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General formalism of local thermodynamics with an example:
Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin
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We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and
the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external
magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency
are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies
at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling
and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation
is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local
thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of
local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The gen-
eralized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general
conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance
of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

DOI: 10.1103/PhysRevE.92.022142 PACS number(s): 05.70.Ln, 07.20.Pe

I. INTRODUCTION

The investigations of heat engines in the quantum regime,
or quantum thermodynamics, has become an active area of
research in the past decade [1–42]. A quantum heat engine
(QHE) uses a quantum working substance to harvest work
in a quantum thermodynamical cycle [2–4]. Three level
masers can be considered as the first QHEs [1]. Prototype
quantum systems, such as two level [2–6] and multilevel
particles [7–9], coupled spins [10–30], and harmonic oscil-
lators [31–34] are considered as quantum working substances.
Circuit and cavity quantum electrodynamics systems [35–37],
quantum dots [38], quantum Hall edge states [39], cold
bosonic atoms [40], optomechanical systems [41], and a
single ion [33,42] have been proposed to realize QHEs, while
ultracold atoms are proposed for work measurements [43]. In
addition to the studies focusing on the quantum properties,
such as quantum coherence and correlations, of the working
substance [10,12,18,20,24,25,27–30], there are explorations
of the quantum heat reservoirs as well [20,33–36].

In the present contribution, we assume classical heat
reservoirs, and consider two interacting particles, one with
a spin-1/2 and the other with an arbitrary spin (spin s), as
our working medium. The particles are assumed to be in
an external magnetic field and they interact with each other
by Heisenberg exchange coupling. The two spin-1/2 case of
this model has been a subject of much attention in quantum
thermodynamics [10–27,30]. An appealing property of the
Heisenberg model is that the quantum Otto engine efficiency
can be enhanced at a critical exchange interaction between
two spins-1/2 [11]. We consider the arbitrary spin s as another
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control parameter next to the exchange coupling and explore
its influence on the performance of the QHE. Such higher spin
Heisenberg models could be implemented for QHE operations
in nuclear magnetic resonance (NMR) systems [44]. Among
typical quantum thermodynamical cycles [2,3] we choose
to operate our QHE in the Otto cycle as it consists of
less demanding processes to implement in comparison to
other quantum cycles and proposed in various systems for
implementations [33,37,40,42].

The system we consider can be interpreted as the central
spin (Gaudin) model with homogeneous couplings [45]. The
large spin s in our model plays the role of a collective spin
bath [46] consisting of 2s spins-1/2, which are homogeneously
coupled to a central spin-1/2. Recent studies revealed that a
spin-1/2 ensemble can be used as a heat reservoir to a single
spin-1/2, if it consists of at least two spins-1/2 [47]. In our case
there is an additional heat reservoir coupled both to the central
spin and to the collective spin bath. In such a case, the central
spin-1/2 can always be thermalized, while spin s cannot if
s > 1/2. Even when spin s is not in thermal equilibrium, the
total system is always fully thermalized. The coupled spin-1/2
and spin s model is hence far from a trivial extension of coupled
spin-1/2 system but an intriguing generalization.

Consequences of the coupling heat and work reservoirs
to interacting asymmetric spins lead to surprising results
which cannot be expected and understood by the knowledge
accumulated from the models of coupled spins-1/2. For
example, we calculated the work output and efficiency of our
model QHE. Our results show that with an arbitrary spin s,
one can extract more work with higher efficiency than the
two spins-1/2 case given in Ref [11]. Especially the upper
bound of efficiency for the two spins-1/2 given in Ref. [11]
can be beaten by an arbitrary spin s. In addition, local and
global thermodynamics of asymmetric spins exhibit peculiar
differences from those of two spins-1/2. Asymmetric two spins
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with s > 1/2 can act as a QHE even in the ultrastrong coupling
regime, contrary to the two spins-1/2. Furthermore, spin-1/2
can be a refrigerant in this regime, while spin s dominates the
QHE behavior for the total system. Local thermodynamics
can be explored deeper by the concepts of local heat and
temperature. Surprisingly local temperature is not applicable
to spin s > 1/2 when it is coupled to the spin-1/2. The local
temperature of spin-1/2 is always well defined. It can be
controlled by spin s and can be made negative or larger than
the temperature of the heat reservoir.

