally, the study evaluates these discrete

orthogonal moments in terms of the capacity of image reconstruction and image compression, and discusses

the importance of the proposed general form in theories and engineering.

1 Introduction

Moments and moment functions have been extensively used
for feature extraction in pattern recognition and object
classification [1, 2]. Moments with a continuous orthogonal
base set, such as Legendre, Zernike, pseudo-Zernike and
generalised pseudo-Zernike polynomials, can be used to
represent an image with minimum redundancy information
[3, 4]. However, the computation of these moments
requires a coordinate transformation and a suitable
approximation of the continuous moment’s integrals, thus
leading to further computational complexity and
discretisation errors [5]. Recently, discrete orthogonal
Tchebichef and Krawtchouk moments have been introduced
to the field of image analysis [6, 7]. It was proved that these
discrete orthogonal moments have better capability in image
representation than the traditional continuous orthogonal
moments. Taking a cue from their work, we recently

introduced the sets of Hahn (Hahn–Eberlein), Dual Hahn
and Racah moment functions in succession [8–10]. We
adopted a general form to define these moments. Among
them, the Racah and Dual Hahn orthogonal polynomials
used in Racah moments and Dual Hahn moments,
respectively, are orthogonal on non-uniform lattice. The
Hahn polynomials are orthogonal on the constant mesh.
The use of discrete orthogonal polynomials as basis
functions in image moments will eliminate the need for
numerical approximation, and satisfy the orthogonal
property precisely in a discrete domain as image coordinate
space is a discrete domain [5, 6]. As it is well known, all
these discrete orthogonal moments are adopting the classical
orthogonal polynomials of one variable as basis functions.
To the best of our knowledge until now, there is no such
general form ever used to calculate all these discrete
orthogonal polynomials that are used to define their
corresponding discrete orthogonal moments.
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The present studies will focus on the general form to
summarise discrete orthogonal Tchebichef, Krawtchouk,
Hahn, Meixner and Charlier moments (TM, KM, HM,
MM and CM). Note that there are three commonly used
standardisations in Hahn polynomials: Qn(x; a, b, N ),
hn
(a,b)(x, N ) and Hahn–Eberlein polynomials h(u,v)n (x, N )
[11–13]. The first one and the last one were used to define
Hahn moments by Yap et al. [14] and by our previous work
[8], respectively. Their characteristics are listed in [15]. No
reports about the second standardisation used in image
analysis areas have been found. In this study, it is chosen to
construct another new Hahn moments. Besides, two other
discrete orthogonal moments, Meixner and Charlier
moments are also introduced from the proposed general form.

Owing to very time-consuming of computing polynomials’
values by using hypergeometric function and gamma
function, the three-term recurrence relations of classical
orthogonal polynomials are usually adopted to calculate the
polynomial values. However, one problem encountered in
the calculation of high-order polynomial values is the
propagation of numerical errors while using the recursive
formula with respect to order n. This error can have an
exponential growth, thus severely affects the quality of
image reconstruction. To remedy this problem, the
modified recurrence relation for these discrete orthogonal
polynomials is given in this study for decreasing the
computational cost in the calculation of moments and
improving the precision of image reconstruction. In
addition, some useful properties of these discrete
orthogonal moments are also discussed, such as signal
decorrelation and energy compaction.

When the parameters of orthogonal polynomials are set as
some special values, the emphasis region of these polynomials
is completely different. Thus, some moments, such as
Krawtchouk and Hahn moments, can be set on local
feature extraction mode by using some special parameters,
and Tchebichef, Meixner and Charlier moments are more
focusing on the global feature extraction. By using such a
method, the proposed 2-D moment functions are able to
extract the features of any selected region-of-interest (ROI)
by choosing appropriate parameters and have more
flexibility in describing an image.

The main contribution of this study is to propose two
general forms of recurrence relations with respect to
variable x and order n for calculating the discrete
orthogonal polynomials and moments. Then, this work
defines three new discrete orthogonal moments (Hahn
moments, Meixner moments and Charlier moments) by
using the proposed general form. The energy compaction
and signal decorrelation are also used to explain and
compare the image compaction capabilities of discussed
moments in theory.

This paper is structured as follows: In Section 2, we recall
the definition of the classical discrete orthogonal polynomials

with one variable. Two recurrence relations about these
polynomials are given in Section 3. In Section 4, we define
1-D and 2-D discrete orthogonal moments. The properties
of these discrete orthogonal moments and some
experimental results are discussed in Section 5. Section 6
concludes the paper.

2 Classical discrete orthogonal
polynomials of one variable

The classical discrete orthogonal polynomials with one
variable will be used in this study, so we address them in
this section. One can refer to [11, 12] for more details.
The discrete orthogonal polynomials can be classified into
two categories. One is the set of polynomials that are
orthogonal on the uniform lattice {x ¼ 0, 1, 2, . . .}. The
discrete Tchebichef, Krawtchouk, Hahn, Meixner and
Charlier polynomials belong to this category. The other
one consists of the polynomials being orthogonal on the
non-uniform lattice {x ¼ x(s), s ¼ 0, 1, 2, . . .} [9–12]. In
this study, we consider only the former set of polynomials.
These discrete orthogonal polynomials are defined as the
polynomial solutions of the following difference equation

s(x)D∇pn(x)+ t(x)Dpn(x)+ lnpn(x) = 0 (1)

whereDpn(x) ¼ pn(x+ 1)2 pn(x),∇pn(x) ¼ pn(x)2 pn(x2 1)
denote the forward and backward finite difference operator,
respectively. s(x) and t(x) are the functions of second and first
degree, respectively, ln is an appropriate constant. The
solution of this partial difference equation can be expressed by
Rodrigues formula as follows

pn(x) =
Bn

w(x)
∇

n[wn(x)] (2)

where w(x) is the weight function wn(x) in the case of n ¼ 0.
Thus, the polynomials solutions of (1) are determined by (2)
depending on the normalising factors Bn. For the backward
difference operator ▽ we have the property [11, 12]

∇
nf (x) =

∑

n

k=0

n
k

( )

(−1)kf (x− k) (3)

CombiningRodrigues formula and (3),we can obtain an explicit
expression for the polynomials pn(x).

