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Three distinct forms are derived for the force virial contribution to the pressure and stress tensor of
a collection of atoms interacting under periodic boundary conditions. All three forms are written in
terms of forces acting on atoms, and so are valid for arbitrary many-body interatomic potentials. All
three forms are mathematically equivalent. In the special case of atoms interacting with pair
potentials, they reduce to previously published forms. �i� The atom-cell form is similar to the
standard expression for the virial for a finite nonperiodic system, but with an explicit correction for
interactions with periodic images. �ii� The atom form is particularly suited to implementation in
modern molecular dynamics simulation codes using spatial decomposition parallel algorithms.
�iii� The group form of the virial allows the contributions to the virial to be assigned to individual
atoms. © 2009 American Institute of Physics. �doi:10.1063/1.3245303�

I. INTRODUCTION

Molecular dynamics �MD� simulation is an extremely
popular and widely used method to provide an atomic-level
description of the physical and chemical properties and pro-
cesses of diverse materials. Simulations within the
isothermal-isobaric �NPT� ensemble are particularly useful
when complementing experimental observations at known
temperatures and pressures. Thus, it is important that the
thermodynamic quantity of pressure be accurately calculated
during such simulations. Two expressions for the calculation
of pressure have been used for decades.1,2 However, as re-
cently pointed out by Louwerse and Baerends,3 one of these
expressions applies only to nonperiodic cells, while the other
is specific to pair potentials. The purpose of this paper is to
provide generalizations of these two expressions that apply
to periodic systems with arbitrary interatomic potentials. The
expressions are formulated in terms of force contributions to
atoms, and so are independent of the details of the interaction
potential. This is particularly useful when implementing in-
teratomic potentials involving complex many-body interac-
tions. Each of the forms has its own advantages and disad-
vantages, but they are mathematically equivalent. It should
be noted that several methods have been developed for com-
puting the pressure via finite expansion or contraction of the
periodic cell vectors. These methods can be used with arbi-
trary interatomic potentials. However, like all finite differ-
ence methods, they are not exact.4

In Sec. II we review the derivations of the standard
forms for the virial for nonperiodic systems and for pair po-
tentials under periodic boundary conditions. In Sec. III we

derive new general virial forms for arbitrary many-body po-
tentials under periodic boundary conditions. In Sec. IV we
demonstrate that all of these forms agree with each other to
machine accuracy.

II. STANDARD EXPRESSIONS FOR THE VIRIAL

The macroscopic pressure P of a set of N interacting
atoms contained in a volume V can be derived in a number of
ways, including continuum mechanics, classical mechanics,
and statistical mechanics.5,6 All of these derivations result in
the following well-established relation:

P =
NkBT

V
+

�W�

3V
, �1�

where T is the temperature, kB is Boltzmann’s constant, and
U is the potential energy due to interactions between the
atoms. The angle brackets in the second term denote an ap-
propriate ensemble average of the internal virial W, which
represents the contribution to the total virial due to forces
acting between the atoms. It is defined by the following re-
lation:

W�rN� = − 3V
dU

dV
. �2�

The virial, like the forces and potential energy, depends only
on the instantaneous atom positions r

N=r1 , . . . ,rN and the
interactions between them. It is an extensive quantity and
represents the contribution of the interaction potential to the
pressure. The calculation of pressure requires that the virial
be correctly sampled during the course of the simulation.

We consider first the case of a finite nonperiodic system
of N atoms interacting with some interaction potential func-a�Electronic mail: athomps@sandia.gov.
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tion U�rN�. The atoms are confined to a volume V by a con-
tainer which exerts external forces on the atoms. In comput-
ing the volume derivative, we assume that volume change
occurs via a homogeneous affine expansion or contraction of
all the atom positions so that

dri

dV
=

ri

3V
. �3�

Applying the chain rule to Eq. �2� and substituting in
from Eq. �3� yields a particularly simple expression for the
virial,

W�rN� = �
i=1

N

ri · Fi, �4�

where Fi is the total force acting on the ith atom due to
interactions with other atoms,

Fi = −
d

dri

U�rN� . �5�

In the case of a pair potential u�r�, the potential energy
function has the form

U�rN� = �
i=1

N

�
j�1

N

u�rij�, rij = �ri − r j� . �6�

Substituting this expression in Eq. �4� yields

W�rN� = �
i=1

N

�
j�1

N

Fij · rij , �7�

where Fij is the force on atom i due to the pair interaction
with atom j,

Fij = −
d

dri

u�rij� . �8�

Derivation of Eq. �7� relies on the identity Fij =−F ji, which
follows from the symmetry of the pair potential function.