In addition, we introduce generalized definitions of local
and cooperative work to explore local thermodynamics even
when global parameters in a bipartite system varies. The earlier
definitions are limited to the variation of local parameters only.
Our formalism explicitly relates the quantum covariance, or
quantum fluctuations and quantum coherence, to the work
output of QHE of any interacting bipartite system. Within
the developed framework, conditions for the violation of the
extensive behavior of the global work as well as a measure
of quantum cooperativity in terms of covariance naturally
emerge. While the formalism is model independent, we
provide an illustration by applying it to the asymmetric spin
system.

The paper is organized as follows. In Sec. II, we introduce
our model QHE. The results for the global and local engine
operations are given in Secs. III and IV, respectively. A general
discussion on the relation between global and local work is
given in Sec. V. The conclusions are stated in Sec. VI.

II. MODEL QUANTUM HEAT ENGINE

The working substance of our QHE consists of two spins
in a homogeneous magnetic field, coupled to each other with
a Heisenberg exchange interaction and it is described by a
Hamiltonian [11,23,48]:

H = 8J �sA · �SB + 2B
(
sz
A + Sz

B

)
, (1)

where � = 1 is taken. �sA = (sx
A,s

y

A,sz
A), �SB = (Sx

B,S
y

B,Sz
B),

and si
A and Si

B (i = x,y,z) are the spin-1/2 and spin s

operators, respectively. Here, we label the spin-1/2 and spin
s with A and B, respectively. The factor B in the second
term of the Hamiltonian denotes the external homogeneous
magnetic field applied along the z axis. We take μB = 1 and
assume there is no orbital angular momentum so that the
gyromagnetic ratio γ is the same for both spins, γ = 2. J (�0)
is the antiferromagnetic coupling constant. Here we restrict
ourselves to s = 1/2,1,3/2,2,5/2,3.

The eigenvalues En of the model Hamiltonian are tabulated
in the Appendix. In thermal equilibrium with a heat bath at
temperature T the density matrix ρ of the working medium
can be written as

ρ =
∑

n

Pn|�n〉〈�n|. (2)

The occupation probabilities of the eigenstates |�n〉 are Pn =
exp (−En/T )/Z (kB = 1) and Z = ∑

n exp (−En/T ) is the
partition function.

We consider the working medium described by the Hamil-
tonian in Eq. (1) undergoes a quantum Otto cycle which
consists of two quantum adiabatic and two quantum isochoric

processes. The adiabatic branches involve the change of
magnetic field between two chosen values (B1 → B2 → B1)
at a fixed coupling strength, J . The details of the cycle are
described below.

Stage 1. This stage is the quantum isochoric process, where
the working medium with external magnetic field B1 and
coupling constant J interacts with a heat bath at T = T1. The
interaction takes long enough, so that the working substance
falls into a steady state given by Eq. (2) with occupation
probabilities Pn and energy levels En. Stage 2. The working
medium undergoes a quantum adiabatic process, in which the
interaction between the system and the heat bath is turned off
and the magnetic field is changed from B1 to B2. The quantum
adiabatic theorem is considered to hold (provided the process is
slow enough) [19], so that the occupation probabilities remain
unchanged, while the energy levels change from En to E′

n due
to the change in the magnetic strength. Stage 3. This process is
almost the reverse of Stage 1, where the working medium is in
contact with a cold heat bath at T = T2 (T1 > T2). Reaching
equilibrium with the bath changes the energy probabilities to
P ′

n with B = B2, T = T2, and J in Eq. (2). Stage 4. The system
undergoes another quantum adiabatic process with changing
B2 to B1 (E′

n to En), while keeping P ′
n the same.