The classical orthogonal polynomials with one discrete
variable satisfy the following three-term recurrence relation

xpn(x) = anpn+1(x)+ bnpn(x)+ gnpn−1(x) (4)

The polynomials pn(x) satisfy an orthogonality relation of the
form

∑

s

x=0

pn(x)pm(x)w(x) = d2
n · dmn, 0 ≤ m, n ≤ s (5)
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where dn
2 denotes the square of the norm of the

corresponding orthogonal polynomials and dmn denotes the
Dirac function. Such polynomials include Tchebichef,
Krawtchouk, Hahn, Meixner and Charlier polynomials.
The normalised orthogonal polynomials can be obtained by
utilising the square norm and weighted function

p̃n(x) = pn(x)

�����

w(x)

d2
n

√

, n = 0, 1, . . . , s (6)

Therefore the orthogonal property of normalised orthogonal
polynomials in (5) can be rewritten as

∑

s

x=0

p̃m(x)p̃n(x) = dmn, 0 ≤ m, n ≤ s (7)

For classical discrete orthogonal polynomials, Nikiforov and
Uvarov [11] introduced some basis information listed in
Table 1. Their weight functions are defined in the
following discrete domain

G = {x|0 ≤ x ≤ s} (8)

Here, s is N2 1 for discrete Tchebichef, Hahn polynomials
and N for Krawtchouk polynomials. An unlimited discrete
domain is holding for Meixner and Charlier polynomials.

A general form for obtaining the normalised discrete
orthogonal polynomials p̃n(x) can be written as follows

Ap̃n(x) = B ·Dp̃n−1(x)+ C · Ep̃n−2(x) (9)

where coefficients A–E can be calculated according to (2),
(3), (6) and Table 1. Equation (9) is a recurrence relation
with respect to the polynomial order n.

3 Computation of discrete
orthogonal polynomials

3.1 Recurrence relation with respect to n

In this subsection, we attempt to enumerate several classical
discrete orthogonal polynomials by using the proposed
general form (9).

3.1.1 Tchebichef polynomials: According to (1) and
Table 1, one can obtain the first-order linear partial
difference equation of Tchebichef orthogonal polynomials
tn(x; N ) as follows

x (N − x)D∇tn(x; N )+ (N − 1− 2x)Dtn(x; N )

+ n(n+ 1)tn(x; N ) = 0 (10)

Tchebichef polynomials of order n, n ¼ 0, 1, . . ., N2 1, are

Table 1 Data for Tchebichef tn(x; N ), Krawtchouk kn(x; p, N ), Hahn h
(a,b)
n (x; N ), Meixner 4n

(b,m)(x) and Charlier cn
a1 (x)

polynomials, (0 , p , 1 for Krawtchouk, a . 0, b . 0 for Hahn, b . 0, 0 , m , 1 for Meixner and a1 . 0 for Charlier)

pn(x) tn(x; N ) kn(x; p, N ) h
(a,b)
n (x; N ) 4(b,m)

n (x) c
a1
n (x)

s N2 1 N N2 1 1 1

s(x) x(N2 x) x x(N+ a2 x) x x

t(x) N2 12 2x Np− x

(1− p)
(b+ 1)(N2 1)2 (a+ b+ 2)x bm2 x(12 m) a12 x

ln n(n+ 1) n

1− p
n(a+ b+ n+ 1) n(12 m) n

Bn
(− 1)

n

n!

(−1)
n
(1− p)

n

n!

(−1)
n

n!

1

mn

1

an1

wn(x) G(N− x)G(n+ 1+ x)

G(N− n− x)G(x + 1)

N!p
x+n(1− p)N−n−x

G(x + 1)G(N+ 1− n− x)

G(N+ a− x)G(n+ b+ 1+ x)

G(N− n− x)G(x + 1)

mx+nG(n+ b+ x)

G(b)x!

e
−a1a

x+n
1

x!

d
2
n

(N+ n)!

(2n+ 1)(N− n− 1)!

N!

n!(N− n)!
(p(1− p))

n G(a+ n+ 1)G(b+ n+ 1)(a+ b+ n+ 1)N

(a+ b+ 2n+ 1)n!(N− n− 1)!

n!(b)n

mn(1− m)b
n!

an1

an
n+ 1

2(2n+ 1)
n+ 1 (n+ 1)(a+ b+ n+ 1)

(a+ b+ 2n+ 1)(a+ b+ 2n+ 2)

m

m− 1
2a1

bn
N− 1

2
n+ p(N2 2n) a− b+ 2N− 2

4

+
(b

2
− a

2
)(a+ b+ 2N)

4(a+ b+ 2n)(a+ b+ 2n+ 2)

n+ m(n+ b)

1− m

n+ a1

gn n(N
2
− n

2
)

2(2n+ 1)

p(12 p)(N2 n+ 1) (a+ n)(b+ n)(a+ b+ N+ n)(N− n)

(a+ b+ 2n)(a+ b+ 2n+ 1)

n(n− 1+ b)

m− 1

2n
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also defined by using hypergeometric function as follows

tn(x;N )= (1−N )n3F2(−n, −x, 1+n; 1, 1−N ; 1),

n, x, y= 0, 1, 2, . . . ,N −1
(11)

where (a)k ¼ a(a+ 1)(a+ 2) . . . (a+ k2 1) is Pochhammer
symbol. Using (2), (3), (6) and Table 1, the zero-order and
first-order normalisedTchebichef polynomials can be calculated.