In molecular simulation, finite systems are rarely used.
Instead, the system is often modeled as a set of N atoms in a
parallelepiped volume bounded by three vectors: a, b, and c.
This volume, which we will refer to as the local cell, is
surrounded by an infinite, three-dimensional array of equiva-
lent replicas of the local cell, shifted by integer multiples of
a, b, and c. This configuration constitutes periodic boundary
conditions. We will refer to the atoms in the local cell and the
replicas as local and image atoms, respectively. In the case of
a pair potential, the potential energy for the atoms in the
local cell has the form

U�rN� = �
n�Z3

�
i=1

N

�
j�1

N

u�rijn� + �
n�Z3

��
i=1

N

u�riin�,

rijn = �ri − r jn�, r jn = r j + Hn . �9�

The columns of the matrix H are the periodic cell vec-
tors a, b, and c so that r j +Hn is the position of one of the
periodic images of the jth atom. n�Z3 is a vector of three
integers representing the x, y, and z offsets of the periodic
images relative to the local cell. The restrictions on the sum-

mations are chosen so that exactly one periodic image of
each pair interaction is included. Except for the case n=0,
the restriction j� i serves to arbitrarily include an interaction
between a local atom at ri and an image atom at r j +Hn,
while excluding an equivalent interaction between a local
atom at r j and an image atom at ri−Hn. The second sum-
mation handles self-interactions between periodic images of
the same atom, which typically do not arise, but are included
here for completeness. The prime indicates that the summa-
tion over n excludes n=0 and includes only one of n and −n

for every nonzero n.
As for the finite nonperiodic case, volume change is as-

sumed to occur via homogeneous affine expansion of the
infinite periodic space. Other choices are possible, and these
will change the definition of the instantaneous pressure, but
will yield equivalent ensemble averages.6 The assumption of
affine expansion implies the following relation:

drin

dV
=

rin

3V
. �10�

Substituting Eq. �9� and this expression into Eq. �2�
yields

W�rN� = �
n�Z3

�
i=1

N

�
j�1

N

Fijn · rijn + �
n�Z3

��
i=1

N

Fiin · riin, �11�

where Fijn is the force on atom i due to the pair interaction
with the image of atom j located at r j +Hn,

Fijn = −
d

dri

u�rijn� . �12�

As before, Eq. �11� relies on the fact that Fijn=−F ji-n.
Equation �11� closely resembles the previous nonperiodic ex-
pression for pair potentials, Eq. �7�. If rijn is defined using
the minimum-image convention, where each local atom in-
teracts only with the closest image of every other local
atom,2 then the two forms can be expressed using identical
computer code. Perhaps because of this similarity, it is some-
times erroneously assumed that Eq. �4� can also be used
without modification for periodic systems. This is particu-
larly tempting for complex many-body potentials, where a
general analog of Eq. �11� has not been previously published.

Louwerse and Baerends showed that the correct form of
Eq. �4� under periodic boundary conditions is

W�rN� = �
i=1

N

ri · Fi − 3V	 �U

�V



rN

, �13�

where Fi is as before the total force acting on the ith atom.
The additional correction term accounts for the fact that un-
der periodic boundary conditions, changing the volume
changes the positions of image atoms, even when the local
atoms positions are fixed. Louwerse and Baerends3 indicated
that correct calculation of the pressure for an arbitrary inter-
atomic potential under periodic boundary conditions would
require either numerical evaluation of the derivative in Eq.
�2� or deriving analytic derivatives for the correction term on
the right-hand side of Eq. �13�, both of which are described
as requiring “much effort.” Indeed, the latter option poses a
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particular challenge when using complex, many-body inter-
action potentials. The authors’ call for an alternative, simple
method to correctly calculate the pressure for periodic sys-
tem given at the end of their paper is quite understandable. It
is our hope that the expressions derived below will provide
such a method.

III. GENERAL EXPRESSIONS FOR THE VIRIAL

We begin by defining the potential energy for a finite
nonperiodic system as the sum of K group energy terms,
each of which depends only on the positions of a small group
of the atoms,

U�rN� = �
k=1

K

uk�r
Nk�, r

Nk = r1
k,r2

k, . . . ,rNk

k , �14�

where rw
k is the position of the wth atom in the group. The

number of groups, the number of atoms in each group, and
the number of groups in which an atom participates are com-
pletely arbitrary.