From the generalization of the first law of thermodynamics
to quantum mechanical systems [2–4], the heat exchanges in
Stages 1 and 3 are, respectively, given as

Q1 =
∑

n

En(Pn − P ′
n), Q2 =

∑

n

E′
n(P ′

n − Pn). (3)

The work is performed only in the adiabatic branches of the
quantum Otto cycle. Due to the conservation of energy, the net
work done by the QHE can be written as

W = Q1 + Q2 =
∑

n

(En − E′
n)(Pn − P ′

n), (4)

where W > 0 signifies the work performed by the QHE with
operational efficiency η = W/Q1. To harvest positive work
by the engine, we consider Q1 > −Q2 > 0 to conform to the
second law of thermodynamics.

By using the tabulated eigenvalues En of H in the Appendix
and the probabilities given by the thermal occupation numbers
in Eq. (2), the work output and the efficiency of the engine can
be calculated analytically. The analytical expressions are not
very illuminating and will not be displayed here for brevity.
We call the work done by the engine given by Eq. (4) and
its efficiency η as the global work and global efficiency,
respectively, to distinguish them from the local work and
efficiency of individual spins, described later in the text.

III. GLOBAL WORK AND EFFICIENCY

Before presenting our results, we would like to review some
of the main results in Ref. [11] where the authors investigated
the same Hamiltonian in Eq. (1) but for two spins-1/2. The
conditions in which the coupled engine efficiency can be higher
than the uncoupled one have been determined. Specifically, an
upper bound ηb to the efficiency η of the quantum Otto engine
has been obtained as

η � ηb = 1 − B2/B1

1 − 4J/B1
< ηc, (5)
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FIG. 1. (Color online) Dependence of global work W (a) and
efficiency η (b) on coupling strength J for temperatures T1 = 1,
T2 = 0.5, and magnetic fields B1 = 4, B2 = 3, and spins s = 1/2
(black line), and s = 1 (red line), s = 3/2 (blue line), s = 2 (green
line), s = 5/2 (yellow line), and s = 3 (magenta line). The dashed
line in (b) indicates the upper bound ηb of the global efficiency given in
Eq. (5) for the case of spin-1/2 pair. For the above parameters, we have
ηc = 1 − T2/T1 = 0.5 and ηJ=0 = 1 − B2/B1 = 0.25. All quantities
plotted are dimensionless. In all figures, we use a unit system where
� = 1,μB = 1,kB = 1 and use T1 as our scaling parameter.

where the upper bound is always less than the classical Carnot
efficiency (ηc = 1 − T2/T1).

In Fig. 1, we investigate the role of spin s on the
performance of the coupled quantum Otto engine. We plot the
global work in Fig. 1(a) and global efficiency in Fig. 1(b) as
a function of exchange coupling strength J for B1 > B2 and
s = 1/2,1,3/2,2,5/2,3. For the uncoupled engine (J = 0),
the engine efficiency can be calculated as ηJ=0 = 1 − B2/B1,
which is independent of spin s as can be seen in Fig. 1(b). The
coupled engine performance can be higher than the uncoupled
one; both W and η first increase to certain maximums as a
function of J and then drop to zero. The role of spin s on
the global work and efficiency is found to shift the maximums
and the positive work conditions (PWCs) to the weak coupling
regimes; accordingly the coupled Otto engine with high spin s

can produce higher work with higher efficiency than the lower
spin s, below a certain sufficiently weak coupling strength (for
instance, J < ≈0.12 in Fig. 1). Especially, the engine with s >

1/2 can violate ηb as indicated by the dashed line in Fig. 1(b).
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FIG. 2. (Color online) Mutual relation of global work W and
efficiency η for the same magnetic field and temperature parameters
and the coupling range as in Fig. 1. The curves for each spin s nearly
coincide.

The mutual relationship between the work output and
efficiency is demonstrated by the characteristic curve in Fig. 2,
for the same magnetic field and temperature values, and for the
same coupling strength range as in Fig. 1. It can be deduced
from Fig. 2 that the efficiency at maximum work output as well
as the work at maximum efficiency are not notably affected by
the spin s of the working substance. It seems that the higher
spin s leads to higher efficiency and work output at the weak
coupling regime. We should stress here that this is not the
general conclusion; for differently tailored parameters, the
maximum of work output and the efficiency can slightly be
influenced by the spin s.