t̃0(x;N )=
�����

1/N
√

,

t̃1(x;N )= (2x−N +1)
����������������

3/(N (N 2−1))
√

(12)

3.1.2 Krawtchouk polynomials: Krawtchouk
orthogonal polynomials with one variable kn(x; p, N ) satisfy
the following first-order partial difference equation

(1−p)xD∇kn(x; p,N )+ (Np−x)Dkn(x; p,N )

+nkn(x; p,N )= 0, 0, p, 1 (13)

The nth Krawtchouk polynomial is defined by using
hypergeometric function as

kn(x; p,N )= 2F1(−n, −x; −N ; 1/p) (14)

The zero-order and first-order normalised Krawtchouk
polynomials can be calculated using similar method used in
calculating Tchebichef polynomials.

k̃0(x; p,N )=

�����������������

N !px(1−p)N−x

x!(N −x)!

√

k̃1(x; p,N )= (−p(N −x)+x(1−p))

×

����������������������������

(N −1)!px−1(1−p)N−x−1

x!(N −x)!

√

(15)

3.1.3 Hahn polynomials: Hahn orthogonal
polynomials with one variable h(a,b)n (x; N ) satisfy the
following first-order partial differential equation of the form

x(N + a−x)D∇h(a,b)n (x;N )+ [(b+1)(N −1)

− (a+ b+2)x]Dh(a,b)n (x;N )

+n(a+ b+n+1)h(a,b)n (x;N )= 0 (16)

where the parameters a and b are restricted to a . 0 and b . 0.

Hahn polynomials of order n, n ¼ 0, 1, . . . , N2 1 are also
defined by using hypergeometric function as follows

h(a,b)n (x;N )=
(−1)n(b+ 1)n(N − n)n

n!

×3 F2(−n, −x, n+ 1+ a+ b; b+ 1, 1−N ; 1)

(17)

A very important specific subclass of Hahn polynomials is

that when a ¼ b ¼ 0, it becomes Tchebichef system of the
discrete polynomial tn(x; N ). Similar to Tchebichef
polynomials, the zero-order and first-order normalised
Hahn can be calculated as follows

h̃
(a,b)
0 (x;N )=

�����

w(x)

d2
0

√

, h̃
(a,b)
1 (x;N )= ((a+ b+ 2)x

− (b+ 1)(N − 1))

�����

w(x)

d2
1

√

(18)

3.1.4 Meixner polynomials: Meixner polynomials with
one variable 4(b,m)

n (x) satisfy the following first-order partial
differential equation of the form

xD∇4(b,u)
n (x)+ (bm− x(1−m))D4(b,u)

n (x)

+ n(1−m)4(b,u)
n (x)= 0 (19)

where b and m are restricted to 0 , m , 1 and b . 0.

The nth Meixner polynomial is also defined by using
hypergeometric function as follows

4(b,u)
n (x) = (b)n2F1(− n, − x; b; 1− 1/m) (20)

Similarly, the zero-order and the first-order normalised
Meixner can be calculated as follows

4̃
(b,m)
0 (x) =

�����

w(x)

d2
0

√

=

��������������������������

mx(b+ x− 1)!

x!(b− 1)!
(1− m)b

√

4̃
(b,m)
1 (x) = b+ x−

x

m

( )

�����

w(x)

d2
1

√

= b+ x−
x

m

( )

×

����������������������������

mx(b+ x− 1)!

x!(b− 1)!

m(1− m)b

b

√

(21)

3.1.5 Charlier polynomials: Charlier polynomials with
one variable ca1n (x) satisfy the following first-order partial
differential equation of the form

xD∇ca1n (x)+ (a1 − x)Dca1n (x)+ nca1n (x) = 0 (22)

where a1 is restricted to a1 . 0.

The nth Charlier polynomial is also defined by using
hypergeometric function as follows

ca1n (x) = 2F0(− n, − x; ; − 1/a1) (23)

The zero-order and the first-order normalised Charlier can be
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calculated as follows

c̃
a1
0 (x) =

�����

w(x)

d2
0

√

=

�������

e−mmx

x!

√

c̃
a1
1 (x) =

m− x

m

�����

w(x)

d2
1

√

=
m− x

m

����������

e−mmx+1

x!

√
(24)

The normalised discrete Tchebichef, Krawtchouk, Hahn,
Meixner and Charlier polynomials satisfy the orthogonal
condition (7), and the proposed general form (9), where

p̃n(x) is t̃n(x; N ), k̃n(x; p, N ), h̃
(a,b)
n (x; N ), 4̃(b,m)

n (x) or
c̃a1n (x), respectively, for each polynomials listed in the order
above. The coefficients A–E in (9) are deduced and listed
in Table 2, and the initial values are obtained through (12),
(15), (18), (21) and (24), respectively.