Substituting Eq. �14� into Eq. �2�, applying the chain rule
and Eq. �3� yields another expression for the virial of a finite
nonperiodic system,

W�rN� = �
k=1

K

�
w=1

Nk

rw
k · Fw

k , �15�

where Fw
k is the force due to the atoms in the kth group on

the wth atom in that group,

Fw
k = −

d

drw
k

uk�r
Nk� . �16�

Equation �15� may appear to introduce an arbitrary depen-
dence on the choice of coordinate system, but this is not the
case. It is physically reasonable to require that each group
energy function depend only on the relative positions of at-
oms in the group, and be independent of their absolute posi-
tion. We can express this group-wise translational invariance
in differential form

�
w=1

Nk

�r ·
d

drw
k

uk�r
Nk� = 0 , �17�

where �r is an arbitrary infinitesimal displacement vector.
Substituting in from Eq. �16� allows us to express this trans-
lational invariance as

�
w=1

Nk

Fw
k = 0 . �18�

Because of this property, adding a constant displacement
to all the atoms in one group has no effect on the contribu-
tion of that group to the virial. Moreover, by gathering terms
in Eq. �15� by atom, we can write the virial in a different
way,

W�rN� = − �
i=1

N

ri · �
k=1

K
d

dri

uk�r
Nk� . �19�

Comparing to Eqs. �14� and �5�, we find

W�rN� = �
i=1

N

ri · Fi, �20�

which is the same as Eq. �4�. We will refer to Eq. �15� as the
group form for the virial, while Eq. �20� will be referred to as
the atom form.

The same construction can now be used to derive an
expression for an infinite periodic system. We must first en-
sure that the potential energy is defined correctly. To do this,
we associate each of the infinite number of equivalent peri-
odic images of each group with exactly one of the infinite
number of periodic cell replicas. This association is arbitrary
to some extent, and may be chosen for computational sim-
plicity.

However, it must be done in such a way that every group
image is associated with one and only one replica �it is pos-
sible to relax this requirement by having groups be shared by
multiple replicas, but this results in duplicated computation�.
If we add the additional restriction that each group image be
associated with a replica containing one of its atoms, this still
results in up to Nk candidate group images for each replica
since each group image can extend over arbitrarily many
replicas. One conceptually simple way to proceed would be
to associate each group image with the replica containing its
center of mass. However, for specific potential functions
more convenient choices are usually available. We will as-
sume that every group has an identifiable reference atom and
this atom is always first in the group list, i.e., its position is
given by r1

k. The reference atom may be chosen based on the
form of the group potential, or it could simply be the atom in
the group with the lowest local index i. The restriction j� i

used in Eq. �11� is an example of the latter method.7 We can
then associate each group image with a replica n, such that
the reference atom of the group image lies in replica n, i.e.,
for some local atom i, r1

k =rin. Figure 1 illustrates the ap-
proach with an example of a group involving three atoms.

FIG. 1. Two-dimensional schematic illustrating how group images are as-
sociated with periodic replicas. The black square indicates the local cell,
which is surrounded by an infinite array of periodic replicas. The closed
curves indicate periodic images of a potential energy group involving three
atoms. The curve in black indicates the group image associated with the
local cell; it was chosen because its reference atom �the central atom, la-
beled 1� is contained in the local cell. Vectors indicating the values of n for
the local cell and three replicas are also shown.
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There are three images of this group that have an atom in the
local cell. The reference atom in the group image outlined in
bold is in the local cell and so this group image is associated
with the local cell. The other group images are associated
with neighboring replicas.

With this approach we can now write the potential en-
ergy of the local cell in an unambiguous manner,

U�rN� = �
k�0

uk�r
Nk�, r

Nk = r1
k,r2

k, . . . ,rNk

k . �21�

The summation is over all group images associated with the
local cell. By construction, the first atom is in the local cell,
i.e., r1

k =ri0. All the other atoms may be located in the local
cell or in nearby replicas. We note that the potential energy is
now defined explicitly in terms of the positions of atoms in
the local cell and in nearby replicas. Because of this, we can
proceed in the same way as for the finite nonperiodic system.
Substituting into Eq. �2�, applying the chain rule and Eq. �10�
yields the group form for the virial of the local cell in an
infinite periodic system,