In Fig. 1, we have restricted ourselves to the weak coupling
regime, specifically J ∈ [0,0.5], and now we focus on the
strong coupling region. It is possible to show that beyond this
limit, i.e., J > 0.5, the working substance of two spins-1/2
cannot do positive work, since it violates the PWC given
in Ref. [11]. It is reasonable to assume that the change of
energy gaps in the adiabatic stages by the change of magnetic
field cannot contribute in the direction of total positive work
gradient when J > 0.5. On the other hand, for the case of
pairing spin-1/2 and spin s with s > 1/2, the role of energy
gaps in the work extraction can be dramatically changed after
a critical value of J and the engine can reproduce useful work.
This is shown in Fig. 3 where the global work and efficiency
are plotted as a function of J up to the very strong couplings.
As shown in Fig. 3, the positive work reemerges after a
critical value of coupling strength. Increasing the spin s value
shifts the critical J towards the weak coupling regime. The
efficiency and the work output are less in the strong coupling
regime. Since the corresponding thermodynamical quantities
are invariant under uniform energy shifts [2], the coupled
spin-1/2 and spin s model in the limit of very large coupling
strengths (i.e., J → ∞) can be mapped into a multilevel
system with energy levels {0,2B,4B, . . . ,(2s − 1)2B}, where
η = 0 for s = 1/2, while η = 1 − B2/B1 for s > 1/2. This
explains the behavior of the efficiency in Fig. 3(b) where η

converges to the spin independent value of η = 1 − B2/B1 for
s > 1/2 and η = 0 for s = 1/2 in the deep strong coupling
regime.
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FIG. 3. (Color online) Work output (a) and efficiency (b) in the
broader range of J , including the strong coupling region for the same
parameters and spin s as in Fig. 1. The direction of arrow in (b)
indicates the lines in the order of increasing spin s from s = 1 to
s = 3. The curves are the same with those in Fig. 1 in the weak
coupling regime. Note that after J ≈ 0.5, the engine cannot produce
positive work for the case of coupled spins-1/2.

IV. LOCAL WORK AND EFFICIENCY

In this section, we investigate how the spin-1/2 and spin s

individually undergo the engine operation. This can be done by
the analysis of local heat exchanges between the local spin and
the reservoir [11]. The local heat exchanges in the isochoric
branches of the Otto cycle can be expressed as the change
in the local density matrix for a given local Hamiltonian. Let
qi

1 (qi
2), with i = A,B, be the local heat transferred between

the ith spin and the hot (cold) heat bath. Then the explicit
expression of qi

1 (qi
2) reads as [11]

qi
1 = Tr[(ρi − ρ ′

i)Hi], qi
2 = Tr[(ρ ′

i − ρi)H
′
i ], (6)

where ρi (ρ ′
i) is the reduced density matrix for the ith spin at the

end of stage 1 (3) and Hi (H ′
i ) is the local Hamiltonian during

the first (second) isochoric process. The local Hamiltonians
can be written as HA = 2Bsz

A and HB = 2BSz
B for the spin

1/2 and spin s, respectively. The local work done by the ith
spin is then written as wi = qi

1 + qi
2.

The local works wA and wB , done by the spin 1/2 and spin
s, respectively, are plotted as a function of coupling strength J

in Fig. 4 for s = 1/2,1,3/2,2,5/2,3. The analytical calculation
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FIG. 4. (Color online) Local work done by the spin 1/2 (a) and
spin s (b) vs coupling strength J for values T1 = 1, T2 = 0.5, B1 = 4,
B2 = 3, and s = 1/2 (black line), s = 1 (red line), s = 3/2 (blue line),
s = 2 (green line), s = 5/2 (yellow line), and s = 3 (magenta line).

of the global and local works yields that W = wA + wB ; the
total work is the sum of local efforts. For further insight, it is
possible to calculate the relation between the global and local
heat exchanges, which is found to be