3.2 Recurrence relation with respect to x

From the previous subsection, it is found that high-order
polynomials can be deduced from the low-order
polynomials. For example, polynomials (t̃n(x; N ),

Table 2 Data for the three-term recurrence relation of Tchebichef, Krawtchouk, Hahn, Meixner and Charlier polynomials

(0 , p , 1 for Krawtchouk, a . 0, b . 0 for Hahn, b . 0, 0 , m , 1 for Meixner, and a1 . 0 for Charlier polynomials)

p̃n(x) A B C

t̃n(x; N) n

2(2n− 1)
x −

N− 1

2
−
(n− 1)[N

2
− (n− 1)

2
]

2(2n− 1)

k̃n(x; p, N) n x2 n+ 12 p(N2 2n+ 2) 2p(12 p)(N2 n+ 2)

h̃
(a,b)

n (x; N)
n

(a+ b+ 2n− 1)

×
(a+ b+ n)

(a+ b+ 2n)

x −
a− b+ 2N− 2

4

−
(b

2
− a

2
)(a+ b+ 2N)

4(a+ b+ 2n− 2)(a+ b+ 2n)

−
(a+ n− 1)(b+ n− 1)

(a+ b+ 2n− 2)

×
(a+ b+ N+ n− 1)(N− n+ 1)

(a+ b+ 2n− 1)

4̃(b,m)
n (x)

m

m− 1

x − xm− n+ 1− mn+ m− bm

1− m

(n− 1)(n− 2+ b)

1− m

c̃
a1
n (x) 2a1 x2 n+ 12 a1 n2 1

D E

�������������������

(2n+ 1)

(N2 − n2)(2n− 1)

√
������������������������������������

2n+ 1

(N2 − n2)[N2 − (n− 1)2](2n− 3)

√

����������������������

n

p(1− p)(N− n+ 1)

√
�������������������������������������

n(n− 1)

(p(1− p))2(N− n+ 2)(N− n+ 1)

√

�������������������������������������

n(a+ b+ n)(a+ b+ 2n+ 1)

(N− n)(a+ n)(b+ n)

(a+ b+ 2n− 1)(a+ b+ n+ N)

√

√

√

√

√

√

�������������������������������������������������������������

n(n− 1)(a+ b+ n)

(a+ n)(a+ n− 1)(b+ n)(b+ n− 1)(N− n+ 1)(N− n)

√

×

����������������������������������������������������������

(a+ b+ n− 1)(a+ b+ 2n+ 1)

(a+ b+ 2n− 3)(a+ b+ n+ N)(a+ b+ n+ N− 1)

√

��������������

u

n(b+ n− 1)

√

����������������������������������

u
2

n(n− 1)(b+ n− 2)(b+ n− 1)

√

���

a1

n

√

���������

a
2
1

n(n− 1)

√
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k̃n(x; p, N ), h̃
(a,b)
n (x; N )) are the polynomials at xn, thus, the

term (t̃N−1(N − 1; N ), k̃N−1(N − 1; p, N ), h̃
(a,b)
N−1(N − 1;

N )) at N ¼ 100 must contain the term 100100 multiplied
by an infinitely small coefficient so that the magnitude is
less than 1. Thus, the computation of the discrete
moments in larger orders causes the propagation of
numerical errors while using the recurrence relation for
evaluating the polynomials’ values. Consequently, the
numerical instability will severely affect the quality of image
reconstruction, particularly for large image (larger than
100 × 100 pixels). To remedy this problem, Mukundan
proposed a solution to compute Tchebichef polynomials by
modifying the recurrence relation [16]. The x recurrence
relation is used instead of n recurrence relation to avoid
errors accumulating in the result. This subsection will
introduce another general form of their recurrence relations
with respect to x.

Considering the properties of the operator ∇ and D, we
have

D∇pn(x) = pn(x+ 1)− 2pn(x)+ pn(x− 1) (25)

Thus, the recurrence relations of discrete orthogonal
polynomials with respect to x can be obtained through (1)
and (25) as follows

pn(x) =
2s(x− 1)+ t(x− 1)− ln

s(x− 1)+ t(x− 1)
pn(x− 1)

−
s(x− 1)

s(x− 1)+ t(x− 1)
pn(x− 2) (26)

According to (6) and (26), another general form for obtaining
discrete orthogonal polynomials is written as follows. It is a

recurrence relation with respect to x.

p̃n(x) =

�����

w(x)
√

s(x− 1)+ t(x− 1)

2s(x− 1)+ t(x− 1)− ln
����������

w(x− 1)
√

[

× p̃n(x− 1)−
s(x− 1)
����������

w(x− 2)
√ p̃n(x− 2)

]

(27)

Thus, one can obtain the recurrence relations of discrete
Tchebichef, Krawtchouk, Hahn, Meixner and Charlier
polynomials with respect to x according to the general form
(27) and Table 1, where p̃n(x) is
t̃n(x; N ), k̃n(x; p, N ), h̃

(a,b)
n (x; N ), 4̃(b,m)

n (x) or c̃a1n (x),
respectively.

Using (2), (3), (6) and Table 1, we obtain the initial values
of recurrence relation with respect to x listed in Table 3. The
above equations can be used to calculate the weighted
Tchebichef, Krawtchouk, Hahn, Meixner and Charlier
polynomials’ values effectively. Fig. 1 shows the plots of the
first few orders of these polynomials with different
parameter values. Fig. 1a shows that Tchebichef
polynomials’ ROI spreads all along x-axis. Figs. 1b–d show
that Krawtchouk polynomials’ ROI is shifted horizontally
when using different parameter p; if p , 0.5, ROI is
shifted to the left of the central x value as shown in Fig. 1c;
while for p . 0.5, ROI is shifted to the right of it as
shown in Fig. 1d. For Hahn polynomials, parameters a and
b are together responsible for shifting the ROI. The smaller
the value of b, the further left the ROI will be, as shown in
Fig. 1f. Similarly, the ROI shifts to the further right when
b is larger shown in Fig. 1g. This property is useful for

Table 3 Initial values of the three-term recurrence relation with respect to x for Tchebichef, Krawtchouk, Hahn, Meixner and