W�rN� = �
k�0

�
w=1

Nk

rw
k · Fw

k . �22�

The position and group force are properties of the wth
atom in the kth group which may or may not be in the local
cell. The above expression is valid for any potential energy
function that can be broken up into finite-range group terms,
each of which depends only on the relative positions of the
atoms in the group. It is not valid for potentials with explicit
volume dependence such as arise in the treatment of lattice
sum electrostatics and tail corrections. These require special-
ized treatments.6

By gathering terms in Eq. �22� by atom, we can write the
virial in a different way,

W�rN� = − �
n�Z3

�
i=1

N

rin · �
k�0

d

drin

uk�r
Nk� . �23�

We can write this expression in a more natural way by de-
fining the following partial force,

Fin� = − �
k�0

d

drin

uk�r
Nk� . �24�

Substituting this expression into Eq. �23� allows us to write
the virial as

W�rN� = �
n�Z3

�
i=1

N

rin · Fin� . �25�

We see that this expression is very similar to the atom
form for the virial of a nonperiodic system �Eq. �15��, but it
differs from the nonperiodic version in two respects. First,
the summation is not just over local particles but also over
image particles that contribute to the groups associated with
the local cell. Second, the prime indicates that Fin� is not the
total force on an atom but rather the partial force on the atom
located at ri+Hn due to all the groups associated with the
local cell.

Even in the case of local atoms, this partial force may be
different from the full force because the forces due to groups
associated with other replicas are not included. These partial
forces arise naturally in calculations for periodic systems
when the potential energy is defined using Eq. �21�. The total
force on each local atom is built up from partial forces ac-
cumulated on both local and image atoms,

Fi = �
n�Z3

Fin� . �26�

Finally, we can obtain a third expression for the virial by
substituting rin=ri+Hn and gathering terms in ri yielding

W�rN� = �
i=1

N

ri · Fi + �
n�Z3

Hn · �
i=1

N

Fin� . �27�

This result is identical to the expression developed by Bek-
ker et al.

8 for pair potentials under periodic boundary condi-
tions. The second term is a sum over partial forces for atoms
in each periodic replica. Comparison with Eq. �13� reveals
that this sum is the correction term identified by Louwerse
and Baerends.3 The group form �Eq. �22��, atom form �Eq.
�25��, and the atom-cell form �Eq. �27�� for the virial consti-
tute the primary results of this paper. All three forms are
mathematically equivalent and are valid for any translation-
ally invariant potential consisting of a sum of group terms.

When implementing these forms in computer programs,
the atom and atom-cell forms have the advantage that the
virial product is not calculated in the innermost loop of the
force calculation but rather is computed later in a separate
loop over all atoms. The atom form is particularly well suited
to implementation in parallel MD simulation codes, as the
partial forces of image atoms are equivalent to the partial
forces of ghost atoms used in spatial decomposition schemes.
The group form has the advantage that individual contribu-
tions to the virial associated with each atom are computed
explicitly.

IV. VERIFICATION

In order to verify the equivalence of the different forms,
we have used the atom and group forms to compute the
instantaneous stress tensor in short MD simulations of
simple crystals using several different interatomic potentials.
We begin with the definition of the global stress tensor P for
a collection of N particles contained in a volume V,

PV = ��
i=1

N

mivi � vi + W�rN�� , �28�

where mi and vi are the mass and instantaneous velocity of
the ith particle. The symbol � indicates the outer, dyadic, or
direct tensor product. W is the global virial tensor. It is re-
lated to the scalar virial discussed in Secs. II and III by W

=Tr W. Depending on the situation, it may be appropriate to
replace the kinetic contribution to the instantaneous stress by
the corresponding thermodynamic average NkBTI,9 but in ei-
ther case, the definition of the virial tensor is the same. The
atom and group forms of the virial tensor can be derived in
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the same manner as was used for the scalar virial in Sec. III.
The result for the atom form is

W�rN� = �
n�Z3

�
i=1

N

rin � Fin� , �29�

while the result for the group form is

W�rN� = �
k�0

�
w=1

Nk

rw
k

� Fw
k . �30�

We first tested the validity of the atom form by comparison
with the standard definition of the virial tensor for atoms
interacting with a pair potential,

W�rN� = �
n�Z3

�
i=1

N

�
j�i

N

Fijn � rijn + �
n�Z3

��
i=1

N

Fiin � riin.