Q1 = qA
1 + qB

1 + 8JPs , Q2 = qA
2 + qB

2 − 8JPs , (7)

where Ps = Tr[(ρ − ρ ′)�sA · �SB], ρ (ρ ′) being the global
thermal density matrix at the end of stage 1 (3) given by
Eq. (2). The term Ps , given by expectation value of interacting
part, is related to the probabilities of certain energy levels
at the end of stages 1 and 3. Its explicit expression depends
on the spin-s but not written here explicitly for brevity. The
relations in Eq. (7) suggest that only the local heat exchange
is converted into total work output of the Otto cycle, as the
last terms in Q1 and Q2 expressions reflect the collective heat
intake and release which cancel each other. This is consistent
with the extensive property of the work output of the cycle. We
should stress here that the same conclusion is reached for the
case of spin-1/2 [11] and spin-3/2 pairs [23]. The extensive
property is not a fundamental character of the work output
and is not always true. Similar analysis in different conditions
reveals that the sum of the local works is not always equal
to the global work [13,26]. We will present a more general
discussion in the following section.
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FIG. 5. (Color online) Local work done by the spin-1/2 (a) and
spin s (b) in the strong coupling region where J > 0.5 for the same
parameters and spin s as in Fig. 4. The curves are the same with those
in Fig. 4 in the weak coupling regime. The direction of arrow in (b)
indicates the lines in the order of increasing spin s from s = 1 to
s = 3. Note that after J ≈ 0.5, wA = wB � 0 for s = 1/2 as given
by the black line in (a).

For two coupled spin-1/2 case, we have wA = wB since
ρA = ρB and HA = HB [11]. Moreover, for J = 0, wA is
independent of spin s value. wB depends on spin s for J = 0,
but this dependence is too weak to be visible in the scale
of Fig. 4. On the other hand, these results are dramatically
changed when s > 1/2 and J 
= 0. As shown in Fig. 4(a),
wA depends strongly on the spin s. In the region J < 0.5,
increasing s shifts the PWCs and maximums of wA and wB

to the weak coupling regions and increases (decreases) the
maximums of wA (wB). The comparison of local works of
both spins shows that, except for a negligibly tiny range of J ,
we have wA > wB , that is spin-1/2 does more work than the
spin s. On the other hand, if we change our attention to the
strong coupling regime where J > 0.5 (Fig. 5), this situation
is completely reversed; as shown in Fig. 5(a), wA � 0 for
each spin s, while wB can be nonzero for s > 1/2 [Fig. 5(b)].
From an analytical calculation of global and local works in
the deep strong coupling regime (i.e., J → ∞), it is possible
to show that W = −(2s + 1)wA = (2s + 1)/(2s + 2)wB . This
indicates that spin s is solely responsible for the realization of
our QHE in the strong coupling regime, where wB > 0 and
wA < 0 in the regions W > 0.

For further insight of the local performance, we analyze the
local efficiency and the local heat flow of spin-1/2 and spin s.
From the local work and heat exchange definitions in Eq. (6),
for the considered case (i.e., B1 > B2 > 0 [49]), we always
have qi

1 > −qi
2 > 0 when wi > 0; that is local heat always flow

in the direction of global heat gradient when the local work is
positive. For two spins-1/2, local spins are always heat engines
when the global work W > 0, since wA = wB = w, W = 2w,
and W,w > 0. On the other hand, this is not necessarily true
for the two coupled asymmetric spins. One of the spins can
be refrigerant when the total system operates as a QHE. From
the comparison of Figs. 1 and 4, one can deduce that there is a
critical J depending on s up to which the local spins are heat
engines. Beyond the critical coupling strength, as can be seen
in Fig. 5, we have wB > 0 and wA < 0 (qA

1 < 0 and qA
2 > 0)

when W > 0. Here spin-1/2 acts in the opposite direction of
global work gradient and it is a refrigerator, although the total
system and the spin s > 1/2 are the heat engines.