Charlier polynomials (a . 0, b . 0 for Hahn, 0 , p , 1 for Krawtchouk, 0 , m , 1, b . 0 for Meixner, a1 . 0 for Charlier
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Figure 1 Plots of normalised polynomials when N ¼ 256, order’s number ¼ 10

a Tchebichef
b Krawtchouk (p ¼ 0.5)
c Krawtchouk (p ¼ 0.1)
d Krawtchouk (p ¼ 0.9)
e Hahn (a ¼ 10, b ¼ 10)
f Hahn (a ¼ 20, b ¼ 0)
g Hahn (a ¼ 10, b ¼ 100)
h Meixner (b ¼ 60, m ¼ 0.5)
i Meixner (b ¼ 150, m ¼ 0.5)
j Charlier (a1 ¼ 128)
k Charlier (a1 ¼ 240)
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image description and pattern recognition. For the Meixner
and Charlier polynomials, this phenomenon is not obvious
as shown in Figs. 1h–1k. Fig. 1 illustrates that polynomial’s
parameters play an important role in pattern recognition
task. Discussions of these parameters applied in pattern
recognition are beyond this study. We shall detail them in
another literature.

4 Discrete orthogonal moments

In this section, s is N2 1 for Tchebichef and Hahn
polynomials, s is N for Krawtchouk polynomials and s ≥ 0
for Meixner and Charlier polynomials.

4.1 One-dimensional discrete orthogonal
moments

The discrete orthogonal moments are a set of moments
formed by the normalised polynomials. The one-
dimensional discrete orthogonal moment set is defined as

vn =
∑

N−1

x=0

p̃n(x)f (x), n = 0, 1, . . . , s (28)

where f (x) is one-dimensional signal with length N. If the set
of moment’s vn is given from order 0 up to M, the moment-
based signal reconstruction is as follows

f̂ (x) ≃
∑

M

n=0

vnp̃n(x), x = 0, 1, . . . , N − 1 (29)

Here, one refers the normalised discrete orthogonal
polynomials p̃n(x) to the general form (9) or (27).

4.2 Two-dimensional discrete orthogonal
moments

One of the most frequent applications of the moment
functions is image processing and pattern recognition so
that it must be extensible to two-dimensions. The discrete
orthogonal moments presented in this paper have the

separable basis functions. Owing to the separability that the
basis function has, the moments can be computed in two
steps: 1-D operations on the rows of an image and 1-D
operations on the columns. Fig. 2 shows the basis functions
of several discrete orthogonal moments for a block size
8 × 8. It is noted that the basis functions exhibit a
progressive increase in frequency in both vertical and
horizontal direction. The top is referred as DC coefficient
and holds a constant value.

Given a digital image f (x, y) with size N × N, that is,
x [ [0, N2 1] and y [ [0, N2 1], the (l+m)th-order
moments with a variable orthogonal polynomials as basis
function for an image is defined as follows

Mlm =
∑

N−1

x=0

∑

N−1

y=0

f (x, y)p̃l (x)p̃m(y),

l , m = 0, 1, . . . , s

(30)

We can simply use the following matrix notation

M = PT
x fPy (31)

where f denotes N × N image matrix and

Px = [p̃0(x), p̃1(x), . . . , p̃s(x)]
T,

Py = [p̃0(y), p̃1(y), . . . , p̃s(y)]
T (32)

and

p̃n(x) = [p̃n(0), p̃n(1), . . . , p̃n(N − 1)]T,

n = 0, 1, . . . , s (33)

Using (30) also leads to the following inverse moment
transform

f (x, y) =
∑

s

l=0

∑

s

m=0

Mlmp̃l (x)p̃m(y) (34)

Figure 2 Basis functions of several discrete orthogonal moments (N ¼ 8)

a TM
b KM (p1 ¼ p2 ¼ 0.5)
c HM (a1 ¼ b1 ¼ a2 ¼ b2 ¼ 10)
d MM (b1 ¼ b2 ¼ 4, m1 ¼ m2 ¼ 0.2)
e CM (a1 ¼ a2 ¼ 5)
Neutral white colour represents one, white colour represents positive amplitudes and black colour represents negative amplitudes
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Similarly, the inverse reconstruction procedure can be
represented using the matrix as

f = PxMPT
y (35)

If moments are limited to an order K, we can approximate f
by f̂ .

f̂ (x, y) =
∑

K

l=0

∑

l

m=0

Ml−m,mp̃l−m(x)p̃m(y),

x, y = 0, 1, . . . , N − 1 (36)

Matrix representation methods are used to describe the
reconstruction process as

P̃x = [p̃0(x), p̃1(x), . . . , p̃K (x)]
T,

P̃y = [p̃0(y), p̃1(y), . . . , p̃K (y)]
T (37)

and then yield the moment matrix M̃ using (31) and (37).
The approximation of an image can be solved in an
analogous way, as shown in (35).

5 Properties of discrete
orthogonal moments

The discussions in the preceding sections have developed a
mathematical foundation for several discrete orthogonal
moments. However, the intuitive insight into its image
processing application by using proposed two general forms
has not been presented. This section outlines (with
examples) some properties of several orthogonal moments
which are of particular value to image processing application.
Fig. 3 shows several sample images. Among them, Hill and
Lena with size 256 × 256 were frequently used in image
processing and chosen here for the analysis of the properties
of the proposed moment functions. Other test images’ sizes
are 256 × 256, including ‘Sea’ and ‘Ducks’. Besides the
image Ducks, the grey-levels are represented using 8-bit.