�31�

We initialized a 10�10�10 fcc perfect periodic crystal of
particles interacting with the Lennard-Jones pair potential
with density 0.99�

−3 and random velocities corresponding to
temperature �, where � and � are the Lennard-Jones diam-
eter and energy, respectively. We truncated the potential at
2.5�, and ran NVE dynamics for 1000 steps using velocity-
Verlet time integration with a time step of 0.005�, where �

=��m /��1/2 is the characteristic timescale of the crystal. At
each time step we calculated the global stress tensor using
both Eqs. �29� and �31�.

The differences in the six independent components of
the stress tensor are plotted in Fig. 2 as a function of time. It
can be seen that the average difference is of order 10−14

� /�
3,

which is comparable to the accuracy of the double precision
�64 bits� arithmetic used to do the calculation. This indicates
that the atom form of the virial tensor is mathematically
equivalent to the standard form for pair potentials.

We cannot perform the same test for many-body poten-
tials since there is no general many-body expression analo-
gous to Eq. �31�. Instead, we test the mutual consistency of
our atom and group forms, Eqs. �29� and �30�, respectively.
We initialized a 1�1�1 perfect periodic diamond-cubic
crystal of eight silicon atoms with lattice constant 5.43 Å and
random velocities corresponding to temperature 300 K. Us-
ing the Stillinger–Weber potential10 we ran NVE dynamics

for 1000 steps with a time step of 0.1 fs. The difference
between the pressure tensor components calculated using the
atom and group forms of the virial are shown in Fig. 3. We
have also performed a similar calculation using the ReaxFF
reactive interatomic potential.11 The corresponding differ-
ences for the ReaxFF potential are shown in Fig. 4. For the
Stillinger–Weber potential, the differences are on the order of
10−11 bar, while for the ReaxFF potential the differences are
on the order of 10−9 bar. The increasing magnitude of the
differences in going from Lennard-Jones to Stillinger–Weber
to ReaxFF is consistent with the increasing computational
complexity of these potentials. In all cases the differences are
consistent with the accuracy of the double precision machine
arithmetic. We conclude that all the different forms of the
virial are computationally and mathematically equivalent.

V. SUMMARY AND DISCUSSION

We have derived three distinct forms for the instanta-
neous force virial contribution to the pressure and stress ten-
sor of a collection of atoms interacting under periodic bound-
ary conditions. All three forms are written in terms of forces
acting on atoms, and so are valid for arbitrary interatomic
potentials. In the special case of atoms interacting with pair
potentials, they reduce to previously published forms. As a
result, we have clarified and eliminated the difficulties iden-
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FIG. 2. Difference in pressure tensor components calculated using the stan-
dard �Eq. �31�� and atom �Eq. �29�� forms from a NVE dynamics simulation
of a periodic Lennard-Jones crystal. Reading from top to bottom, the graphs
correspond to pressure tensor components Pxx, Pyy, Pzz, Pxy, Pxz, and Pyz.
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�Eq. �30�� and atom �Eq. �29�� forms from a NVE dynamics simulations of a
periodic silicon crystal using the Stillinger–Weber potential. Reading from
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tified by Louwerse and Baerends3 when extending the ex-
pressions for simple pair potentials to more complicated in-
teratomic potential functions.

The atom-cell form of the virial is similar to the standard
expression for a finite nonperiodic system, but with an ex-
plicit correction for interactions with periodic images. This
correction term was formally identified by Louwerse and
Baerends,3 but they indicated that there was no straightfor-
ward way to evaluate it for arbitrary potentials. We have
been able to write the correction term directly in terms of
partial forces acting on periodic image atoms. The correction
term is identical to the one derived by Bekker et al.

8 for pair
potentials.

The atom form of the virial is particularly suited to
implementation in MD simulation codes that use spatial de-
composition parallel algorithms. In many modern parallel
MD simulation codes, the forces are calculated using a gen-
eralization of this concept. Every group in the total potential
energy function is associated with a particular processor.
This association is usually achieved by decomposing the
simulation domain into processor subdomains. The groups
can be associated with subdomains in exactly the same way
that we associated groups with periodic replicas. In this con-
text, the treatment of interactions between periodic replicas
can be seen as a special case of the interaction between sub-
domains.

Finally, the group form of the virial naturally leads to a
simple, general scheme for computing the virial tensor for
individual atoms. While these per-atom virials do not have a
direct physical interpretation, they provide a convenient
means for grouping contributions to the virial in space, al-

lowing the spatial variation of the stress tensor to be esti-
mated in strongly inhomogeneous systems, such as in the
vicinity of a shockwave.12
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