For the local heat exchanges in Eq. (6), we have the
relation qi

1 = −(B1/B2)qi
2, so we found that the individual

spins undergo the heat cycle with the same and constant
local efficiency: ηA = ηB = wi/q

i
1 = 1 − B2/B1, which is

independent of spin s and equals to the global uncoupled
engine efficiency. In the regime where spin-1/2 operates
locally in the refrigeration cycle it is more appropriate to
consider local coefficient of performance, which is also a
constant εA = qA

2 /|wA| = B2/(B1 − B2).
Now we focus on the temperatures of local spins at the

end of two thermalization stages and investigate the role of
coupling J and spin s on the local temperatures. By taking two
different energy levels, Ei , and their probabilities, Pi [obtained
from the reduced density matrix in Eq. (6)], one can define an
effective temperature for the local spins A and B as

Tk = Ei − Ej

ln Pj − ln Pi

, k = A,B. (8)

In the absence of coupling between spins (i.e., J = 0), the
local temperature of both spins are equal to the heat bath
temperature, since we have ρ = ρA ⊗ ρB , where ρi(i = A,B)
are the local thermal density matrices at the heat bath
temperature. On the other hand, this separation would not be
possible in the case of nonzero J which can make the spins
to locally thermalize to different temperatures than the heat
bath [11]. Analysis of the local temperature of spin s > 1/2
reveals that the reduced state of spin s is a nonequilibrium
steady state, where there is no unique effective temperature
applicable to all the energy level pairs [2]. For the two-level
system (spin-1/2) it would always be possible to define an
effective temperature.

Interplay of interactions and multilevel nature of large spin
on the thermalization can be explained at a more intuitive
level as follows. Our model can be interpreted as a central
spin coupled to an ensemble of 2s spins-1/2 [45,46]. Both the
collective spin bath and the central spin are also coupled to a
heat reservoir. The heat bath and the spin s > 1/2 can always
fully thermalize the spin-1/2, while spin s > 1/2 cannot be
thermalized when it is coupled to the spin-1/2. This intuitive
reasoning based upon the size difference of subsystems is in
parallel with the conclusion in Ref. [47] which states that the
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FIG. 6. (Color online) Local temperature of spin-1/2 vs the
parameter s at J = 0.1 (a) and at J = 4.0 (b). Here T H

A (T L
A )

denotes the local temperature for the hot (cold) heat bath cases with
T1 = 1.0 (T2 = 0.5) and B1 = 4 (B2 = 3).

minimum number of spins-1/2 required to thermalize a single
spin-1/2 is two.

The effective temperature TA of spin-1/2 with respect to
spin s at the end of the first (T H

A ) and second (T L
A ) isochoric

processes for weak and ultrastrong coupling regimes are shown
in Fig. 6(a) and in Fig. 6(b), respectively. At weak coupling
regime (J = 0.1), where the spin-1/2 is a heat engine as shown
in Fig. 4(a), TA is always larger than the heat bath temperature.
Spin s, acting as an additional reservoir next to the heat bath,
can heat the central spin-1/2 to higher temperatures. For two
spins-1/2, increasing J makes the occupation probabilities
of energy levels of reduced spins equal so that effective
temperature becomes infinitely high at the ultrastrong coupling
regime. On the other hand, for s � 1, after a critical coupling
strength the population in high energy level (E↑ = B) exceeds
the population in lower energy level (E↓ = −B) so that local
temperature of the spin-1/2 becomes negative as shown in
Fig. 6(b). After the first and the second adiabatic stages,
the local temperatures of the spin-1/2 change to (B2/B1)T H

A

and (B1/B2)T L
A , respectively. Figure 6(a) indicates that T H

A >

(B1/B2)T L
A and T L

A < (B2/B1)T H
A , so that qA

1 > 0 and qA
2 <

0; hence wA > 0 as discussed above. In the deep strong
coupling regime, Fig. 6(b) elucidates that T H

A < (B1/B2)T L
A

and T L
A > (B2/B1)T H

A , so that qA
1 < 0, qA

2 > 0; consequently
wA < 0, so that spin-1/2 is a refrigerator.