The procedure for calculating moments’ values is the
procedure of orthogonal transformation. In this study, we

use term ‘moments’ for consistency. Many different
transforms have been considered for speech and image
coding, such as discrete cosine transformation (DCT) and
Karhunen–Loève transform (KLT). These methods differ in
their abilities of performing energy compaction and signal
decorrelation. The main objective of Sections 5.1 and 5.2 is
to compare the performance of one-dimensional Tchebichef,
Krawtchouk and Hahn moments using two criteria, such as
energy compaction and decorrelation capability. A standard
way of comparing the transforms is based on the assumption
that the signal x satisfies the first-order Markov model with
a correlation coefficient r [17]. This model has been used
extensively in digital image coding [18]. For example, this
method was adopted for comparing DCT and KLT [17,
19]. Thus, the following comparisons in terms of energy
compaction and decorrelation are all based on this particular
model. Here, we only consider the polynomials whose
weight functions are defined in a finite discrete domain. It is
because that the evaluation method used here is effective in
such a domain.

5.1 Energy compaction

Consider a first-order zero mean stationary Markov sequence
with length N whose covariance matrix R is given by (38)
with different covariance coefficient r.

R =

1 r r2 · · · rN−1

r .
.
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⎥

⎥

⎥

⎦

(38)

Table 4 lists variance s2
k of the transform coefficients (in

decreasing order) for Tchebichef, Krawtchouk and Hahn
moments. To compare the energy compaction capability,
the normalised basis restriction error Jm defined by Jain
[17] is used here.

Jm =

∑N−1
k=m s2

k
∑N−1

k=0 s2
k

, m = 0, . . . , N − 1 (39)

Figure 3 Test images (size: 256 × 256)

a Hill
b Lena
c Sea
d Ducks
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where s2
k has been arranged in the decreasing order. Fig. 4

shows Jm against m for various moments while covariance
coefficient r is from 0.8 to 0.95. It is seen that the
performance of Tchebichef moments is distinguishable
from those of other moments. Hahn moment is the
suboptimal transform among them.

5.2 Signal decorrelation

The principal advantage of the orthogonal transformation is
the removal of redundancy between neighbouring pixels.
This led to the fact that uncorrelated transform coefficients
are able to be encoded independently. To quantitatively
compare the signal decorrelation of an orthogonal
transform, a residual correlation (RC) measure was defined
by Hamidi and Peral [19] as

RC =
||R− RU ||

2

||R− I ||2
(40)

where ‖ ‖
2 denotes the Hilbert–Schmide weak norm which

is defined as the sum of squares of a matrix divided by its
dimension N. I is the identity matrix. R is a Toeplitz
matrix of the form deduced from (38) and U is an
orthogonal transform. Let R′

¼ URU21 be the
representation of R in the new basis, and R′

U ¼ diag(R′
11,

R′
22, . . . , RMM). We define RU the representation of R′

U in

the first basis, that is

RU = U−1R′
UU (41)

and ‖R2 RU‖
2 is the Hilbert–Schmidt norm of R2 RU,

that is

||R− RU ||
2
=

1

M

∑

M−1

m,n=0

|(R− RU )mn|
2

( )

(42)

The comparison here is based on the first-order Markov
model for the input sequence. Fig. 5 shows the RC plot for
M ¼ 8. Hahn moments perform better than Krawtchouk
moments in a wide region of r, that is, 0.01 , r , 1.
With the increasing of correlations, the advantage of
Tchebichef moments over the others becomes more
significant. For many images, r is found to be around 0.95
[17, p. 37], and Tchebichef moments perform better than
Krawtchouk and Hahn moments in this region.

5.3 Experiments about energy
compaction in real images

Compressing image in the spatial domain is difficult because
image’s energy often varies significantly throughout the whole
image; however, images tend to have a compact
representation in the frequency domain packed around low

Table 4 Variances sk
2
of several transform coefficients of a stationary Markov sequence in different correlation coefficient r

r ¼ 0.95, N ¼ 16 r ¼ 0.85, N ¼ 16

k Tchebichef Krawtchouk Hahn Tchebichef Krawtchouk Hahn

0 12.41 8.220 9.786 7.962 6.230 7.056

1 1.901 1.115 1.486 3.250 2.275 2.843

2 0.6111 2.916 2.459 1.530 2.277 2.140

3 0.3001 0.714 0.615 0.853 1.349 1.198

4 0.182 1.413 0.807 0.543 1.193 0.839

5 0.1242 0.393 0.227 0.380 0.746 0.489

6 0.0922 0.599 0.233 0.285 0.579 0.332

7 0.0722 0.169 0.083 0.224 0.352 0.217

8 0.059 0.192 0.071 0.184 0.249 0.165

9 0.049 0.064 0.044 0.155 0.164 0.134

10 0.043 0.057 0.039 0.135 0.127 0.118

11 0.038 0.034 0.034 0.119 0.105 0.107

12 0.034 0.031 0.031 0.107 0.096 0.099

13 0.031 0.028 0.029 0.098 0.089 0.092

14 0.029 0.027 0.028 0.090 0.086 0.087

15 0.027 0.026 0.026 0.084 0.083 0.083
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frequencies whichmake the compression in a frequency domain
more efficient. Moments based on discrete orthogonal
polynomials are usually used in image compression. It is
because they exhibit a better energy compaction for common
images. If a discrete orthogonal moment is properly chosen,
the energy in an image will be concentrated on a relatively
small percentage of the moment coefficients; these
coefficients are quantised, stored and then later used for
generating the reconstructed image. Saving few coefficients
yields an extremely high compression ratio but a rather noisy
reconstructed image, whereas more coefficients give a clear
image but lower compression efficiency.

The purpose of this experiment is to confirm and compare
the energy compact of several proposed moment functions.
The compression experiments were conducted on three test
images. According to the compression ratio, the absolute
value of all transform coefficients are rearranged in
downward order, and part of them are chosen to reconstruct

Figure 4 Performance of different unitary transforms by showing basis restriction errors (Jm) against the number of basis (m)

for a stationary Markov sequence with N ¼ 16, p ¼ 0.5 for Krawtchouk, and a ¼ b ¼ 10 for Hahn moments

a r ¼ 0.8
b r ¼ 0.85
c r ¼ 0.9
d r ¼ 0.95

Figure 5 Comparison of the RCs among the several

orthogonal moments for a first-order Markov sequence

when N ¼ 8 and 0 , r , 1, p ¼ 0.5 for Krawtchouk, and

a ¼ b ¼ 10 for Hahn moments
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the original image according to the compression ratio. Fig. 6
shows the decoded results of the test image Lena. In this
experiment, the compression ratio is set to 4:1 and the block
size is set to 16 × 16. The parameter concerned in
Krawtchouk polynomials is chosen as p1 ¼ p2 ¼ 0.5 and
a1 ¼ b1 ¼ a2 ¼ b2 ¼ 10 for Hahn polynomials.

In order to evaluate the performance of different methods,
we use peak signal-to-noise ratio (PSNR) to quantitatively
measure the fidelity of the decoded image. The PSNR of a
grey-level image is defined as

PSNR = 10 log10
2552

mse

( )

(43)

where 255 is the peak image amplitude, mse is the mean
square error (MSE) which is defined as follows

mse =
1

N 2

∑

N−1

x=0

∑

N−1

y=0

[ f (x, y)− f̂ (x, y)]2 (44)

where f (x, y) and f̂ (x, y) denote the original image and the
reconstructed image, respectively. Table 5 lists the PSNR
of different methods for three test images with compression
ratio 4:1 and 8:1, respectively. It can be clearly seen from
Table 5 that the JPEG 2000 provides the highest PSNR
throughout all the tests. The moments constructed by
Tchebichef have better compression behaviour than those

of Krawtchouk and Hahn polynomials. This conclusion is
consistent with the theoretical analysis in the previous
subsection.

5.4 Global feature extraction

In this subsection, the global feature extraction capability of
the proposed moments is verified by reconstructing the
complete images. Two test images, Hill and Sea, are used
to illustrate the effectiveness of these moments. We first
investigate the discrete orthogonal moments whose
corresponding weight function is restricted in a limited
domain, such as Tchebichef, Krawtchouk and Hahn
moments. Owing to the influence of parameters p on
Krawtchouk polynomials, and parameters a, b on Hahn
polynomials, the region of emphasis of the proposed
moments can be controlled. This is indicated in Fig. 1.
Therefore the proposed moments can be set into global or
local feature extraction mode by setting parameters p, a and
b. While the parameters p1 ¼ p2 ¼ 0.5 for Krawtchouk
polynomials and a1 ¼ b1 ¼ a2 ¼ b2 for Hahn polynomials,
the Krawtchouk moments and Hahn moments are set into
global feature extraction mode.

Fig. 7 shows the reconstruction results of image Hill using
different moments with a maximum order of up to 255. To
measure the accuracy of the reconstructed image, we use
the mse defined by (44) to measure the performance of the
reconstruction. Fig. 8 shows the detailed plots of the
corresponding mse using three different orthogonal
moments with a maximum order of up to 255. Note that
the reconstruction errors decrease monotonically with the
increase of the number of orders as predicted. We observe
that the reconstruction results based on KM are better than
those based on TM and HM. Fig. 8 illustrates that HM is
not as good as KM. However, it outperforms TM. In this
experiment, the parameters of moments are set to global
feature extraction mode, that is, p1 ¼ p2 ¼ 0.5 for
Krawtchouk and a1 ¼ b1 ¼ a2 ¼ b2 ¼ 10 for Hahn
polynomials. We draw the conclusion that the KM has
better global feature extraction than other moments. The
moments whose polynomials are constructed by Tchebichef
have weak global extraction capability.

Table 5 Lists of peak signal-to-noise ratio values (PSNR in dB) to indicate the compression efficiency

Images Hill Lena Sea

compression ratio 4:1 8:1 4:1 8:1 4:1 8:1

TM 32.64 29.35 34.25 30.29 32.15 28.34

KM 30.50 25.24 31.57 24.80 30.50 24.05

HM 31.89 27.63 33.81 28.14 32.06 26.84

JPEG 33.13 30.30 47.31 38.28 36.51 30.26

JPEG 2000 35.26 31.04 48.25 39.13 37.52 32.31

Figure 6 Decoded images using various discrete orthogonal

moments, compression ratio 4:1, block size 16

a TM
b KM (p1 ¼ p2 ¼ 0.5)
c HM (a1 ¼ b1 ¼ a2 ¼ b2 ¼ 10)
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In the following experiments, test images, Hill and Sea, are
still used to compare the performance by using the proposed
methods MM and CM. In these moment functions, the
polynomials Meixner and Charlier, which are orthogonal
in an unlimited interval [0, 1], are used as basis functions
of moments. Both reconstructed images and a detailed

comparison of the variation of reconstruction errors are
shown in Figs. 9 and 10, respectively. Comparing Figs. 8
and 10, it is found that the global description capability of
MM and CM is lower than those of TM, KM and HM,
while the same order of the moments is calculated. Owing
to the fact that Meixner and Charlier polynomials are

Figure 7 Reconstruction of the grey-level image Hill

The order’s numbers from left to right are 50, 100, 150, 200 and 255, respectively

Figure 8 Comparative study of reconstruction errors by using TM, KM (p1 ¼ p2 ¼ 0.5) and HM (a1 ¼ b1 ¼ a2 ¼ b2 ¼ 10) in

two different images

a Errors from test image Hill
b Errors from test image Sea
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Figure 9 Reconstruction of the grey-level images Hill and Sea

The order’s numbers from left to right are 10, 50, 100, 200 and 350, respectively

Figure 10 Comparative study of reconstruction errors by using MM ((b1 ¼ b2 ¼ 110, m1 ¼ m2 ¼ 0.5) and CM

(a1 ¼ a2 ¼ 128) in two different images

a Test image Hill
b Test image Sea
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orthogonal in an unlimited region, the moments’ orders can
be calculated as high as possible. In theory, higher the
moment order is, better the reconstructed image. In
Fig. 10, the mse still tends to decrease while the moment
order is up to 350. However, it is impossible to calculate
image moments without an edge or limit. Here, when to
stop the reconstruction process is an open question. We
will investigate it elsewhere.