V. GENERAL RELATIONS BETWEEN GLOBAL AND
LOCAL WORK

We have seen in Sec. IV that the global work has an
extensive property and can be written as a sum of the local
works done by the individual spins. This conclusion strictly
depends on the paths, or the methods, we choose to operate the
engine cycle. In the adiabatic stages of the quantum Otto cycle,
we varied the homogeneous magnetic field acting on the spins.
We can make a general statement that it is not possible break
the extensive property of work output of a QHE by only making
local changes in the adiabatic stages of the engine cycle. This
simple fact can be quickly proven for a general Hamiltonian
of a system of a collection of local subsystems, described in
the form H = ∑

Hloc + Hint, where the noninteracting (local)
and interacting (global) terms are denoted by Hloc and Hint,
respectively. The internal energy, U = 〈H 〉 = Tr(ρH ), of the
system with density matrix ρ changes as dU = Tr(ρdH ) +
Tr(Hdρ), where the first term can be defined as the work done
on the system and denoted by d̄W := Tr(ρdH ). In a strictly
quantum adiabatic process we have dρ = 0. Accordingly, if
dHint = 0, the global work becomes extensive in terms of local
works done by subsystems such that d̄W = ∑

d̄wloc, with
d̄wloc := Trloc(ρlocdHloc), where ρloc is the reduced density
matrix of a particular subsystem found by tracing out the
degrees of freedom of the other subsystems from the density
matrix ρ of the whole system. While the global work is
extensive under local changes, it can still be optimized by the
interactions between the subsystems, through the interaction
dependence of the reduced density matrices ρloc, which is
illustrated by our analysis in Secs. III and IV.

Let us now consider a more general situation where both
the magnetic field and the exchange interaction between the
spins could change. In such a case, Eq. (7) directly shows that
the extensive behavior of the global work is violated by the
simultaneous change of magnetic field strength (B1 → B2 →
B1) and the exchange coupling strength (J1 → J2 → J1) in
the adiabatic stages such that

W = wA + wB + 8(J1 − J2)Ps , (9)

where Ps is defined in Eq. (7).
A curious result of Eq. (9) is that when B1 = B2 and

J1 
= J2, the system can harvest positive work in a purely
collective manner, as no local work can be done by the local
systems in constant magnetic field. Since there is no change
in local Hamiltonians, the total local heat exchange is zero. If
we take the ratio W/wloc, where wloc = wA + wB is the total
local work, as a figure of merit measuring the cooperativity in
work extraction, it is infinite. On the other hand, we can still
consider a possible generalization of the local work definition
in Ref. [11] to scrutinize them in a purely interacting cycle
without explicit local variations. We suggest that a mean field
Hamiltonian can always be introduced to describe a local
Hamiltonian of a subsystem.

To make our discussion concrete let us take a pairwise
interaction Hamiltonian of the form H = gAB, where A

and B are operators for two subsystems, and g is their
coupling constant. The work done on the system in an
adiabatic stage by the dg variation of the coupling constant
can be written as d̄W = dg〈AB〉, where 〈AB〉 = Tr(ρAB). If
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we use mean field Hamiltonians HA = g〈B〉A/2 and HB =
g〈A〉B/2 for the local Hamiltonians then the corresponding
local work contributions become wA = wB = g〈A〉〈B〉/2.
Accordingly, the global work can be expressed as d̄W =
d̄wA + d̄wB + d̄wcoop, where we introduced a cooperative
work term d̄wcoop := dg〈A,B〉. Here, the notation 〈A,B〉 :=
〈AB〉 − 〈A〉〈B〉 stands for the covariance of A and B as a
measure of correlations between the subsystems. The net work
done in the cycle then becomes

W = wA + wB + wcoop, (10)

where the local and cooperative works are given by

wA = wB = 1
2 (g1 − g2)(〈A〉1〈B〉1 − 〈A〉2〈B〉2),

(11)
wcoop = (g1 − g2)(〈A,B〉1 − 〈A,B〉2).

Here g1 and g2 are the coupling constants at the end points
of the adiabatic stages, and the expectation values 〈X〉i =
Tr(ρi

XX) are evaluated with the reduced density matrix ρi
X

of the subsystem X = A,B in the adiabatic stage labeled by
i = 1,2. With this generalized definition of the local work, the
cooperativity of the work extraction can be characterized by
the ratio

W

wloc
= 1 + 〈A,B〉1 − 〈A,B〉2

〈A〉1〈B〉1 − 〈A〉2〈B〉2
. (12)

Applying the generalized local work formalism to our
Heisenberg exchange model QHE, we find the local Hamilto-
nians

HA = 2Bsz
A + 1

2 8J �sA · 〈 �SB〉,
(13)

HB = 2BSz
B + 1

2 8J 〈�sA〉 · �SB,

which gives the relation between global and local works as
d̄W = d̄wA + d̄wB + d̄wcoop, where

d̄wA = 2dB
〈
sz
A

〉 + 1
2 8dJ 〈�sA〉 · 〈 �SB〉,

(14)
d̄wB = 2dB

〈
Sz

B

〉 + 1
2 8dJ 〈�sA〉 · 〈 �SB〉,

and d̄wcoop = 8dJ 〈�sA,�SB〉. From this result we conclude that
the extensive property of the global work can be violated by
changing the interaction parameter in the adiabatic stages, if
the covariance of the interacting spins changes as well. If the
covariance remains the same, then the global work can be
expressed as the sum of effective local works of the individual
spins under the mean field description.

VI. CONCLUSIONS

We consider a pair of spin-1/2 and spin s coupled
via Heisenberg exchange interaction under a homogeneous
magnetic field as the working medium of a quantum Otto
engine. The influence of exchange coupling and spin s on
the work output and efficiency of the quantum Otto engine
is investigated in detail. The global engine operation is also
analyzed in comparison to local work contributions of the
individual spins. It is found that increasing spin s at a certain
exchange coupling strength can make the QHE to produce
more work with higher efficiency, which can violate the upper

bound of efficiency for two coupled spin-1/2 particles [11].
Moreover, spin s makes it possible to realize the QHE at
the strong coupling regimes. Furthermore, we show that due
to the coupling of asymmetric spins, one of the spins can
operate as a refrigerator even when global cycle is a heat
engine. From the local work analysis, it is found that global
work is equal to the sum of the local works by the individual
spins. Although in local realm, the spin-1/2 and spin s operate
with the same efficiency, their local works are found to be
significantly influenced by the spin s. The local temperature
of spin-1/2 is found to be controlled by spin s and can
be negative or larger than the temperature of the heat baths
in the case of nonzero coupling. Finally, we discussed the
conditions for the violation of the extensive behavior of
the global work. We developed a formalism, applicable to
any coupled bipartite system, generalizing the local and
cooperative work definitions to the case where global changes
can be performed in the engine cycle. The general conditions
for which the global work is not equal to the sum of the local
works are given in terms of the covariance of the subsystems.
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APPENDIX: EIGENVALUES OF THE WORKING MEDIUM

Here we report the eigenvalues of the Hamiltonian (1)
for s = 1/2,1,3/2,2,5/2,3. The corresponding orthonormal
eigenstates can also be calculated. We should stress here
that the eigenstates are system parameter (i.e., J and B)
independent. Since the discussion of text does not require the
explicit form of the eigenstates, we do not report them here for
brevity.

The eigenvalues for ( 1
2 ,s) system with s = 1/2 are [11]

{−6J,2J − 2B,2J,2J + 2B}.
The eigenvalues for ( 1

2 ,s) system with s = 1 are {−B

− 8J,B − 8J,−3B + 4J,−B + 4J,B + 4J,3B + 4J }.
The eigenvalues for ( 1

2 ,s) system with s = 3/2
are {−2B − 10J,−10J,2B − 10J,−2B + 6J,−4B + 6J,

6J,2B + 6J,4B + 6J }.
The eigenvalues for ( 1

2 ,s) system with s = 2 are
{−3B − 12J, −B − 12J, B − 12J, 3B − 12J, −5B + 8J,

−3B + 8J,−B + 8J,B + 8J,3B + 8J,5B + 8J }.
The eigenvalues for ( 1

2 ,s) system with s = 5/2 are
{−4B − 14J, −2B − 14J, −14J, 2B − 14J, 4B − 14J,

−2B + 10J,−4B + 10J,−6B + 10J,10J,2B + 10J,4B +
10J,6B + 10J }.

The eigenvalues for ( 1
2 ,s) system with s = 3 are

{−5B − 16J,−3B − 16J,−B − 16J,B − 16J,3B − 16J,

5B − 16J,−3B + 12J,3B+12J,−7B + 12J,−5B+12J,

−B + 12J,B + 12J,5B + 12J,7B + 12J }.
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