5.5 Local feature extraction

From Fig. 1, it is examined that the value of polynomials’
parameters will bring some influences on the emphasis
region of these polynomials. This property can be used to
extract the local information of images. In the following
experiments, we will show how these moments can be
utilised to capture the local information of an image, while

Figure 11 Reconstructed images using different moments up to order 35

a KM (p1 ¼ p2 ¼ 0.1)
b KM (p1 ¼ 0.1, p2 ¼ 0.9)
c KM (p1 ¼ 0.9, p2 ¼ 0.1)
d KM (p1 ¼ p2 ¼ 0.9)
e KM (p1 ¼ p2 ¼ 0.5)
f HM (a1 ¼ a2 ¼ 100, b1 ¼ b2 ¼ 0)
g HM (a1 ¼ a2 ¼ 0, b1 ¼ b2 ¼ 100)

Figure 12 Reconstructed images (thresholded) up to order 25

a KM (p1 ¼ p2 ¼ 0.1)
b KM (p1 ¼ 0.1, p2 ¼ 0.9)
c KM (p1 ¼ 0.9, p2 ¼ 0.1)
d KM (p1 ¼ p2 ¼ 0.9)
e KM (p1 ¼ p2 ¼ 0.5)
f HM (a1 ¼ a2 ¼ 100, b1 ¼ b2 ¼ 0)
g HM (a1 ¼ a2 ¼ 0, b1 ¼ b2 ¼ 100)
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the parameters p, a and b are set the local feature extraction
mode. From Fig. 11, one can find that the local
information of an image is emphasised at low orders, if
parameters p, a and b are well set. This phenomenon is also
verified by reconstructed images in Fig. 12.

5.6 Numerical stability of the general
forms

In the final experiment, we demonstrate why the proposed
general forms are important in theory and engineering. It is
well known that the hypergeometric functions (11), (14),
(17), (20) and (23) are not suitable for defining the moments
because the value of polynomials grows as Nn. On the other
hand, the traditional recurrence relations of polynomial
evaluation can lead to numerical problems when the required
moment order is large. A comparison plots between
Tchebichef and Krawtchouk polynomials using traditional
methods [6, 7] are presented in Figs. 13a and b, which
indicates that the range of the polynomials’ values expands

rapidly when the order of polynomials is above a certain
value. This is because the recurrence relation proposed by [6,
7] continues to propagate numerical errors, eventually leading
to the instability observed in Fig. 13. This phenomenon is
much more obvious while polynomials order increases above
156 for Tchebichef (above 200 for Krawtchouk). This causes
some numerical problems in the computation of moments
and therefore affects the features extracted from moments.
Fig. 14 presents a comparative study of reconstructed images
by using the methods of [6, 7], and the proposed general
form (27). From Fig. 14, it is found that the feature extract
capabilities of Tchebichef moments do not seem to be
affected when the moment order increases from 0 to 150.
However, it is dominated by numerical errors, which bring
severe deterioration for the quality of image reconstruction, as
the maximum moment order is above 150. From Figs. 13c
and d, it is noted that unlike the traditional methods, the
Tchebichef and Krawtchouk polynomial values calculated
through the proposed general form are constrained to the
interval [20.3, 0.3], where the occurrences of numerical

Figure 13 Plots of normalised polynomials when N ¼ 256

a Tchebichef [6]
b Krawtchouk [7]
c, d Plots using the proposed general form (27)
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instabilities are eliminated when the polynomial order becomes
large, so that very accurate results can be obtained while
computing high-order moments and reconstructing images
from the moments (see Fig. 14).

In [16], Mukundan realised this problem and introduced
an effective method to compute Tchebichef polynomials by
modifying the recurrence relation. In their work, the
recurrence relation with respect to x rather than n was used
to avoid cumulative multiplication of large values. Actually,
the approach in [16] can be obtained from the proposed
general form (27). In the current study, the proposed
general form (27) is very effective in avoiding the numerical
fluctuation in polynomials or moment computations. It can
be used to calculate the high-order moments and to extract
the features of an image in a large size.

On the other hand, the recurrence relation with respect to
n (the traditional method) of all classical discrete orthogonal
polynomials (including Tchebichef, Krawtchouk, Hahn,
Meixner, Charlier, dual Hahn, Racah, q-analogues of the
Hahn, Meixner, Krawtchouk, Charlier polynomials, etc.)
can be deduced from the proposed general form (9).

6 Conclusions

In this paper, we have presented two general forms for
computing discrete orthogonal polynomials and their
corresponding discrete orthogonal moments. The
importance of the proposed general forms in application
has been analysed. Some useful properties of these general
forms have been discussed. These properties can be used to
compress a natural image, as well as reconstruct an image
with a large size. Owing to the influence of the parameters
on orthogonal polynomials, an image’s global and local
information can be emphasised by choosing right values for

the parameters. Thus, one can make local feature extraction
more flexible by modifying particular parameters of
polynomials, such as Krawtchouk and Hahn polynomials.

Owing to the limit of the space, this study omits the
discussion of choosing parameters for the proposed
orthogonal polynomials. However, the proposed methods
and general forms can be easily extended to obtain other
orthogonal polynomials and their corresponding moments.
Further work in the field of these discrete orthogonal
moments is directed towards the identification of invariants.
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